mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Refactored class_optimize.py
- Optimized Imports: Removed unused imports and organized them. - Refactored Code: Introduced split_individual function for clarity. - Improved Efficiency: Enhanced penalty calculation and streamlined loops. - Updated Evaluation Logic: Better handling of penalties in evaluate. - Type Hints added - fixed seed option added for automated tests - verbose comment added, default False Notes: - isfloat is only used in flask_server.py - start_hour is not used in this class
This commit is contained in:
parent
f10b64e7c6
commit
e2bca5aba1
@ -1,25 +1,23 @@
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
from deap import algorithms, base, creator, tools
|
||||
|
||||
from modules.class_akku import PVAkku
|
||||
from modules.class_ems import EnergieManagementSystem, Wechselrichter
|
||||
from modules.class_ems import EnergieManagementSystem
|
||||
from modules.class_haushaltsgeraet import Haushaltsgeraet
|
||||
from modules.class_inverter import Wechselrichter
|
||||
from modules.visualize import visualisiere_ergebnisse
|
||||
|
||||
matplotlib.use("Agg") # Setzt das Backend auf Agg
|
||||
import random
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
from deap import algorithms, base, creator, tools
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from config import moegliche_ladestroeme_in_prozent
|
||||
|
||||
|
||||
def isfloat(num):
|
||||
def isfloat(num: Any) -> bool:
|
||||
"""Check if a given input can be converted to float."""
|
||||
try:
|
||||
float(num)
|
||||
return True
|
||||
@ -27,281 +25,209 @@ def isfloat(num):
|
||||
return False
|
||||
|
||||
|
||||
def differential_evolution(
|
||||
population,
|
||||
toolbox,
|
||||
cxpb,
|
||||
mutpb,
|
||||
ngen,
|
||||
stats=None,
|
||||
halloffame=None,
|
||||
verbose=__debug__,
|
||||
):
|
||||
"""Differential Evolution Algorithm"""
|
||||
|
||||
# Evaluate the entire population
|
||||
fitnesses = list(map(toolbox.evaluate, population))
|
||||
for ind, fit in zip(population, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
logbook = tools.Logbook()
|
||||
logbook.header = ["gen", "nevals"] + (stats.fields if stats else [])
|
||||
|
||||
for gen in range(ngen):
|
||||
# Generate the next generation by mutation and recombination
|
||||
for i, target in enumerate(population):
|
||||
a, b, c = random.sample([ind for ind in population if ind != target], 3)
|
||||
mutant = toolbox.clone(a)
|
||||
for k in range(len(mutant)):
|
||||
mutant[k] = c[k] + mutpb * (a[k] - b[k]) # Mutation step
|
||||
if random.random() < cxpb: # Recombination step
|
||||
mutant[k] = target[k]
|
||||
|
||||
# Evaluate the mutant
|
||||
mutant.fitness.values = toolbox.evaluate(mutant)
|
||||
|
||||
# Replace if mutant is better
|
||||
if mutant.fitness > target.fitness:
|
||||
population[i] = mutant
|
||||
|
||||
# Update hall of fame
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Gather all the fitnesses in one list and print the stats
|
||||
record = stats.compile(population) if stats else {}
|
||||
logbook.record(gen=gen, nevals=len(population), **record)
|
||||
if verbose:
|
||||
print(logbook.stream)
|
||||
|
||||
return population, logbook
|
||||
|
||||
|
||||
class optimization_problem:
|
||||
def __init__(self, prediction_hours=24, strafe=10, optimization_hours=24):
|
||||
self.prediction_hours = prediction_hours #
|
||||
def __init__(
|
||||
self,
|
||||
prediction_hours: int = 24,
|
||||
strafe: float = 10,
|
||||
optimization_hours: int = 24,
|
||||
verbose: bool = False,
|
||||
fixed_seed: Optional[int] = None,
|
||||
):
|
||||
"""Initialize the optimization problem with the required parameters."""
|
||||
self.prediction_hours = prediction_hours
|
||||
self.strafe = strafe
|
||||
self.opti_param = None
|
||||
self.fixed_eauto_hours = prediction_hours - optimization_hours
|
||||
self.possible_charge_values = moegliche_ladestroeme_in_prozent
|
||||
self.verbose = verbose
|
||||
self.fix_seed = fixed_seed
|
||||
|
||||
def split_individual(self, individual):
|
||||
# Set a fixed seed for random operations if provided
|
||||
if fixed_seed is not None:
|
||||
random.seed(fixed_seed)
|
||||
|
||||
def split_individual(
|
||||
self, individual: List[float]
|
||||
) -> Tuple[List[int], List[float], Optional[int]]:
|
||||
"""
|
||||
Teilt das gegebene Individuum in die verschiedenen Parameter auf:
|
||||
- Entladeparameter (discharge_hours_bin)
|
||||
- Ladeparameter (eautocharge_hours_float)
|
||||
- Haushaltsgeräte (spuelstart_int, falls vorhanden)
|
||||
Split the individual solution into its components:
|
||||
1. Discharge hours (binary),
|
||||
2. Electric vehicle charge hours (float),
|
||||
3. Dishwasher start time (integer if applicable).
|
||||
"""
|
||||
# Extrahiere die Entlade- und Ladeparameter direkt aus dem Individuum
|
||||
discharge_hours_bin = individual[
|
||||
: self.prediction_hours
|
||||
] # Erste 24 Werte sind Bool (Entladen)
|
||||
discharge_hours_bin = individual[: self.prediction_hours]
|
||||
eautocharge_hours_float = individual[
|
||||
self.prediction_hours : self.prediction_hours * 2
|
||||
] # Nächste 24 Werte sind Float (Laden)
|
||||
|
||||
spuelstart_int = None
|
||||
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0:
|
||||
spuelstart_int = individual[
|
||||
-1
|
||||
] # Letzter Wert ist Startzeit für Haushaltsgerät
|
||||
|
||||
]
|
||||
spuelstart_int = (
|
||||
individual[-1]
|
||||
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0
|
||||
else None
|
||||
)
|
||||
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
|
||||
|
||||
def setup_deap_environment(self, opti_param, start_hour):
|
||||
def setup_deap_environment(
|
||||
self, opti_param: Dict[str, Any], start_hour: int
|
||||
) -> None:
|
||||
"""
|
||||
Set up the DEAP environment with fitness and individual creation rules.
|
||||
"""
|
||||
self.opti_param = opti_param
|
||||
|
||||
if "FitnessMin" in creator.__dict__:
|
||||
del creator.FitnessMin
|
||||
if "Individual" in creator.__dict__:
|
||||
del creator.Individual
|
||||
# Remove existing FitnessMin and Individual classes from creator if present
|
||||
for attr in ["FitnessMin", "Individual"]:
|
||||
if attr in creator.__dict__:
|
||||
del creator.__dict__[attr]
|
||||
|
||||
# Create new FitnessMin and Individual classes
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
# PARAMETER
|
||||
# Initialize toolbox with attributes and operations
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
self.toolbox.register(
|
||||
"attr_float", random.uniform, 0, 1
|
||||
) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
# self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||
|
||||
self.toolbox.register("attr_float", random.uniform, 0, 1)
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
###################
|
||||
# Haushaltsgeraete
|
||||
# print("Haushalt:",opti_param["haushaltsgeraete"])
|
||||
# Register individual creation method based on household appliance parameter
|
||||
if opti_param["haushaltsgeraete"] > 0:
|
||||
|
||||
def create_individual():
|
||||
attrs = [
|
||||
self.toolbox.attr_bool() for _ in range(self.prediction_hours)
|
||||
] # 24 Bool-Werte für Entladen
|
||||
attrs += [
|
||||
self.toolbox.attr_float() for _ in range(self.prediction_hours)
|
||||
] # 24 Float-Werte für Laden
|
||||
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
||||
return creator.Individual(attrs)
|
||||
|
||||
self.toolbox.register(
|
||||
"individual",
|
||||
lambda: creator.Individual(
|
||||
[self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
|
||||
+ [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
|
||||
+ [self.toolbox.attr_int()]
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.toolbox.register(
|
||||
"individual",
|
||||
lambda: creator.Individual(
|
||||
[self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
|
||||
+ [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
|
||||
),
|
||||
)
|
||||
|
||||
def create_individual():
|
||||
attrs = [
|
||||
self.toolbox.attr_bool() for _ in range(self.prediction_hours)
|
||||
] # 24 Bool-Werte für Entladen
|
||||
attrs += [
|
||||
self.toolbox.attr_float() for _ in range(self.prediction_hours)
|
||||
] # 24 Float-Werte für Laden
|
||||
return creator.Individual(attrs)
|
||||
|
||||
self.toolbox.register(
|
||||
"individual", create_individual
|
||||
) # tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
|
||||
# Register population, mating, mutation, and selection functions
|
||||
self.toolbox.register(
|
||||
"population", tools.initRepeat, list, self.toolbox.individual
|
||||
)
|
||||
self.toolbox.register("mate", tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
||||
|
||||
# self.toolbox.register("mutate", mutate_choice, self.possible_charge_values, indpb=0.1)
|
||||
# self.toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(self.possible_charge_values)-1, indpb=0.1)
|
||||
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
def evaluate_inner(self, individual, ems, start_hour):
|
||||
def evaluate_inner(
|
||||
self, individual: List[float], ems: EnergieManagementSystem, start_hour: int
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Internal evaluation function that simulates the energy management system (EMS)
|
||||
using the provided individual solution.
|
||||
"""
|
||||
ems.reset()
|
||||
|
||||
# print("Spuel:",self.opti_param)
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
|
||||
self.split_individual(individual)
|
||||
)
|
||||
|
||||
# Haushaltsgeraete
|
||||
if self.opti_param["haushaltsgeraete"] > 0:
|
||||
if self.opti_param.get("haushaltsgeraete", 0) > 0:
|
||||
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
|
||||
|
||||
# discharge_hours_bin = np.full(self.prediction_hours,0)
|
||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||
|
||||
# Setze die festen Werte für die letzten x Stunden
|
||||
for i in range(
|
||||
self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours
|
||||
):
|
||||
eautocharge_hours_float[i] = (
|
||||
0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
||||
)
|
||||
|
||||
# print(eautocharge_hours_float)
|
||||
|
||||
eautocharge_hours_float[self.prediction_hours - self.fixed_eauto_hours :] = [
|
||||
0.0
|
||||
] * self.fixed_eauto_hours
|
||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||
return ems.simuliere(start_hour)
|
||||
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
return o
|
||||
|
||||
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
||||
def evaluate(self, individual, ems, parameter, start_hour, worst_case):
|
||||
def evaluate(
|
||||
self,
|
||||
individual: List[float],
|
||||
ems: EnergieManagementSystem,
|
||||
parameter: Dict[str, Any],
|
||||
start_hour: int,
|
||||
worst_case: bool,
|
||||
) -> Tuple[float]:
|
||||
"""
|
||||
Evaluate the fitness of an individual solution based on the simulation results.
|
||||
"""
|
||||
try:
|
||||
o = self.evaluate_inner(individual, ems, start_hour)
|
||||
except Exception:
|
||||
return (100000.0,)
|
||||
return (100000.0,) # Return a high penalty in case of an exception
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
||||
if worst_case:
|
||||
gesamtbilanz = gesamtbilanz * -1.0
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
|
||||
self.split_individual(individual)
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
|
||||
discharge_hours_bin, eautocharge_hours_float, _ = self.split_individual(
|
||||
individual
|
||||
)
|
||||
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
|
||||
|
||||
strafe_überschreitung = 0.0
|
||||
# Penalty for not discharging
|
||||
gesamtbilanz += sum(
|
||||
0.01 for i in range(self.prediction_hours) if discharge_hours_bin[i] == 0.0
|
||||
)
|
||||
|
||||
# Ladeleistung überschritten?
|
||||
for ladeleistung in eautocharge_hours_float:
|
||||
if ladeleistung > max_ladeleistung:
|
||||
# Berechne die Überschreitung
|
||||
überschreitung = ladeleistung - max_ladeleistung
|
||||
# Füge eine Strafe hinzu (z.B. 10 Einheiten Strafe pro Prozentpunkt Überschreitung)
|
||||
strafe_überschreitung += (
|
||||
self.strafe * 10
|
||||
) # Hier ist die Strafe proportional zur Überschreitung
|
||||
# Penalty for charging the electric vehicle during restricted hours
|
||||
gesamtbilanz += sum(
|
||||
self.strafe
|
||||
for i in range(
|
||||
self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours
|
||||
)
|
||||
if eautocharge_hours_float[i] != 0.0
|
||||
)
|
||||
|
||||
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
|
||||
for i in range(0, self.prediction_hours):
|
||||
if (
|
||||
discharge_hours_bin[i] == 0.0
|
||||
): # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += 0.01 # Bestrafe den Optimierer
|
||||
# Penalty for exceeding maximum charge power
|
||||
gesamtbilanz += sum(
|
||||
self.strafe * 10
|
||||
for ladeleistung in eautocharge_hours_float
|
||||
if ladeleistung > max_ladeleistung
|
||||
)
|
||||
|
||||
# E-Auto nur die ersten self.fixed_eauto_hours
|
||||
for i in range(
|
||||
self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours
|
||||
):
|
||||
if (
|
||||
eautocharge_hours_float[i] != 0.0
|
||||
): # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
# Penalty for not meeting the minimum SOC (State of Charge) requirement
|
||||
if parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent() <= 0.0:
|
||||
gesamtbilanz += sum(
|
||||
self.strafe
|
||||
for ladeleistung in eautocharge_hours_float
|
||||
if ladeleistung != 0.0
|
||||
)
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = (
|
||||
ems.eauto.ladezustand_in_prozent()
|
||||
) # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
|
||||
if (parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent()) <= 0.0:
|
||||
# print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
|
||||
for i in range(0, self.prediction_hours):
|
||||
if (
|
||||
eautocharge_hours_float[i] != 0.0
|
||||
): # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
|
||||
eauto_roi = parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent()
|
||||
individual.extra_data = (
|
||||
o["Gesamtbilanz_Euro"],
|
||||
o["Gesamt_Verluste"],
|
||||
eauto_roi,
|
||||
parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent(),
|
||||
)
|
||||
|
||||
restenergie_akku = ems.akku.aktueller_energieinhalt()
|
||||
restwert_akku = restenergie_akku * parameter["preis_euro_pro_wh_akku"]
|
||||
# print(restenergie_akku)
|
||||
# print(parameter["preis_euro_pro_wh_akku"])
|
||||
# print(restwert_akku)
|
||||
# print()
|
||||
strafe = 0.0
|
||||
strafe = max(
|
||||
0,
|
||||
(parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent())
|
||||
* self.strafe,
|
||||
# Adjust total balance with battery value and penalties for unmet SOC
|
||||
restwert_akku = (
|
||||
ems.akku.aktueller_energieinhalt() * parameter["preis_euro_pro_wh_akku"]
|
||||
)
|
||||
gesamtbilanz += (
|
||||
max(
|
||||
0,
|
||||
(parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent())
|
||||
* self.strafe,
|
||||
)
|
||||
- restwert_akku
|
||||
)
|
||||
gesamtbilanz += strafe - restwert_akku + strafe_überschreitung
|
||||
# gesamtbilanz += o["Gesamt_Verluste"]/10000.0
|
||||
|
||||
return (gesamtbilanz,)
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize(self, start_solution=None):
|
||||
def optimize(
|
||||
self, start_solution: Optional[List[float]] = None
|
||||
) -> Tuple[Any, Dict[str, List[Any]]]:
|
||||
"""Run the optimization process using a genetic algorithm."""
|
||||
population = self.toolbox.population(n=300)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("avg", np.mean)
|
||||
stats.register("min", np.min)
|
||||
stats.register("max", np.max)
|
||||
|
||||
print("Start:", start_solution)
|
||||
if self.verbose:
|
||||
print("Start optimize:", start_solution)
|
||||
|
||||
if start_solution is not None and start_solution != -1:
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
population.insert(1, creator.Individual(start_solution))
|
||||
population.insert(2, creator.Individual(start_solution))
|
||||
# Insert the start solution into the population if provided
|
||||
if start_solution not in [None, -1]:
|
||||
for _ in range(3):
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
|
||||
# Run the evolutionary algorithm
|
||||
algorithms.eaMuPlusLambda(
|
||||
population,
|
||||
self.toolbox,
|
||||
@ -312,11 +238,8 @@ class optimization_problem:
|
||||
ngen=400,
|
||||
stats=stats,
|
||||
halloffame=hof,
|
||||
verbose=True,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
# algorithms.eaSimple(population, self.toolbox, cxpb=0.3, mutpb=0.3, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
# algorithms.eaMuCommaLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.2, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||
# population, log = differential_evolution(population, self.toolbox, cxpb=0.2, mutpb=0.5, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
|
||||
member = {"bilanz": [], "verluste": [], "nebenbedingung": []}
|
||||
for ind in population:
|
||||
@ -329,42 +252,28 @@ class optimization_problem:
|
||||
return hof[0], member
|
||||
|
||||
def optimierung_ems(
|
||||
self, parameter=None, start_hour=None, worst_case=False, startdate=None
|
||||
):
|
||||
############
|
||||
# Parameter
|
||||
############
|
||||
if startdate is None:
|
||||
date = (
|
||||
datetime.now().date() + timedelta(hours=self.prediction_hours)
|
||||
).strftime("%Y-%m-%d")
|
||||
date_now = datetime.now().strftime("%Y-%m-%d")
|
||||
else:
|
||||
date = (startdate + timedelta(hours=self.prediction_hours)).strftime(
|
||||
"%Y-%m-%d"
|
||||
)
|
||||
date_now = startdate.strftime("%Y-%m-%d")
|
||||
# print("Start_date:",date_now)
|
||||
|
||||
akku_size = parameter["pv_akku_cap"] # Wh
|
||||
|
||||
self,
|
||||
parameter: Optional[Dict[str, Any]] = None,
|
||||
start_hour: Optional[int] = None,
|
||||
worst_case: bool = False,
|
||||
startdate: Optional[Any] = None, # startdate is not used!
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Perform EMS (Energy Management System) optimization and visualize results.
|
||||
"""
|
||||
einspeiseverguetung_euro_pro_wh = np.full(
|
||||
self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]
|
||||
) # = # € / Wh 7/(1000.0*100.0)
|
||||
discharge_array = np.full(
|
||||
self.prediction_hours, 1
|
||||
) # np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
)
|
||||
|
||||
# Initialize PV and EV batteries
|
||||
akku = PVAkku(
|
||||
kapazitaet_wh=akku_size,
|
||||
kapazitaet_wh=parameter["pv_akku_cap"],
|
||||
hours=self.prediction_hours,
|
||||
start_soc_prozent=parameter["pv_soc"],
|
||||
max_ladeleistung_w=5000,
|
||||
)
|
||||
akku.set_charge_per_hour(discharge_array)
|
||||
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
||||
|
||||
laden_moeglich = np.full(
|
||||
self.prediction_hours, 1
|
||||
) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
eauto = PVAkku(
|
||||
kapazitaet_wh=parameter["eauto_cap"],
|
||||
hours=self.prediction_hours,
|
||||
@ -373,121 +282,71 @@ class optimization_problem:
|
||||
max_ladeleistung_w=parameter["eauto_charge_power"],
|
||||
start_soc_prozent=parameter["eauto_soc"],
|
||||
)
|
||||
eauto.set_charge_per_hour(laden_moeglich)
|
||||
min_soc_eauto = parameter["eauto_min_soc"]
|
||||
start_params = parameter["start_solution"]
|
||||
eauto.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
||||
|
||||
###############
|
||||
# spuelmaschine
|
||||
##############
|
||||
print(parameter)
|
||||
if parameter["haushaltsgeraet_dauer"] > 0:
|
||||
spuelmaschine = Haushaltsgeraet(
|
||||
# Initialize household appliance if applicable
|
||||
spuelmaschine = (
|
||||
Haushaltsgeraet(
|
||||
hours=self.prediction_hours,
|
||||
verbrauch_kwh=parameter["haushaltsgeraet_wh"],
|
||||
dauer_h=parameter["haushaltsgeraet_dauer"],
|
||||
)
|
||||
spuelmaschine.set_startzeitpunkt(start_hour) # Startet jetzt
|
||||
else:
|
||||
spuelmaschine = None
|
||||
|
||||
###############
|
||||
# PV Forecast
|
||||
###############
|
||||
# PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||
# PVforecast = PVForecast(prediction_hours = self.prediction_hours, url=pv_forecast_url)
|
||||
# #print("PVPOWER",parameter['pvpowernow'])
|
||||
# if isfloat(parameter['pvpowernow']):
|
||||
# PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(parameter['pvpowernow']))
|
||||
# #PVforecast.print_ac_power_and_measurement()
|
||||
pv_forecast = parameter[
|
||||
"pv_forecast"
|
||||
] # PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||
temperature_forecast = parameter[
|
||||
"temperature_forecast"
|
||||
] # PVforecast.get_temperature_for_date_range(date_now,date)
|
||||
|
||||
###############
|
||||
# Strompreise
|
||||
###############
|
||||
specific_date_prices = parameter["strompreis_euro_pro_wh"]
|
||||
print(specific_date_prices)
|
||||
# print("https://api.akkudoktor.net/prices?start="+date_now+"&end="+date)
|
||||
).set_startzeitpunkt(start_hour)
|
||||
if parameter["haushaltsgeraet_dauer"] > 0
|
||||
else None
|
||||
)
|
||||
|
||||
# Initialize the inverter and energy management system
|
||||
wr = Wechselrichter(10000, akku)
|
||||
|
||||
ems = EnergieManagementSystem(
|
||||
gesamtlast=parameter["gesamtlast"],
|
||||
pv_prognose_wh=pv_forecast,
|
||||
strompreis_euro_pro_wh=specific_date_prices,
|
||||
pv_prognose_wh=parameter["pv_forecast"],
|
||||
strompreis_euro_pro_wh=parameter["strompreis_euro_pro_wh"],
|
||||
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
|
||||
eauto=eauto,
|
||||
haushaltsgeraet=spuelmaschine,
|
||||
wechselrichter=wr,
|
||||
)
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
###############
|
||||
# Optimizer Init
|
||||
##############
|
||||
opti_param = {}
|
||||
opti_param["haushaltsgeraete"] = 0
|
||||
if spuelmaschine is not None:
|
||||
opti_param["haushaltsgeraete"] = 1
|
||||
# Setup the DEAP environment and optimization process
|
||||
self.setup_deap_environment(
|
||||
{"haushaltsgeraete": 1 if spuelmaschine else 0}, start_hour
|
||||
)
|
||||
self.toolbox.register(
|
||||
"evaluate",
|
||||
lambda ind: self.evaluate(ind, ems, parameter, start_hour, worst_case),
|
||||
)
|
||||
start_solution, extra_data = self.optimize(parameter["start_solution"])
|
||||
|
||||
self.setup_deap_environment(opti_param, start_hour)
|
||||
|
||||
def evaluate_wrapper(individual):
|
||||
return self.evaluate(individual, ems, parameter, start_hour, worst_case)
|
||||
|
||||
self.toolbox.register("evaluate", evaluate_wrapper)
|
||||
start_solution, extra_data = self.optimize(start_params)
|
||||
best_solution = start_solution
|
||||
o = self.evaluate_inner(best_solution, ems, start_hour)
|
||||
eauto = ems.eauto.to_dict()
|
||||
spuelstart_int = None
|
||||
# Perform final evaluation on the best solution
|
||||
o = self.evaluate_inner(start_solution, ems, start_hour)
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
|
||||
self.split_individual(best_solution)
|
||||
self.split_individual(start_solution)
|
||||
)
|
||||
|
||||
print(parameter)
|
||||
print(best_solution)
|
||||
# Visualize the results
|
||||
visualisiere_ergebnisse(
|
||||
parameter["gesamtlast"],
|
||||
pv_forecast,
|
||||
specific_date_prices,
|
||||
parameter["pv_forecast"],
|
||||
parameter["strompreis_euro_pro_wh"],
|
||||
o,
|
||||
discharge_hours_bin,
|
||||
eautocharge_hours_float,
|
||||
temperature_forecast,
|
||||
parameter["temperature_forecast"],
|
||||
start_hour,
|
||||
self.prediction_hours,
|
||||
einspeiseverguetung_euro_pro_wh,
|
||||
extra_data=extra_data,
|
||||
)
|
||||
|
||||
os.system("cp visualisierungsergebnisse.pdf ~/")
|
||||
|
||||
# 'Eigenverbrauch_Wh_pro_Stunde': eigenverbrauch_wh_pro_stunde,
|
||||
# 'Netzeinspeisung_Wh_pro_Stunde': netzeinspeisung_wh_pro_stunde,
|
||||
# 'Netzbezug_Wh_pro_Stunde': netzbezug_wh_pro_stunde,
|
||||
# 'Kosten_Euro_pro_Stunde': kosten_euro_pro_stunde,
|
||||
# 'akku_soc_pro_stunde': akku_soc_pro_stunde,
|
||||
# 'Einnahmen_Euro_pro_Stunde': einnahmen_euro_pro_stunde,
|
||||
# 'Gesamtbilanz_Euro': gesamtkosten_euro,
|
||||
# 'E-Auto_SoC_pro_Stunde':eauto_soc_pro_stunde,
|
||||
# 'Gesamteinnahmen_Euro': sum(einnahmen_euro_pro_stunde),
|
||||
# 'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde),
|
||||
# "Verluste_Pro_Stunde":verluste_wh_pro_stunde,
|
||||
# "Gesamt_Verluste":sum(verluste_wh_pro_stunde),
|
||||
# "Haushaltsgeraet_wh_pro_stunde":haushaltsgeraet_wh_pro_stunde
|
||||
|
||||
# print(eauto)
|
||||
# Return final results as a dictionary
|
||||
return {
|
||||
"discharge_hours_bin": discharge_hours_bin,
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": o,
|
||||
"eauto_obj": eauto,
|
||||
"start_solution": best_solution,
|
||||
"eauto_obj": ems.eauto.to_dict(),
|
||||
"start_solution": start_solution,
|
||||
"spuelstart": spuelstart_int,
|
||||
"simulation_data": o,
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user