mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 00:45:22 +00:00
Optimierungsparameter eingestellt
Choice für die E-Auto LAdeströme entfernt, scheint in DEAP buggy zu sein Initiale Lösung 3x eingefügt, damit diese bestehen bleibt
This commit is contained in:
parent
18245b284a
commit
fb9b75183c
@ -33,6 +33,51 @@ def isfloat(num):
|
||||
except:
|
||||
return False
|
||||
|
||||
def differential_evolution(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__):
|
||||
"""Differential Evolution Algorithm"""
|
||||
|
||||
# Evaluate the entire population
|
||||
fitnesses = list(map(toolbox.evaluate, population))
|
||||
for ind, fit in zip(population, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
logbook = tools.Logbook()
|
||||
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
|
||||
|
||||
for gen in range(ngen):
|
||||
# Generate the next generation by mutation and recombination
|
||||
for i, target in enumerate(population):
|
||||
a, b, c = random.sample([ind for ind in population if ind != target], 3)
|
||||
mutant = toolbox.clone(a)
|
||||
for k in range(len(mutant)):
|
||||
mutant[k] = c[k] + mutpb * (a[k] - b[k]) # Mutation step
|
||||
if random.random() < cxpb: # Recombination step
|
||||
mutant[k] = target[k]
|
||||
|
||||
# Evaluate the mutant
|
||||
mutant.fitness.values = toolbox.evaluate(mutant)
|
||||
|
||||
# Replace if mutant is better
|
||||
if mutant.fitness > target.fitness:
|
||||
population[i] = mutant
|
||||
|
||||
# Update hall of fame
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Gather all the fitnesses in one list and print the stats
|
||||
record = stats.compile(population) if stats else {}
|
||||
logbook.record(gen=gen, nevals=len(population), **record)
|
||||
if verbose:
|
||||
print(logbook.stream)
|
||||
|
||||
return population, logbook
|
||||
|
||||
|
||||
|
||||
class optimization_problem:
|
||||
def __init__(self, prediction_hours=24, strafe = 10, optimization_hours= 24):
|
||||
self.prediction_hours = prediction_hours#
|
||||
@ -75,32 +120,41 @@ class optimization_problem:
|
||||
# PARAMETER
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
#self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
#self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
|
||||
|
||||
###################
|
||||
# Haushaltsgeraete
|
||||
#print("Haushalt:",opti_param["haushaltsgeraete"])
|
||||
if opti_param["haushaltsgeraete"]>0:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
||||
return creator.Individual(attrs)
|
||||
|
||||
else:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
return creator.Individual(attrs)
|
||||
|
||||
|
||||
|
||||
|
||||
self.toolbox.register("individual", create_individual)#tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
|
||||
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
||||
self.toolbox.register("mate", tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
||||
|
||||
|
||||
|
||||
#self.toolbox.register("mutate", mutate_choice, self.possible_charge_values, indpb=0.1)
|
||||
#self.toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(self.possible_charge_values)-1, indpb=0.1)
|
||||
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
def evaluate_inner(self,individual, ems,start_hour):
|
||||
@ -145,6 +199,18 @@ class optimization_problem:
|
||||
gesamtbilanz = gesamtbilanz * -1.0
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
|
||||
|
||||
strafe_überschreitung = 0.0
|
||||
|
||||
# Ladeleistung überschritten?
|
||||
for ladeleistung in eautocharge_hours_float:
|
||||
if ladeleistung > max_ladeleistung:
|
||||
# Berechne die Überschreitung
|
||||
überschreitung = ladeleistung - max_ladeleistung
|
||||
# Füge eine Strafe hinzu (z.B. 10 Einheiten Strafe pro Prozentpunkt Überschreitung)
|
||||
strafe_überschreitung += self.strafe * 10 # Hier ist die Strafe proportional zur Überschreitung
|
||||
|
||||
|
||||
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
|
||||
for i in range(0, self.prediction_hours):
|
||||
@ -156,15 +222,11 @@ class optimization_problem:
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
|
||||
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
|
||||
|
||||
|
||||
|
||||
if (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) <= 0.0:
|
||||
#print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
|
||||
for i in range(0, self.prediction_hours):
|
||||
@ -184,7 +246,7 @@ class optimization_problem:
|
||||
# print()
|
||||
strafe = 0.0
|
||||
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
|
||||
gesamtbilanz += strafe - restwert_akku
|
||||
gesamtbilanz += strafe - restwert_akku + strafe_überschreitung
|
||||
#gesamtbilanz += o["Gesamt_Verluste"]/10000.0
|
||||
|
||||
return (gesamtbilanz,)
|
||||
@ -195,7 +257,9 @@ class optimization_problem:
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize(self,start_solution=None):
|
||||
population = self.toolbox.population(n=600)
|
||||
|
||||
|
||||
population = self.toolbox.population(n=300)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
@ -207,9 +271,17 @@ class optimization_problem:
|
||||
|
||||
if start_solution is not None and start_solution != -1:
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
population.insert(1, creator.Individual(start_solution))
|
||||
population.insert(2, creator.Individual(start_solution))
|
||||
|
||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.5, mutpb=0.3, ngen=400, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaSimple(population, self.toolbox, cxpb=0.3, mutpb=0.3, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaMuCommaLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.2, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||
#population, log = differential_evolution(population, self.toolbox, cxpb=0.2, mutpb=0.5, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
||||
for ind in population:
|
||||
@ -342,3 +414,4 @@ class optimization_problem:
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user