mirror of
				https://github.com/Akkudoktor-EOS/EOS.git
				synced 2025-11-04 00:36:21 +00:00 
			
		
		
		
	Merge branch 'soc_zero_price_precision' of https://github.com/Akkudoktor-EOS/EOS into soc_zero_price_precision
This commit is contained in:
		@@ -98,7 +98,6 @@ class HourlyElectricityPriceForecast:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # Extract the price from 00:00 of the previous day
 | 
					        # Extract the price from 00:00 of the previous day
 | 
				
			||||||
        previous_day_prices = [
 | 
					        previous_day_prices = [
 | 
				
			||||||
            entry["marketprice"]  # + self.charges
 | 
					 | 
				
			||||||
            entry["marketprice"]  # + self.charges
 | 
					            entry["marketprice"]  # + self.charges
 | 
				
			||||||
            for entry in self.prices
 | 
					            for entry in self.prices
 | 
				
			||||||
            if previous_day_str in entry["end"]
 | 
					            if previous_day_str in entry["end"]
 | 
				
			||||||
@@ -107,7 +106,6 @@ class HourlyElectricityPriceForecast:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # Extract all prices for the specified date
 | 
					        # Extract all prices for the specified date
 | 
				
			||||||
        date_prices = [
 | 
					        date_prices = [
 | 
				
			||||||
            entry["marketprice"]  # + self.charges
 | 
					 | 
				
			||||||
            entry["marketprice"]  # + self.charges
 | 
					            entry["marketprice"]  # + self.charges
 | 
				
			||||||
            for entry in self.prices
 | 
					            for entry in self.prices
 | 
				
			||||||
            if date_str in entry["end"]
 | 
					            if date_str in entry["end"]
 | 
				
			||||||
@@ -174,6 +172,7 @@ class HourlyElectricityPriceForecast:
 | 
				
			|||||||
            axis=0,
 | 
					            axis=0,
 | 
				
			||||||
            weights=np.array([1, 2, 4, 8, 16, 32, 64]) / np.sum(np.array([1, 2, 4, 8, 16, 32, 64])),
 | 
					            weights=np.array([1, 2, 4, 8, 16, 32, 64]) / np.sum(np.array([1, 2, 4, 8, 16, 32, 64])),
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        final_weights = np.linspace(1, 0, price_matrix.shape[1])
 | 
					        final_weights = np.linspace(1, 0, price_matrix.shape[1])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Weight last known price linear falling
 | 
					        # Weight last known price linear falling
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user