Refactored class_optimize.py

- Optimized Imports: Removed unused imports and organized them.
- Refactored Code: Introduced split_individual function for clarity.
- Improved Efficiency: Enhanced penalty calculation and streamlined loops.
- Updated Evaluation Logic: Better handling of penalties in evaluate.
- Type Hints added
- fixed seed option added for automated tests
- verbose comment added, default False

Notes:
- isfloat is only used in flask_server.py
- start_hour is not used in this class
This commit is contained in:
Normann 2024-10-04 03:11:24 +02:00 committed by Andreas
parent f10b64e7c6
commit e2bca5aba1

View File

@ -1,25 +1,23 @@
import os
import random
import sys
from typing import Any, Dict, List, Optional, Tuple
import matplotlib
import numpy as np
from deap import algorithms, base, creator, tools
from modules.class_akku import PVAkku
from modules.class_ems import EnergieManagementSystem, Wechselrichter
from modules.class_ems import EnergieManagementSystem
from modules.class_haushaltsgeraet import Haushaltsgeraet
from modules.class_inverter import Wechselrichter
from modules.visualize import visualisiere_ergebnisse
matplotlib.use("Agg") # Setzt das Backend auf Agg
import random
from datetime import datetime, timedelta
from deap import algorithms, base, creator, tools
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import moegliche_ladestroeme_in_prozent
def isfloat(num):
def isfloat(num: Any) -> bool:
"""Check if a given input can be converted to float."""
try:
float(num)
return True
@ -27,281 +25,209 @@ def isfloat(num):
return False
def differential_evolution(
population,
toolbox,
cxpb,
mutpb,
ngen,
stats=None,
halloffame=None,
verbose=__debug__,
):
"""Differential Evolution Algorithm"""
# Evaluate the entire population
fitnesses = list(map(toolbox.evaluate, population))
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
logbook = tools.Logbook()
logbook.header = ["gen", "nevals"] + (stats.fields if stats else [])
for gen in range(ngen):
# Generate the next generation by mutation and recombination
for i, target in enumerate(population):
a, b, c = random.sample([ind for ind in population if ind != target], 3)
mutant = toolbox.clone(a)
for k in range(len(mutant)):
mutant[k] = c[k] + mutpb * (a[k] - b[k]) # Mutation step
if random.random() < cxpb: # Recombination step
mutant[k] = target[k]
# Evaluate the mutant
mutant.fitness.values = toolbox.evaluate(mutant)
# Replace if mutant is better
if mutant.fitness > target.fitness:
population[i] = mutant
# Update hall of fame
if halloffame is not None:
halloffame.update(population)
# Gather all the fitnesses in one list and print the stats
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(population), **record)
if verbose:
print(logbook.stream)
return population, logbook
class optimization_problem:
def __init__(self, prediction_hours=24, strafe=10, optimization_hours=24):
self.prediction_hours = prediction_hours #
def __init__(
self,
prediction_hours: int = 24,
strafe: float = 10,
optimization_hours: int = 24,
verbose: bool = False,
fixed_seed: Optional[int] = None,
):
"""Initialize the optimization problem with the required parameters."""
self.prediction_hours = prediction_hours
self.strafe = strafe
self.opti_param = None
self.fixed_eauto_hours = prediction_hours - optimization_hours
self.possible_charge_values = moegliche_ladestroeme_in_prozent
self.verbose = verbose
self.fix_seed = fixed_seed
def split_individual(self, individual):
# Set a fixed seed for random operations if provided
if fixed_seed is not None:
random.seed(fixed_seed)
def split_individual(
self, individual: List[float]
) -> Tuple[List[int], List[float], Optional[int]]:
"""
Teilt das gegebene Individuum in die verschiedenen Parameter auf:
- Entladeparameter (discharge_hours_bin)
- Ladeparameter (eautocharge_hours_float)
- Haushaltsgeräte (spuelstart_int, falls vorhanden)
Split the individual solution into its components:
1. Discharge hours (binary),
2. Electric vehicle charge hours (float),
3. Dishwasher start time (integer if applicable).
"""
# Extrahiere die Entlade- und Ladeparameter direkt aus dem Individuum
discharge_hours_bin = individual[
: self.prediction_hours
] # Erste 24 Werte sind Bool (Entladen)
discharge_hours_bin = individual[: self.prediction_hours]
eautocharge_hours_float = individual[
self.prediction_hours : self.prediction_hours * 2
] # Nächste 24 Werte sind Float (Laden)
spuelstart_int = None
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0:
spuelstart_int = individual[
-1
] # Letzter Wert ist Startzeit für Haushaltsgerät
]
spuelstart_int = (
individual[-1]
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0
else None
)
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
def setup_deap_environment(self, opti_param, start_hour):
def setup_deap_environment(
self, opti_param: Dict[str, Any], start_hour: int
) -> None:
"""
Set up the DEAP environment with fitness and individual creation rules.
"""
self.opti_param = opti_param
if "FitnessMin" in creator.__dict__:
del creator.FitnessMin
if "Individual" in creator.__dict__:
del creator.Individual
# Remove existing FitnessMin and Individual classes from creator if present
for attr in ["FitnessMin", "Individual"]:
if attr in creator.__dict__:
del creator.__dict__[attr]
# Create new FitnessMin and Individual classes
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
# PARAMETER
# Initialize toolbox with attributes and operations
self.toolbox = base.Toolbox()
self.toolbox.register("attr_bool", random.randint, 0, 1)
self.toolbox.register(
"attr_float", random.uniform, 0, 1
) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
# self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
self.toolbox.register("attr_float", random.uniform, 0, 1)
self.toolbox.register("attr_int", random.randint, start_hour, 23)
###################
# Haushaltsgeraete
# print("Haushalt:",opti_param["haushaltsgeraete"])
# Register individual creation method based on household appliance parameter
if opti_param["haushaltsgeraete"] > 0:
def create_individual():
attrs = [
self.toolbox.attr_bool() for _ in range(self.prediction_hours)
] # 24 Bool-Werte für Entladen
attrs += [
self.toolbox.attr_float() for _ in range(self.prediction_hours)
] # 24 Float-Werte für Laden
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
return creator.Individual(attrs)
else:
def create_individual():
attrs = [
self.toolbox.attr_bool() for _ in range(self.prediction_hours)
] # 24 Bool-Werte für Entladen
attrs += [
self.toolbox.attr_float() for _ in range(self.prediction_hours)
] # 24 Float-Werte für Laden
return creator.Individual(attrs)
self.toolbox.register(
"individual", create_individual
) # tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
"individual",
lambda: creator.Individual(
[self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_int()]
),
)
else:
self.toolbox.register(
"individual",
lambda: creator.Individual(
[self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
),
)
# Register population, mating, mutation, and selection functions
self.toolbox.register(
"population", tools.initRepeat, list, self.toolbox.individual
)
self.toolbox.register("mate", tools.cxTwoPoint)
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
# self.toolbox.register("mutate", mutate_choice, self.possible_charge_values, indpb=0.1)
# self.toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(self.possible_charge_values)-1, indpb=0.1)
self.toolbox.register("select", tools.selTournament, tournsize=3)
def evaluate_inner(self, individual, ems, start_hour):
def evaluate_inner(
self, individual: List[float], ems: EnergieManagementSystem, start_hour: int
) -> Dict[str, Any]:
"""
Internal evaluation function that simulates the energy management system (EMS)
using the provided individual solution.
"""
ems.reset()
# print("Spuel:",self.opti_param)
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
self.split_individual(individual)
)
# Haushaltsgeraete
if self.opti_param["haushaltsgeraete"] > 0:
if self.opti_param.get("haushaltsgeraete", 0) > 0:
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
# discharge_hours_bin = np.full(self.prediction_hours,0)
ems.set_akku_discharge_hours(discharge_hours_bin)
# Setze die festen Werte für die letzten x Stunden
for i in range(
self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours
):
eautocharge_hours_float[i] = (
0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
)
# print(eautocharge_hours_float)
eautocharge_hours_float[self.prediction_hours - self.fixed_eauto_hours :] = [
0.0
] * self.fixed_eauto_hours
ems.set_eauto_charge_hours(eautocharge_hours_float)
return ems.simuliere(start_hour)
o = ems.simuliere(start_hour)
return o
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
def evaluate(self, individual, ems, parameter, start_hour, worst_case):
def evaluate(
self,
individual: List[float],
ems: EnergieManagementSystem,
parameter: Dict[str, Any],
start_hour: int,
worst_case: bool,
) -> Tuple[float]:
"""
Evaluate the fitness of an individual solution based on the simulation results.
"""
try:
o = self.evaluate_inner(individual, ems, start_hour)
except Exception:
return (100000.0,)
return (100000.0,) # Return a high penalty in case of an exception
gesamtbilanz = o["Gesamtbilanz_Euro"]
if worst_case:
gesamtbilanz = gesamtbilanz * -1.0
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
self.split_individual(individual)
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
discharge_hours_bin, eautocharge_hours_float, _ = self.split_individual(
individual
)
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
strafe_überschreitung = 0.0
# Penalty for not discharging
gesamtbilanz += sum(
0.01 for i in range(self.prediction_hours) if discharge_hours_bin[i] == 0.0
)
# Ladeleistung überschritten?
for ladeleistung in eautocharge_hours_float:
if ladeleistung > max_ladeleistung:
# Berechne die Überschreitung
überschreitung = ladeleistung - max_ladeleistung
# Füge eine Strafe hinzu (z.B. 10 Einheiten Strafe pro Prozentpunkt Überschreitung)
strafe_überschreitung += (
self.strafe * 10
) # Hier ist die Strafe proportional zur Überschreitung
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
for i in range(0, self.prediction_hours):
if (
discharge_hours_bin[i] == 0.0
): # Wenn die letzten x Stunden von einem festen Wert abweichen
gesamtbilanz += 0.01 # Bestrafe den Optimierer
# E-Auto nur die ersten self.fixed_eauto_hours
# Penalty for charging the electric vehicle during restricted hours
gesamtbilanz += sum(
self.strafe
for i in range(
self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours
):
if (
eautocharge_hours_float[i] != 0.0
): # Wenn die letzten x Stunden von einem festen Wert abweichen
gesamtbilanz += self.strafe # Bestrafe den Optimierer
)
if eautocharge_hours_float[i] != 0.0
)
# Überprüfung, ob der Mindest-SoC erreicht wird
final_soc = (
ems.eauto.ladezustand_in_prozent()
) # Nimmt den SoC am Ende des Optimierungszeitraums
# Penalty for exceeding maximum charge power
gesamtbilanz += sum(
self.strafe * 10
for ladeleistung in eautocharge_hours_float
if ladeleistung > max_ladeleistung
)
if (parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent()) <= 0.0:
# print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
for i in range(0, self.prediction_hours):
if (
eautocharge_hours_float[i] != 0.0
): # Wenn die letzten x Stunden von einem festen Wert abweichen
gesamtbilanz += self.strafe # Bestrafe den Optimierer
# Penalty for not meeting the minimum SOC (State of Charge) requirement
if parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent() <= 0.0:
gesamtbilanz += sum(
self.strafe
for ladeleistung in eautocharge_hours_float
if ladeleistung != 0.0
)
eauto_roi = parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent()
individual.extra_data = (
o["Gesamtbilanz_Euro"],
o["Gesamt_Verluste"],
eauto_roi,
parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent(),
)
restenergie_akku = ems.akku.aktueller_energieinhalt()
restwert_akku = restenergie_akku * parameter["preis_euro_pro_wh_akku"]
# print(restenergie_akku)
# print(parameter["preis_euro_pro_wh_akku"])
# print(restwert_akku)
# print()
strafe = 0.0
strafe = max(
# Adjust total balance with battery value and penalties for unmet SOC
restwert_akku = (
ems.akku.aktueller_energieinhalt() * parameter["preis_euro_pro_wh_akku"]
)
gesamtbilanz += (
max(
0,
(parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent())
* self.strafe,
)
gesamtbilanz += strafe - restwert_akku + strafe_überschreitung
# gesamtbilanz += o["Gesamt_Verluste"]/10000.0
- restwert_akku
)
return (gesamtbilanz,)
# Genetischer Algorithmus
def optimize(self, start_solution=None):
def optimize(
self, start_solution: Optional[List[float]] = None
) -> Tuple[Any, Dict[str, List[Any]]]:
"""Run the optimization process using a genetic algorithm."""
population = self.toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
print("Start:", start_solution)
if self.verbose:
print("Start optimize:", start_solution)
if start_solution is not None and start_solution != -1:
# Insert the start solution into the population if provided
if start_solution not in [None, -1]:
for _ in range(3):
population.insert(0, creator.Individual(start_solution))
population.insert(1, creator.Individual(start_solution))
population.insert(2, creator.Individual(start_solution))
# Run the evolutionary algorithm
algorithms.eaMuPlusLambda(
population,
self.toolbox,
@ -312,11 +238,8 @@ class optimization_problem:
ngen=400,
stats=stats,
halloffame=hof,
verbose=True,
verbose=self.verbose,
)
# algorithms.eaSimple(population, self.toolbox, cxpb=0.3, mutpb=0.3, ngen=200, stats=stats, halloffame=hof, verbose=True)
# algorithms.eaMuCommaLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.2, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
# population, log = differential_evolution(population, self.toolbox, cxpb=0.2, mutpb=0.5, ngen=200, stats=stats, halloffame=hof, verbose=True)
member = {"bilanz": [], "verluste": [], "nebenbedingung": []}
for ind in population:
@ -329,42 +252,28 @@ class optimization_problem:
return hof[0], member
def optimierung_ems(
self, parameter=None, start_hour=None, worst_case=False, startdate=None
):
############
# Parameter
############
if startdate is None:
date = (
datetime.now().date() + timedelta(hours=self.prediction_hours)
).strftime("%Y-%m-%d")
date_now = datetime.now().strftime("%Y-%m-%d")
else:
date = (startdate + timedelta(hours=self.prediction_hours)).strftime(
"%Y-%m-%d"
)
date_now = startdate.strftime("%Y-%m-%d")
# print("Start_date:",date_now)
akku_size = parameter["pv_akku_cap"] # Wh
self,
parameter: Optional[Dict[str, Any]] = None,
start_hour: Optional[int] = None,
worst_case: bool = False,
startdate: Optional[Any] = None, # startdate is not used!
) -> Dict[str, Any]:
"""
Perform EMS (Energy Management System) optimization and visualize results.
"""
einspeiseverguetung_euro_pro_wh = np.full(
self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]
) # = # € / Wh 7/(1000.0*100.0)
discharge_array = np.full(
self.prediction_hours, 1
) # np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
)
# Initialize PV and EV batteries
akku = PVAkku(
kapazitaet_wh=akku_size,
kapazitaet_wh=parameter["pv_akku_cap"],
hours=self.prediction_hours,
start_soc_prozent=parameter["pv_soc"],
max_ladeleistung_w=5000,
)
akku.set_charge_per_hour(discharge_array)
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
laden_moeglich = np.full(
self.prediction_hours, 1
) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
eauto = PVAkku(
kapazitaet_wh=parameter["eauto_cap"],
hours=self.prediction_hours,
@ -373,121 +282,71 @@ class optimization_problem:
max_ladeleistung_w=parameter["eauto_charge_power"],
start_soc_prozent=parameter["eauto_soc"],
)
eauto.set_charge_per_hour(laden_moeglich)
min_soc_eauto = parameter["eauto_min_soc"]
start_params = parameter["start_solution"]
eauto.set_charge_per_hour(np.full(self.prediction_hours, 1))
###############
# spuelmaschine
##############
print(parameter)
if parameter["haushaltsgeraet_dauer"] > 0:
spuelmaschine = Haushaltsgeraet(
# Initialize household appliance if applicable
spuelmaschine = (
Haushaltsgeraet(
hours=self.prediction_hours,
verbrauch_kwh=parameter["haushaltsgeraet_wh"],
dauer_h=parameter["haushaltsgeraet_dauer"],
).set_startzeitpunkt(start_hour)
if parameter["haushaltsgeraet_dauer"] > 0
else None
)
spuelmaschine.set_startzeitpunkt(start_hour) # Startet jetzt
else:
spuelmaschine = None
###############
# PV Forecast
###############
# PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
# PVforecast = PVForecast(prediction_hours = self.prediction_hours, url=pv_forecast_url)
# #print("PVPOWER",parameter['pvpowernow'])
# if isfloat(parameter['pvpowernow']):
# PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(parameter['pvpowernow']))
# #PVforecast.print_ac_power_and_measurement()
pv_forecast = parameter[
"pv_forecast"
] # PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
temperature_forecast = parameter[
"temperature_forecast"
] # PVforecast.get_temperature_for_date_range(date_now,date)
###############
# Strompreise
###############
specific_date_prices = parameter["strompreis_euro_pro_wh"]
print(specific_date_prices)
# print("https://api.akkudoktor.net/prices?start="+date_now+"&end="+date)
# Initialize the inverter and energy management system
wr = Wechselrichter(10000, akku)
ems = EnergieManagementSystem(
gesamtlast=parameter["gesamtlast"],
pv_prognose_wh=pv_forecast,
strompreis_euro_pro_wh=specific_date_prices,
pv_prognose_wh=parameter["pv_forecast"],
strompreis_euro_pro_wh=parameter["strompreis_euro_pro_wh"],
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
eauto=eauto,
haushaltsgeraet=spuelmaschine,
wechselrichter=wr,
)
o = ems.simuliere(start_hour)
###############
# Optimizer Init
##############
opti_param = {}
opti_param["haushaltsgeraete"] = 0
if spuelmaschine is not None:
opti_param["haushaltsgeraete"] = 1
# Setup the DEAP environment and optimization process
self.setup_deap_environment(
{"haushaltsgeraete": 1 if spuelmaschine else 0}, start_hour
)
self.toolbox.register(
"evaluate",
lambda ind: self.evaluate(ind, ems, parameter, start_hour, worst_case),
)
start_solution, extra_data = self.optimize(parameter["start_solution"])
self.setup_deap_environment(opti_param, start_hour)
def evaluate_wrapper(individual):
return self.evaluate(individual, ems, parameter, start_hour, worst_case)
self.toolbox.register("evaluate", evaluate_wrapper)
start_solution, extra_data = self.optimize(start_params)
best_solution = start_solution
o = self.evaluate_inner(best_solution, ems, start_hour)
eauto = ems.eauto.to_dict()
spuelstart_int = None
# Perform final evaluation on the best solution
o = self.evaluate_inner(start_solution, ems, start_hour)
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = (
self.split_individual(best_solution)
self.split_individual(start_solution)
)
print(parameter)
print(best_solution)
# Visualize the results
visualisiere_ergebnisse(
parameter["gesamtlast"],
pv_forecast,
specific_date_prices,
parameter["pv_forecast"],
parameter["strompreis_euro_pro_wh"],
o,
discharge_hours_bin,
eautocharge_hours_float,
temperature_forecast,
parameter["temperature_forecast"],
start_hour,
self.prediction_hours,
einspeiseverguetung_euro_pro_wh,
extra_data=extra_data,
)
os.system("cp visualisierungsergebnisse.pdf ~/")
# 'Eigenverbrauch_Wh_pro_Stunde': eigenverbrauch_wh_pro_stunde,
# 'Netzeinspeisung_Wh_pro_Stunde': netzeinspeisung_wh_pro_stunde,
# 'Netzbezug_Wh_pro_Stunde': netzbezug_wh_pro_stunde,
# 'Kosten_Euro_pro_Stunde': kosten_euro_pro_stunde,
# 'akku_soc_pro_stunde': akku_soc_pro_stunde,
# 'Einnahmen_Euro_pro_Stunde': einnahmen_euro_pro_stunde,
# 'Gesamtbilanz_Euro': gesamtkosten_euro,
# 'E-Auto_SoC_pro_Stunde':eauto_soc_pro_stunde,
# 'Gesamteinnahmen_Euro': sum(einnahmen_euro_pro_stunde),
# 'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde),
# "Verluste_Pro_Stunde":verluste_wh_pro_stunde,
# "Gesamt_Verluste":sum(verluste_wh_pro_stunde),
# "Haushaltsgeraet_wh_pro_stunde":haushaltsgeraet_wh_pro_stunde
# print(eauto)
# Return final results as a dictionary
return {
"discharge_hours_bin": discharge_hours_bin,
"eautocharge_hours_float": eautocharge_hours_float,
"result": o,
"eauto_obj": eauto,
"start_solution": best_solution,
"eauto_obj": ems.eauto.to_dict(),
"start_solution": start_solution,
"spuelstart": spuelstart_int,
"simulation_data": o,
}