fix: pydantic extra keywords deprecated (#753)

Pydantic deprecates using extra keyword arguments on Field.
Used json_schema_extra instead.

Deprecated in Pydantic V2.0 to be removed in V3.0.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2025-11-10 16:57:44 +01:00
committed by GitHub
parent 54b0622a96
commit e7b43782a4
44 changed files with 1956 additions and 1194 deletions

View File

@@ -16,30 +16,38 @@ class GeneticCommonSettings(SettingsBaseModel):
individuals: Optional[int] = Field(
default=300,
ge=10,
description="Number of individuals (solutions) to generate for the (initial) generation [>= 10]. Defaults to 300.",
examples=[300],
json_schema_extra={
"description": "Number of individuals (solutions) to generate for the (initial) generation [>= 10]. Defaults to 300.",
"examples": [300],
},
)
generations: Optional[int] = Field(
default=400,
ge=10,
description="Number of generations to evaluate the optimal solution [>= 10]. Defaults to 400.",
examples=[400],
json_schema_extra={
"description": "Number of generations to evaluate the optimal solution [>= 10]. Defaults to 400.",
"examples": [400],
},
)
seed: Optional[int] = Field(
default=None,
ge=0,
description="Fixed seed for genetic algorithm. Defaults to 'None' which means random seed.",
examples=[None],
json_schema_extra={
"description": "Fixed seed for genetic algorithm. Defaults to 'None' which means random seed.",
"examples": [None],
},
)
penalties: Optional[dict[str, Union[float, int, str]]] = Field(
default=None,
description="A dictionary of penalty function parameters consisting of a penalty function parameter name and the associated value.",
examples=[
{"ev_soc_miss": 10},
],
json_schema_extra={
"description": "A dictionary of penalty function parameters consisting of a penalty function parameter name and the associated value.",
"examples": [
{"ev_soc_miss": 10},
],
},
)
@@ -49,28 +57,33 @@ class OptimizationCommonSettings(SettingsBaseModel):
horizon_hours: Optional[int] = Field(
default=24,
ge=0,
description="The general time window within which the energy optimization goal shall be achieved [h]. Defaults to 24 hours.",
examples=[24],
json_schema_extra={
"description": "The general time window within which the energy optimization goal shall be achieved [h]. Defaults to 24 hours.",
"examples": [24],
},
)
interval: Optional[int] = Field(
default=3600,
ge=15 * 60,
le=60 * 60,
description="The optimization interval [sec].",
examples=[60 * 60, 15 * 60],
json_schema_extra={
"description": "The optimization interval [sec].",
"examples": [60 * 60, 15 * 60],
},
)
algorithm: Optional[str] = Field(
default="GENETIC",
description="The optimization algorithm.",
examples=["GENETIC"],
json_schema_extra={"description": "The optimization algorithm.", "examples": ["GENETIC"]},
)
genetic: Optional[GeneticCommonSettings] = Field(
default=None,
description="Genetic optimization algorithm configuration.",
examples=[{"individuals": 400, "seed": None, "penalties": {"ev_soc_miss": 10}}],
json_schema_extra={
"description": "Genetic optimization algorithm configuration.",
"examples": [{"individuals": 400, "seed": None, "penalties": {"ev_soc_miss": 10}}],
},
)
@model_validator(mode="after")
@@ -85,57 +98,71 @@ class OptimizationCommonSettings(SettingsBaseModel):
class OptimizationSolution(PydanticBaseModel):
"""General Optimization Solution."""
id: str = Field(..., description="Unique ID for the optimization solution.")
id: str = Field(
..., json_schema_extra={"description": "Unique ID for the optimization solution."}
)
generated_at: DateTime = Field(..., description="Timestamp when the solution was generated.")
generated_at: DateTime = Field(
..., json_schema_extra={"description": "Timestamp when the solution was generated."}
)
comment: Optional[str] = Field(
default=None, description="Optional comment or annotation for the solution."
default=None,
json_schema_extra={"description": "Optional comment or annotation for the solution."},
)
valid_from: Optional[DateTime] = Field(
default=None, description="Start time of the optimization solution."
default=None, json_schema_extra={"description": "Start time of the optimization solution."}
)
valid_until: Optional[DateTime] = Field(
default=None,
description="End time of the optimization solution.",
default=None, json_schema_extra={"description": "End time of the optimization solution."}
)
total_losses_energy_wh: float = Field(
description="The total losses in watt-hours over the entire period."
json_schema_extra={"description": "The total losses in watt-hours over the entire period."}
)
total_revenues_amt: float = Field(description="The total revenues [money amount].")
total_revenues_amt: float = Field(
json_schema_extra={"description": "The total revenues [money amount]."}
)
total_costs_amt: float = Field(description="The total costs [money amount].")
total_costs_amt: float = Field(
json_schema_extra={"description": "The total costs [money amount]."}
)
fitness_score: set[float] = Field(description="The fitness score as a set of fitness values.")
fitness_score: set[float] = Field(
json_schema_extra={"description": "The fitness score as a set of fitness values."}
)
prediction: PydanticDateTimeDataFrame = Field(
description=(
"Datetime data frame with time series prediction data per optimization interval:"
"- pv_energy_wh: PV energy prediction (positive) in wh"
"- elec_price_amt_kwh: Electricity price prediction in money per kwh"
"- feed_in_tariff_amt_kwh: Feed in tariff prediction in money per kwh"
"- weather_temp_air_celcius: Temperature in °C"
"- loadforecast_energy_wh: Load mean energy prediction in wh"
"- loadakkudoktor_std_energy_wh: Load energy standard deviation prediction in wh"
"- loadakkudoktor_mean_energy_wh: Load mean energy prediction in wh"
)
json_schema_extra={
"description": (
"Datetime data frame with time series prediction data per optimization interval:"
"- pv_energy_wh: PV energy prediction (positive) in wh"
"- elec_price_amt_kwh: Electricity price prediction in money per kwh"
"- feed_in_tariff_amt_kwh: Feed in tariff prediction in money per kwh"
"- weather_temp_air_celcius: Temperature in °C"
"- loadforecast_energy_wh: Load mean energy prediction in wh"
"- loadakkudoktor_std_energy_wh: Load energy standard deviation prediction in wh"
"- loadakkudoktor_mean_energy_wh: Load mean energy prediction in wh"
)
}
)
solution: PydanticDateTimeDataFrame = Field(
description=(
"Datetime data frame with time series solution data per optimization interval:"
"- load_energy_wh: Load of all energy consumers in wh"
"- grid_energy_wh: Grid energy feed in (negative) or consumption (positive) in wh"
"- costs_amt: Costs in money amount"
"- revenue_amt: Revenue in money amount"
"- losses_energy_wh: Energy losses in wh"
"- <device-id>_operation_mode_id: Operation mode id of the device."
"- <device-id>_operation_mode_factor: Operation mode factor of the device."
"- <device-id>_soc_factor: State of charge of a battery/ electric vehicle device as factor of total capacity."
"- <device-id>_energy_wh: Energy consumption (positive) of a device in wh."
)
json_schema_extra={
"description": (
"Datetime data frame with time series solution data per optimization interval:"
"- load_energy_wh: Load of all energy consumers in wh"
"- grid_energy_wh: Grid energy feed in (negative) or consumption (positive) in wh"
"- costs_amt: Costs in money amount"
"- revenue_amt: Revenue in money amount"
"- losses_energy_wh: Energy losses in wh"
"- <device-id>_operation_mode_id: Operation mode id of the device."
"- <device-id>_operation_mode_factor: Operation mode factor of the device."
"- <device-id>_soc_factor: State of charge of a battery/ electric vehicle device as factor of total capacity."
"- <device-id>_energy_wh: Energy consumption (positive) of a device in wh."
)
}
)