mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
E-Auto/Wallbox wird jetzt mit diskreten Ladezuständen versehen, in der
config.py einstellbar Jeder DisCharge = 0 (Akkus nicht benutzen) wird mit 1Cent Strafe belegt, da die Lastverteilung fehlt. Also wenn es egal ist, soll er den Akku anschalten.
This commit is contained in:
parent
86a31df479
commit
dbf06c808d
@ -30,7 +30,7 @@ class Wechselrichter:
|
|||||||
# Akku
|
# Akku
|
||||||
geladene_energie, verluste_laden_akku = self.akku.energie_laden(restleistung_nach_verbrauch, hour)
|
geladene_energie, verluste_laden_akku = self.akku.energie_laden(restleistung_nach_verbrauch, hour)
|
||||||
rest_überschuss = restleistung_nach_verbrauch - (geladene_energie+verluste_laden_akku)
|
rest_überschuss = restleistung_nach_verbrauch - (geladene_energie+verluste_laden_akku)
|
||||||
# if hour == 12:
|
# if hour == 1:
|
||||||
# print("Erzeugung:",erzeugung)
|
# print("Erzeugung:",erzeugung)
|
||||||
# print("Last:",verbrauch)
|
# print("Last:",verbrauch)
|
||||||
# print("Akku:",geladene_energie)
|
# print("Akku:",geladene_energie)
|
||||||
@ -44,8 +44,8 @@ class Wechselrichter:
|
|||||||
verluste += rest_überschuss - netzeinspeisung
|
verluste += rest_überschuss - netzeinspeisung
|
||||||
else:
|
else:
|
||||||
netzeinspeisung = rest_überschuss
|
netzeinspeisung = rest_überschuss
|
||||||
#if hour ==10:
|
#if hour ==14:
|
||||||
# print(rest_überschuss," ",restleistung_nach_verbrauch, " Gela:",geladene_energie," Ver:",verluste_laden_akku)
|
# print("Erz:",erzeugung," Last:",verbrauch, " RestPV:",rest_überschuss," ",restleistung_nach_verbrauch, " Gela:",geladene_energie," Ver:",verluste_laden_akku," Einsp:",netzeinspeisung)
|
||||||
verluste += verluste_laden_akku
|
verluste += verluste_laden_akku
|
||||||
|
|
||||||
|
|
||||||
@ -71,73 +71,4 @@ class Wechselrichter:
|
|||||||
eigenverbrauch = erzeugung + aus_akku
|
eigenverbrauch = erzeugung + aus_akku
|
||||||
|
|
||||||
|
|
||||||
# if erzeugung > verbrauch:
|
|
||||||
# if verbrauch > self.max_leistung_wh:
|
|
||||||
|
|
||||||
# else:
|
|
||||||
|
|
||||||
|
|
||||||
# überschuss = self.max_leistung_wh - verbrauch
|
|
||||||
|
|
||||||
# geladene_energie, verluste_laden_akku = self.akku.energie_laden(überschuss, hour)
|
|
||||||
# rest_überschuss = überschuss - geladene_energie
|
|
||||||
# verluste += verluste_laden_akku
|
|
||||||
|
|
||||||
# if (rest_überschuss > self.max_leistung_wh):
|
|
||||||
# netzeinspeisung = self.max_leistung_wh
|
|
||||||
# verluste += rest_überschuss - self.max_leistung_wh
|
|
||||||
# else:
|
|
||||||
# netzeinspeisung = rest_überschuss
|
|
||||||
|
|
||||||
# eigenverbrauch = verbrauch
|
|
||||||
|
|
||||||
# else:
|
|
||||||
# benötigte_energie = verbrauch - erzeugung
|
|
||||||
# max_akku_leistung = self.akku.max_ladeleistung_w
|
|
||||||
|
|
||||||
# rest_ac_leistung = max(max_akku_leistung - erzeugung,0)
|
|
||||||
|
|
||||||
# if benötigte_energie < rest_ac_leistung:
|
|
||||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(benötigte_energie, hour)
|
|
||||||
# else:
|
|
||||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(rest_ac_leistung, hour)
|
|
||||||
|
|
||||||
|
|
||||||
# verluste += akku_entladeverluste
|
|
||||||
|
|
||||||
# netzbezug = benötigte_energie - aus_akku
|
|
||||||
# eigenverbrauch = erzeugung + aus_akku
|
|
||||||
|
|
||||||
# # Berechnung der gesamten verarbeiteten Energie
|
|
||||||
# total_verarbeitet = eigenverbrauch
|
|
||||||
# if total_verarbeitet > self.max_leistung_wh:
|
|
||||||
# verluste += total_verarbeitet - self.max_leistung_wh
|
|
||||||
|
|
||||||
return netzeinspeisung, netzbezug, verluste, eigenverbrauch
|
return netzeinspeisung, netzbezug, verluste, eigenverbrauch
|
||||||
|
|
||||||
|
|
||||||
# def energie_verarbeiten(self, erzeugung, verbrauch, hour):
|
|
||||||
|
|
||||||
# verluste = 0
|
|
||||||
# netzeinspeisung = 0
|
|
||||||
# netzbezug = 0.0
|
|
||||||
# eigenverbrauch = 0.0
|
|
||||||
|
|
||||||
# if erzeugung > verbrauch:
|
|
||||||
# überschuss = erzeugung - verbrauch
|
|
||||||
# geladene_energie, verluste_laden_akku = self.akku.energie_laden(überschuss, hour)
|
|
||||||
# verluste += verluste_laden_akku
|
|
||||||
|
|
||||||
# netzeinspeisung = überschuss - geladene_energie-verluste_laden_akku
|
|
||||||
# eigenverbrauch = verbrauch
|
|
||||||
# netzbezug = 0.0
|
|
||||||
# # Noch Netzbezug nötig
|
|
||||||
# else:
|
|
||||||
# netzeinspeisung = 0.0
|
|
||||||
# benötigte_energie = verbrauch - erzeugung
|
|
||||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(benötigte_energie, hour)
|
|
||||||
# verluste += akku_entladeverluste
|
|
||||||
# netzbezug = benötigte_energie - aus_akku
|
|
||||||
# eigenverbrauch = erzeugung+aus_akku
|
|
||||||
|
|
||||||
# return netzeinspeisung, netzbezug, verluste, eigenverbrauch # Keine Einspeisung, Netzbezug, aus Akku, Verluste, Eigenverbrauch
|
|
||||||
|
@ -23,7 +23,8 @@ from deap import base, creator, tools, algorithms
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
import os
|
import os
|
||||||
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
from config import *
|
||||||
|
|
||||||
def isfloat(num):
|
def isfloat(num):
|
||||||
try:
|
try:
|
||||||
@ -38,7 +39,7 @@ class optimization_problem:
|
|||||||
self.strafe = strafe
|
self.strafe = strafe
|
||||||
self.opti_param = None
|
self.opti_param = None
|
||||||
self.fixed_eauto_hours = prediction_hours-optimization_hours
|
self.fixed_eauto_hours = prediction_hours-optimization_hours
|
||||||
|
self.possible_charge_values = moegliche_ladestroeme_in_prozent
|
||||||
|
|
||||||
|
|
||||||
def split_individual(self, individual):
|
def split_individual(self, individual):
|
||||||
@ -74,7 +75,9 @@ class optimization_problem:
|
|||||||
# PARAMETER
|
# PARAMETER
|
||||||
self.toolbox = base.Toolbox()
|
self.toolbox = base.Toolbox()
|
||||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||||
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
#self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||||
|
self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||||
|
|
||||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||||
|
|
||||||
###################
|
###################
|
||||||
@ -83,14 +86,14 @@ class optimization_problem:
|
|||||||
if opti_param["haushaltsgeraete"]>0:
|
if opti_param["haushaltsgeraete"]>0:
|
||||||
def create_individual():
|
def create_individual():
|
||||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||||
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
||||||
return creator.Individual(attrs)
|
return creator.Individual(attrs)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
def create_individual():
|
def create_individual():
|
||||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||||
return creator.Individual(attrs)
|
return creator.Individual(attrs)
|
||||||
|
|
||||||
|
|
||||||
@ -113,14 +116,14 @@ class optimization_problem:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#discharge_hours_bin = np.full(self.prediction_hours,0)
|
||||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||||
|
|
||||||
# Setze die festen Werte für die letzten x Stunden
|
# Setze die festen Werte für die letzten x Stunden
|
||||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||||
eautocharge_hours_float[i] = 0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
eautocharge_hours_float[i] = 0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
||||||
|
|
||||||
|
#print(eautocharge_hours_float)
|
||||||
|
|
||||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||||
|
|
||||||
@ -141,9 +144,15 @@ class optimization_problem:
|
|||||||
if worst_case:
|
if worst_case:
|
||||||
gesamtbilanz = gesamtbilanz * -1.0
|
gesamtbilanz = gesamtbilanz * -1.0
|
||||||
|
|
||||||
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||||
|
|
||||||
|
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
|
||||||
|
for i in range(0, self.prediction_hours):
|
||||||
|
if discharge_hours_bin[i] == 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||||
|
gesamtbilanz += 0.01 # Bestrafe den Optimierer
|
||||||
|
|
||||||
|
|
||||||
# E-Auto nur die ersten self.fixed_eauto_hours
|
# E-Auto nur die ersten self.fixed_eauto_hours
|
||||||
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2]
|
|
||||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||||
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||||
@ -186,7 +195,7 @@ class optimization_problem:
|
|||||||
|
|
||||||
# Genetischer Algorithmus
|
# Genetischer Algorithmus
|
||||||
def optimize(self,start_solution=None):
|
def optimize(self,start_solution=None):
|
||||||
population = self.toolbox.population(n=400)
|
population = self.toolbox.population(n=600)
|
||||||
hof = tools.HallOfFame(1)
|
hof = tools.HallOfFame(1)
|
||||||
|
|
||||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||||
@ -199,7 +208,7 @@ class optimization_problem:
|
|||||||
if start_solution is not None and start_solution != -1:
|
if start_solution is not None and start_solution != -1:
|
||||||
population.insert(0, creator.Individual(start_solution))
|
population.insert(0, creator.Individual(start_solution))
|
||||||
|
|
||||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=500, stats=stats, halloffame=hof, verbose=True)
|
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||||
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||||
|
|
||||||
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
||||||
@ -231,12 +240,12 @@ class optimization_problem:
|
|||||||
akku_size = parameter['pv_akku_cap'] # Wh
|
akku_size = parameter['pv_akku_cap'] # Wh
|
||||||
|
|
||||||
einspeiseverguetung_euro_pro_wh = np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
einspeiseverguetung_euro_pro_wh = np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
||||||
|
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||||
akku = PVAkku(kapazitaet_wh=akku_size,hours=self.prediction_hours,start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
akku = PVAkku(kapazitaet_wh=akku_size,hours=self.prediction_hours,start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
||||||
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
akku.set_charge_per_hour(discharge_array)
|
||||||
|
|
||||||
|
|
||||||
laden_moeglich = np.full(self.prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
laden_moeglich = np.full(self.prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||||
|
|
||||||
|
|
||||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
||||||
eauto.set_charge_per_hour(laden_moeglich)
|
eauto.set_charge_per_hour(laden_moeglich)
|
||||||
min_soc_eauto = parameter['eauto_min_soc']
|
min_soc_eauto = parameter['eauto_min_soc']
|
||||||
|
170
test.py
170
test.py
@ -23,7 +23,7 @@ import os
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
start_hour = 13
|
start_hour = 10
|
||||||
|
|
||||||
pv_forecast= [
|
pv_forecast= [
|
||||||
0,
|
0,
|
||||||
@ -33,45 +33,45 @@ pv_forecast= [
|
|||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
35.4104640357043,
|
8.05499380056326,
|
||||||
436.191574979506,
|
352.906710152794,
|
||||||
734.585613834398,
|
728.510230116837,
|
||||||
914.346108603927,
|
930.282113186742,
|
||||||
1019.5228214119,
|
1043.25445504815,
|
||||||
1766.84136350058,
|
1106.74498341506,
|
||||||
5980.60975052259,
|
1161.69140358941,
|
||||||
6236.00681862336,
|
6018.82237954771,
|
||||||
5893.38154543782,
|
5519.06508185542,
|
||||||
4309.88538120413,
|
3969.87633262384,
|
||||||
3338.29004915145,
|
3017.96293205546,
|
||||||
2177.55660706753,
|
1943.06957539177,
|
||||||
1091.00542545193,
|
1007.17065928121,
|
||||||
437.819525591319,
|
319.672404988219,
|
||||||
44.2226537829726,
|
7.87634136648885,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
-0.0269415125679914,
|
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
0,
|
0,
|
||||||
25.5745140893473,
|
0,
|
||||||
494.188146846569,
|
5.04340865393592,
|
||||||
943.821134036728,
|
335.585179721385,
|
||||||
1458.66413119635,
|
705.32093965119,
|
||||||
1819.46147983229,
|
1121.11845108965,
|
||||||
2127.45430524539,
|
1604.78796905453,
|
||||||
2267.78128099068,
|
2157.38417470292,
|
||||||
5944.86706099518,
|
1433.25331647539,
|
||||||
5337.1322153025,
|
5718.48693381975,
|
||||||
4376.56125932204,
|
4553.95522042393,
|
||||||
3020.00212091936,
|
3027.5471975751,
|
||||||
2414.53994231359,
|
2574.46499468404,
|
||||||
1373.626161377,
|
1720.39712914078,
|
||||||
517.764497317134,
|
963.402827741714,
|
||||||
35.619750070296,
|
383.299960578605,
|
||||||
|
0,
|
||||||
0,
|
0,
|
||||||
0
|
0
|
||||||
]
|
]
|
||||||
@ -177,60 +177,60 @@ strompreis_euro_pro_wh = [
|
|||||||
0.00027800228
|
0.00027800228
|
||||||
]
|
]
|
||||||
gesamtlast= [
|
gesamtlast= [
|
||||||
546.16318964697,
|
676.712691350422,
|
||||||
893.072526185525,
|
876.187995931743,
|
||||||
448.7325491406,
|
527.13496018672,
|
||||||
460.696954446666,
|
468.8832716908,
|
||||||
497.688171532182,
|
531.379343927472,
|
||||||
468.186120420737,
|
517.948592590007,
|
||||||
424.440426628658,
|
483.146247717859,
|
||||||
454.341890696582,
|
472.284832630916,
|
||||||
1070.45287392313,
|
1011.67951144825,
|
||||||
1096.46234344204,
|
995.004317471209,
|
||||||
1199.71317588613,
|
1053.06955100748,
|
||||||
1294.39989535284,
|
1063.9080395892,
|
||||||
1459.42631059004,
|
1320.56143113193,
|
||||||
1295.23757474948,
|
1132.02504127723,
|
||||||
1304.65748778424,
|
1163.67246837107,
|
||||||
1187.47511606455,
|
1176.81613875329,
|
||||||
1309.49984671163,
|
1216.21914051274,
|
||||||
1106.60773651081,
|
1103.77675478374,
|
||||||
1098.98136451936,
|
1129.12158352941,
|
||||||
2112.82264661039,
|
1178.70748410006,
|
||||||
1143.37118921705,
|
1050.97894301995,
|
||||||
858.863135790621,
|
988.55813665172,
|
||||||
787.018517493612,
|
912.383030600675,
|
||||||
693.683533270357,
|
704.613809064162,
|
||||||
545.860858342826,
|
516.371536532904,
|
||||||
892.702692835489,
|
868.049462163551,
|
||||||
448.372058076642,
|
694.342395302237,
|
||||||
460.284228901714,
|
608.791374542592,
|
||||||
498.457870099476,
|
556.310160150771,
|
||||||
469.01826331988,
|
488.88509383088,
|
||||||
424.293997897019,
|
506.910948217211,
|
||||||
454.660942633609,
|
804.891484351704,
|
||||||
1070.71990586461,
|
1141.97850300923,
|
||||||
1096.44557410693,
|
1056.97012155463,
|
||||||
1199.72027861112,
|
992.46421110044,
|
||||||
1294.75410706442,
|
1155.98941936038,
|
||||||
1459.61174223338,
|
827.012550864246,
|
||||||
1295.77661554687,
|
1257.97979633947,
|
||||||
1304.95591385395,
|
1232.66876472966,
|
||||||
1188.62778631227,
|
871.261677859026,
|
||||||
1310.43099742786,
|
860.884647456424,
|
||||||
1108.58589249073,
|
1158.02879027548,
|
||||||
1101.73849714744,
|
1222.71811626233,
|
||||||
2114.05576978017,
|
1221.03860924522,
|
||||||
1143.68031998738,
|
949.989048056282,
|
||||||
858.607350786608,
|
987.007654562746,
|
||||||
786.574111043611,
|
733.993140774617,
|
||||||
693.463415886943
|
592.972573276025
|
||||||
]
|
]
|
||||||
|
|
||||||
start_solution= [
|
start_solution= [
|
||||||
0,
|
|
||||||
1,
|
1,
|
||||||
0,
|
1,
|
||||||
|
1,
|
||||||
1,
|
1,
|
||||||
0,
|
0,
|
||||||
1,
|
1,
|
||||||
@ -325,11 +325,11 @@ start_solution= [
|
|||||||
1,
|
1,
|
||||||
1
|
1
|
||||||
]
|
]
|
||||||
parameter= {"preis_euro_pro_wh_akku": 30e-05,'pv_soc': 95.00, 'pv_akku_cap': 30000, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000,"gesamtlast":gesamtlast, 'pv_forecast': pv_forecast, "temperature_forecast":temperature_forecast, "strompreis_euro_pro_wh":strompreis_euro_pro_wh, 'eauto_min_soc': 0, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 7590, 'eauto_soc': 53, 'pvpowernow': 211.137503624, 'start_solution': start_solution, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0}
|
parameter= {"preis_euro_pro_wh_akku": 10e-05,'pv_soc': 80, 'pv_akku_cap': 26400, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000,"gesamtlast":gesamtlast, 'pv_forecast': pv_forecast, "temperature_forecast":temperature_forecast, "strompreis_euro_pro_wh":strompreis_euro_pro_wh, 'eauto_min_soc': 0, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 11040, 'eauto_soc': 54, 'pvpowernow': 211.137503624, 'start_solution': start_solution, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
opt_class = optimization_problem(prediction_hours=48, strafe=10,optimization_hours=24)
|
opt_class = optimization_problem(prediction_hours=48, strafe=10,optimization_hours=24)
|
||||||
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour)
|
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour)
|
||||||
print(ergebnis)
|
#print(ergebnis)
|
||||||
print(jsonify(ergebnis))
|
#print(jsonify(ergebnis))
|
Loading…
x
Reference in New Issue
Block a user