Migrate from Flask to FastAPI (#163)

* Migrate from Flask to FastAPI

 * FastAPI migration:
    - Use pydantic model classes as input parameters to the
      data/calculation classes.
    - Interface field names changed to constructor parameter names (for
      simplicity only during transition, should be updated in a followup
      PR).
    - Add basic interface requirements (e.g. some values > 0, etc.).
 * Update tests for new data format.
 * Python requirement down to 3.9 (TypeGuard no longer needed)
 * Makefile: Add helpful targets (e.g. development server with reload)

* Move API doc from README to pydantic model classes (swagger)

 * Link to swagger.io with own openapi.yml.
 * Commit openapi.json and check with pytest for changes so the
   documentation is always up-to-date.

* Streamline docker

* FastAPI: Run startup action on dev server

 * Fix config for /strompreis, endpoint still broken however.

* test_openapi: Compare against docs/.../openapi.json

* Move fastapi to server/ submodule

 * See #187 for new repository structure.
This commit is contained in:
Dominique Lasserre
2024-11-15 22:27:25 +01:00
committed by GitHub
parent ed3226e522
commit f61665669f
38 changed files with 997 additions and 1331 deletions

View File

@@ -5,7 +5,11 @@ from unittest.mock import patch
import pytest
from akkudoktoreos.class_optimize import optimization_problem
from akkudoktoreos.class_optimize import (
OptimizationParameters,
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.config import AppConfig
DIR_TESTDATA = Path(__file__).parent / "testdata"
@@ -46,7 +50,7 @@ def test_optimize(
# Load input and output data
file = DIR_TESTDATA / fn_in
with file.open("r") as f_in:
input_data = json.load(f_in)
input_data = OptimizationParameters(**json.load(f_in))
file = DIR_TESTDATA / fn_out
with file.open("r") as f_out:
@@ -59,7 +63,7 @@ def test_optimize(
pytest.skip()
# Call the optimization function
ergebnis = opt_class.optimierung_ems(parameter=input_data, start_hour=start_hour, ngen=ngen)
ergebnis = opt_class.optimierung_ems(parameters=input_data, start_hour=start_hour, ngen=ngen)
# with open(f"new_{fn_out}", "w") as f_out:
# from akkudoktoreos.class_numpy_encoder import NumpyEncoder
# json_data_str = NumpyEncoder.dumps(ergebnis)
@@ -72,3 +76,5 @@ def test_optimize(
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()
OptimizeResponse(**ergebnis)