Optimierungsparameter eingestellt

Choice für die E-Auto LAdeströme entfernt, scheint in DEAP buggy zu sein
Initiale Lösung 3x eingefügt, damit diese bestehen bleibt
This commit is contained in:
Bla Bla 2024-09-15 11:08:00 +02:00
parent 18245b284a
commit fb9b75183c

View File

@ -33,6 +33,51 @@ def isfloat(num):
except:
return False
def differential_evolution(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__):
"""Differential Evolution Algorithm"""
# Evaluate the entire population
fitnesses = list(map(toolbox.evaluate, population))
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
for gen in range(ngen):
# Generate the next generation by mutation and recombination
for i, target in enumerate(population):
a, b, c = random.sample([ind for ind in population if ind != target], 3)
mutant = toolbox.clone(a)
for k in range(len(mutant)):
mutant[k] = c[k] + mutpb * (a[k] - b[k]) # Mutation step
if random.random() < cxpb: # Recombination step
mutant[k] = target[k]
# Evaluate the mutant
mutant.fitness.values = toolbox.evaluate(mutant)
# Replace if mutant is better
if mutant.fitness > target.fitness:
population[i] = mutant
# Update hall of fame
if halloffame is not None:
halloffame.update(population)
# Gather all the fitnesses in one list and print the stats
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(population), **record)
if verbose:
print(logbook.stream)
return population, logbook
class optimization_problem:
def __init__(self, prediction_hours=24, strafe = 10, optimization_hours= 24):
self.prediction_hours = prediction_hours#
@ -75,32 +120,41 @@ class optimization_problem:
# PARAMETER
self.toolbox = base.Toolbox()
self.toolbox.register("attr_bool", random.randint, 0, 1)
#self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
#self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
self.toolbox.register("attr_int", random.randint, start_hour, 23)
###################
# Haushaltsgeraete
#print("Haushalt:",opti_param["haushaltsgeraete"])
if opti_param["haushaltsgeraete"]>0:
def create_individual():
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
return creator.Individual(attrs)
else:
def create_individual():
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
return creator.Individual(attrs)
self.toolbox.register("individual", create_individual)#tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("mate", tools.cxTwoPoint)
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
#self.toolbox.register("mutate", mutate_choice, self.possible_charge_values, indpb=0.1)
#self.toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(self.possible_charge_values)-1, indpb=0.1)
self.toolbox.register("select", tools.selTournament, tournsize=3)
def evaluate_inner(self,individual, ems,start_hour):
@ -145,6 +199,18 @@ class optimization_problem:
gesamtbilanz = gesamtbilanz * -1.0
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
strafe_überschreitung = 0.0
# Ladeleistung überschritten?
for ladeleistung in eautocharge_hours_float:
if ladeleistung > max_ladeleistung:
# Berechne die Überschreitung
überschreitung = ladeleistung - max_ladeleistung
# Füge eine Strafe hinzu (z.B. 10 Einheiten Strafe pro Prozentpunkt Überschreitung)
strafe_überschreitung += self.strafe * 10 # Hier ist die Strafe proportional zur Überschreitung
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
for i in range(0, self.prediction_hours):
@ -156,15 +222,11 @@ class optimization_problem:
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
gesamtbilanz += self.strafe # Bestrafe den Optimierer
# Überprüfung, ob der Mindest-SoC erreicht wird
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
if (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) <= 0.0:
#print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
for i in range(0, self.prediction_hours):
@ -184,7 +246,7 @@ class optimization_problem:
# print()
strafe = 0.0
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
gesamtbilanz += strafe - restwert_akku
gesamtbilanz += strafe - restwert_akku + strafe_überschreitung
#gesamtbilanz += o["Gesamt_Verluste"]/10000.0
return (gesamtbilanz,)
@ -195,7 +257,9 @@ class optimization_problem:
# Genetischer Algorithmus
def optimize(self,start_solution=None):
population = self.toolbox.population(n=600)
population = self.toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
@ -207,9 +271,17 @@ class optimization_problem:
if start_solution is not None and start_solution != -1:
population.insert(0, creator.Individual(start_solution))
population.insert(1, creator.Individual(start_solution))
population.insert(2, creator.Individual(start_solution))
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
algorithms.eaMuPlusLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.5, mutpb=0.3, ngen=400, stats=stats, halloffame=hof, verbose=True)
#algorithms.eaSimple(population, self.toolbox, cxpb=0.3, mutpb=0.3, ngen=200, stats=stats, halloffame=hof, verbose=True)
#algorithms.eaMuCommaLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.2, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
#population, log = differential_evolution(population, self.toolbox, cxpb=0.2, mutpb=0.5, ngen=200, stats=stats, halloffame=hof, verbose=True)
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
for ind in population:
@ -342,3 +414,4 @@ class optimization_problem: