mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
comments, cleanup
This commit is contained in:
parent
b16a545379
commit
df54303284
@ -6,7 +6,7 @@ humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPric
|
||||
format, enabling consistent access to forecasted and historical electricity price attributes.
|
||||
"""
|
||||
|
||||
from typing import Any, List, Optional, Union, Tuple
|
||||
from typing import Any, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
@ -98,6 +98,10 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
|
||||
Raises:
|
||||
ValueError: If the API response does not include expected `electricity price` data.
|
||||
|
||||
Todo:
|
||||
- maybe some data cleanup/checking. we might have a problem if a single day has none values or is missing at all in the api or the data.
|
||||
- add the file cache again.
|
||||
"""
|
||||
source = "https://api.akkudoktor.net"
|
||||
assert self.start_datetime # mypy fix
|
||||
@ -137,7 +141,7 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
|
||||
def _update_data(
|
||||
self, force_update: Optional[bool] = False
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: # TODO: remove return, only for debug
|
||||
"""Update forecast data in the ElecPriceDataRecord format.
|
||||
|
||||
Retrieves data from Akkudoktor, maps each Akkudoktor field to the corresponding
|
||||
@ -177,7 +181,7 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
history = np.array(
|
||||
[
|
||||
record.elecprice_marketprice_wh
|
||||
for record in self.records
|
||||
for record in sorted(self.records, key=lambda r: r.date_time)
|
||||
if record.elecprice_marketprice_wh is not None
|
||||
]
|
||||
)
|
||||
@ -186,9 +190,13 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
assert highest_orig_datetime # mypy fix
|
||||
# Insert prediction into ElecPriceDataRecord
|
||||
if amount_datasets > 800:
|
||||
prediction = self._predict_ets(history, seasonal_periods=168, prediction_hours=7 * 24)
|
||||
prediction = self._predict_ets(
|
||||
history, seasonal_periods=168, prediction_hours=7 * 24
|
||||
) # todo: add config values for prediction_hours
|
||||
elif amount_datasets > 168:
|
||||
prediction = self._predict_ets(history, seasonal_periods=24, prediction_hours=7 * 24)
|
||||
prediction = self._predict_ets(
|
||||
history, seasonal_periods=24, prediction_hours=7 * 24
|
||||
) # todo: add config values for prediction_hours
|
||||
elif amount_datasets > 0:
|
||||
prediction = self._predict_median(history, prediction_hours=7 * 24)
|
||||
else:
|
||||
@ -200,48 +208,40 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
# Update existing record
|
||||
existing_record.elecprice_marketprice_wh = price
|
||||
else:
|
||||
assert pred_datetime # mypy fix
|
||||
assert pred_datetime # mypy fix, why do we need that we already made sure highest_orig_datetime is not None
|
||||
self.insert(
|
||||
0,
|
||||
ElecPriceDataRecord(date_time=pred_datetime, elecprice_marketprice_wh=price),
|
||||
)
|
||||
history2 = np.array(
|
||||
history2 = np.array( # TODO: remove return, only for debug, offset to see the difference
|
||||
[
|
||||
[record.elecprice_marketprice_wh, record.date_time]
|
||||
for record in self.records
|
||||
record.elecprice_marketprice_wh + 0.0002
|
||||
for record in sorted(self.records, key=lambda r: r.date_time)
|
||||
if record.elecprice_marketprice_wh is not None
|
||||
]
|
||||
)
|
||||
return history, prediction
|
||||
# print(len(history2), len(history))
|
||||
|
||||
# now we count how many data points we have.
|
||||
# if its > 800 (5 weeks) we will use EST
|
||||
# elif > idk maybe 168 (1 week) we use EST without season
|
||||
# elif < 168 we use a simple median
|
||||
# #elif == 0 we need some static value from the config
|
||||
|
||||
# depending on the result we check prediction_hours and predict that many hours.
|
||||
|
||||
# we get the result and iterate over it to put it into ElecPriceDataRecord
|
||||
return history, history2, prediction # TODO: remove return, only for debug
|
||||
|
||||
|
||||
def main() -> None:
|
||||
elec_price_akkudoktor = ElecPriceAkkudoktor()
|
||||
history, predictions = elec_price_akkudoktor._update_data()
|
||||
history, history2, predictions = elec_price_akkudoktor._update_data()
|
||||
|
||||
visualize_predictions(history, predictions)
|
||||
print(history, predictions)
|
||||
visualize_predictions(history, history2, predictions)
|
||||
# print(history, history2, predictions)
|
||||
|
||||
|
||||
def visualize_predictions(
|
||||
history: List[float],
|
||||
predictions: List[float],
|
||||
history: np.ndarray[Any, Any],
|
||||
history2: np.ndarray[Any, Any],
|
||||
predictions: np.ndarray[Any, Any],
|
||||
) -> None:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.figure(figsize=(28, 14))
|
||||
plt.plot(range(len(history)), history, label="History", color="green")
|
||||
plt.plot(range(len(history2)), history2, label="History_new", color="blue")
|
||||
plt.plot(
|
||||
range(len(history), len(history) + len(predictions)),
|
||||
predictions,
|
||||
|
Loading…
x
Reference in New Issue
Block a user