Compare commits
38 Commits
NormannK-p
...
NormannK-p
Author | SHA1 | Date | |
---|---|---|---|
|
eb0f49310c | ||
|
9c961d886c | ||
|
82d633c9b0 | ||
|
d86b4c089a | ||
|
2a5879c177 | ||
|
a7d58eed9a | ||
|
1020a46435 | ||
|
8258b1cca1 | ||
|
afbe50c388 | ||
|
c8cad0f277 | ||
|
694655311f | ||
|
1cd38d93ba | ||
|
7dfd50475a | ||
|
ab6a518b5f | ||
|
80bfe4d0f0 | ||
|
1a2cb4d37d | ||
|
d05b161e24 | ||
|
da4994ca39 | ||
|
94618f5f66 | ||
|
1bb74ed836 | ||
|
6743d8df4f | ||
|
480adf8100 | ||
|
90688a36f2 | ||
|
6516455071 | ||
|
84683cd195 | ||
|
26762e5e93 | ||
|
56403fe053 | ||
|
5bd8321e95 | ||
|
c1dd31528b | ||
|
1658b491d2 | ||
|
af5e4a753a | ||
|
e0b1ece524 | ||
|
437d38f508 | ||
|
95be7b914f | ||
|
3257dac92b | ||
|
1e1bac9fdb | ||
|
d74a56b75a | ||
|
be26457563 |
@@ -1,8 +1,8 @@
|
||||
.git/
|
||||
.github/
|
||||
eos-data/
|
||||
mariadb-data/
|
||||
test_data/
|
||||
**/__pycache__/
|
||||
**/*.pyc
|
||||
**/*.egg-info/
|
||||
.dockerignore
|
||||
.env
|
||||
.gitignore
|
||||
@@ -12,4 +12,4 @@ LICENSE
|
||||
Makefile
|
||||
NOTICE
|
||||
README.md
|
||||
.venv
|
||||
.venv/
|
||||
|
4
.env
@@ -1,5 +1,5 @@
|
||||
EOS_VERSION=main
|
||||
EOS_PORT=8503
|
||||
EOSDASH_PORT=8504
|
||||
EOS_SERVER__PORT=8503
|
||||
EOS_SERVER__EOSDASH_PORT=8504
|
||||
|
||||
PYTHON_VERSION=3.12.6
|
||||
|
9
.github/dependabot.yml
vendored
@@ -5,16 +5,7 @@
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
# Update dependencies on the main branch
|
||||
- package-ecosystem: "pip" # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
target-branch: "main" # Target the main branch
|
||||
|
||||
# Update dependencies on the feature/config-nested branch
|
||||
- package-ecosystem: "pip"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
target-branch: "feature/config-nested" # Target the specific feature branch
|
||||
|
4
.github/workflows/docker-build.yml
vendored
@@ -7,13 +7,11 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
- 'feature/config-overhaul'
|
||||
tags:
|
||||
- 'v*'
|
||||
pull_request:
|
||||
branches:
|
||||
- 'main'
|
||||
- 'feature/config-overhaul'
|
||||
- '**'
|
||||
|
||||
env:
|
||||
DOCKERHUB_REPO: akkudoktor/eos
|
||||
|
3
.gitignore
vendored
@@ -260,3 +260,6 @@ tests/testdata/new_optimize_result*
|
||||
tests/testdata/openapi-new.json
|
||||
tests/testdata/openapi-new.md
|
||||
tests/testdata/config-new.md
|
||||
|
||||
# FastHTML session key
|
||||
.sesskey
|
||||
|
@@ -12,12 +12,12 @@ repos:
|
||||
- id: check-merge-conflict
|
||||
exclude: '\.rst$' # Exclude .rst files
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.13.2
|
||||
rev: 6.0.0
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.6.8
|
||||
rev: v0.9.6
|
||||
hooks:
|
||||
# Run the linter and fix simple issues automatically
|
||||
- id: ruff
|
||||
@@ -25,7 +25,7 @@ repos:
|
||||
# Run the formatter.
|
||||
- id: ruff-format
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: 'v1.13.0'
|
||||
rev: 'v1.15.0'
|
||||
hooks:
|
||||
- id: mypy
|
||||
additional_dependencies:
|
||||
|
@@ -6,7 +6,7 @@ The `EOS` project is in early development, therefore we encourage contribution i
|
||||
|
||||
## Documentation
|
||||
|
||||
Latest development documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedocs.io/en/latest/).
|
||||
Latest development documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedocs.io/en/main/).
|
||||
|
||||
## Bug Reports
|
||||
|
||||
|
@@ -3,17 +3,12 @@ FROM python:${PYTHON_VERSION}-slim
|
||||
|
||||
LABEL source="https://github.com/Akkudoktor-EOS/EOS"
|
||||
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
|
||||
ENV MPLCONFIGDIR="/tmp/mplconfigdir"
|
||||
ENV EOS_DIR="/opt/eos"
|
||||
ENV EOS_CACHE_DIR="${EOS_DIR}/cache"
|
||||
ENV EOS_OUTPUT_DIR="${EOS_DIR}/output"
|
||||
ENV EOS_CONFIG_DIR="${EOS_DIR}/config"
|
||||
|
||||
# Overwrite when starting the container in a production environment
|
||||
ENV EOS_SERVER__EOSDASH_SESSKEY=s3cr3t
|
||||
|
||||
WORKDIR ${EOS_DIR}
|
||||
|
||||
RUN adduser --system --group --no-create-home eos \
|
||||
@@ -42,7 +37,6 @@ ENTRYPOINT []
|
||||
EXPOSE 8503
|
||||
EXPOSE 8504
|
||||
|
||||
ENV server_eosdash_host=0.0.0.0
|
||||
CMD ["python", "src/akkudoktoreos/server/eos.py", "--host", "0.0.0.0"]
|
||||
|
||||
VOLUME ["${MPLCONFIGDIR}", "${EOS_CACHE_DIR}", "${EOS_OUTPUT_DIR}", "${EOS_CONFIG_DIR}"]
|
||||
|
22
Makefile
@@ -17,10 +17,12 @@ help:
|
||||
@echo " docker-build - Rebuild docker image"
|
||||
@echo " docs - Generate HTML documentation (in build/docs/html/)."
|
||||
@echo " read-docs - Read HTML documentation in your browser."
|
||||
@echo " gen-docs - Generate openapi.json and docs/_generated/*."
|
||||
@echo " clean-docs - Remove generated documentation."
|
||||
@echo " run - Run EOS production server in the virtual environment."
|
||||
@echo " run-dev - Run EOS development server in the virtual environment (automatically reloads)."
|
||||
@echo " gen-docs - Generate openapi.json and docs/_generated/*.""
|
||||
@echo " clean-docs - Remove generated documentation.""
|
||||
@echo " run - Run EOS production server in virtual environment."
|
||||
@echo " run-dev - Run EOS development server in virtual environment (automatically reloads)."
|
||||
@echo " run-dash - Run EOSdash production server in virtual environment."
|
||||
@echo " run-dash-dev - Run EOSdash development server in virtual environment (automatically reloads)."
|
||||
@echo " dist - Create distribution (in dist/)."
|
||||
@echo " clean - Remove generated documentation, distribution and virtual environment."
|
||||
|
||||
@@ -85,11 +87,19 @@ clean: clean-docs
|
||||
|
||||
run:
|
||||
@echo "Starting EOS production server, please wait..."
|
||||
.venv/bin/python src/akkudoktoreos/server/eos.py
|
||||
.venv/bin/python -m akkudoktoreos.server.eos
|
||||
|
||||
run-dev:
|
||||
@echo "Starting EOS development server, please wait..."
|
||||
.venv/bin/python src/akkudoktoreos/server/eos.py --host localhost --port 8503 --reload true
|
||||
.venv/bin/python -m akkudoktoreos.server.eos --host localhost --port 8503 --reload true
|
||||
|
||||
run-dash:
|
||||
@echo "Starting EOSdash production server, please wait..."
|
||||
.venv/bin/python -m akkudoktoreos.server.eosdash
|
||||
|
||||
run-dash-dev:
|
||||
@echo "Starting EOSdash development server, please wait..."
|
||||
.venv/bin/python -m akkudoktoreos.server.eosdash --host localhost --port 8504 --reload true
|
||||
|
||||
# Target to setup tests.
|
||||
test-setup: pip-dev
|
||||
|
18
README.md
@@ -8,19 +8,9 @@ Documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedoc
|
||||
|
||||
See [CONTRIBUTING.md](CONTRIBUTING.md).
|
||||
|
||||
## System requirements
|
||||
|
||||
- Python >= 3.11, < 3.13
|
||||
- Architecture: amd64, aarch64 (armv8)
|
||||
- OS: Linux, Windows, macOS
|
||||
|
||||
Note: For Python 3.13 some dependencies (e.g. [Pendulum](https://github.com/python-pendulum/Pendulum)) are not yet available on https://pypi.org and have to be manually compiled (a recent [Rust](https://www.rust-lang.org/tools/install) installation is required).
|
||||
|
||||
Other architectures (e.g. armv6, armv7) are unsupported for now, because a multitude of dependencies are not available on https://piwheels.org and have to be built manually (a recent Rust installation and [GCC](https://gcc.gnu.org/) are required, Python 3.11 is recommended).
|
||||
|
||||
## Installation
|
||||
|
||||
Docker images (amd64/aarch64) can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos).
|
||||
The project requires Python 3.11 or newer. Official docker images can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos).
|
||||
|
||||
Following sections describe how to locally start the EOS server on `http://localhost:8503`.
|
||||
|
||||
@@ -44,7 +34,7 @@ python -m venv .venv
|
||||
.venv\Scripts\pip install -e .
|
||||
```
|
||||
|
||||
Finally, start the EOS server to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`):
|
||||
Finally, start the EOS server:
|
||||
|
||||
Linux:
|
||||
|
||||
@@ -60,12 +50,12 @@ Windows:
|
||||
|
||||
### Docker
|
||||
|
||||
Start EOS with following command to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`):
|
||||
|
||||
```bash
|
||||
docker compose up
|
||||
```
|
||||
|
||||
If you are running the EOS container on a system hosting multiple services, such as a Synology NAS, and want to allow external network access to EOS, please ensure that the default exported ports (8503, 8504) are available on the host. On Synology systems, these ports might already be in use (refer to [this guide](https://kb.synology.com/en-me/DSM/tutorial/What_network_ports_are_used_by_Synology_services)). If the ports are occupied, you will need to reconfigure the exported ports accordingly.
|
||||
|
||||
## Configuration
|
||||
|
||||
This project uses the `EOS.config.json` file to manage configuration settings.
|
||||
|
@@ -11,14 +11,15 @@ services:
|
||||
dockerfile: "Dockerfile"
|
||||
args:
|
||||
PYTHON_VERSION: "${PYTHON_VERSION}"
|
||||
env_file:
|
||||
- .env
|
||||
environment:
|
||||
- EOS_CONFIG_DIR=config
|
||||
- latitude=52.2
|
||||
- longitude=13.4
|
||||
- elecprice_provider=ElecPriceAkkudoktor
|
||||
- elecprice_charges_kwh=0.21
|
||||
- EOS_SERVER__EOSDASH_SESSKEY=s3cr3t
|
||||
- EOS_PREDICTION__LATITUDE=52.2
|
||||
- EOS_PREDICTION__LONGITUDE=13.4
|
||||
- EOS_ELECPRICE__PROVIDER=ElecPriceAkkudoktor
|
||||
- EOS_ELECPRICE__CHARGES_KWH=0.21
|
||||
ports:
|
||||
# Configure what ports to expose on host
|
||||
- "${EOS_PORT}:8503"
|
||||
- "${EOSDASH_PORT}:8504"
|
||||
- "${EOS_SERVER__PORT}:${EOS_SERVER__PORT}"
|
||||
- "${EOS_SERVER__EOSDASH_PORT}:${EOS_SERVER__EOSDASH_PORT}"
|
||||
|
@@ -63,7 +63,7 @@ Args:
|
||||
year_energy (float): Yearly energy consumption in Wh.
|
||||
|
||||
Note:
|
||||
Set LoadAkkudoktor as load_provider, then update data with
|
||||
Set LoadAkkudoktor as provider, then update data with
|
||||
'/v1/prediction/update'
|
||||
and then request data with
|
||||
'/v1/prediction/list?key=load_mean' instead.
|
||||
@@ -91,6 +91,8 @@ Fastapi Optimize
|
||||
|
||||
- `start_hour` (query, optional): Defaults to current hour of the day.
|
||||
|
||||
- `ngen` (query, optional): No description provided.
|
||||
|
||||
**Request Body**:
|
||||
|
||||
- `application/json`: {
|
||||
@@ -121,7 +123,7 @@ If no forecast values are available the missing ones at the start of the series
|
||||
filled with the first available forecast value.
|
||||
|
||||
Note:
|
||||
Set PVForecastAkkudoktor as pvforecast_provider, then update data with
|
||||
Set PVForecastAkkudoktor as provider, then update data with
|
||||
'/v1/prediction/update'
|
||||
and then request data with
|
||||
'/v1/prediction/list?key=pvforecast_ac_power' and
|
||||
@@ -151,7 +153,7 @@ Note:
|
||||
Electricity price charges are added.
|
||||
|
||||
Note:
|
||||
Set ElecPriceAkkudoktor as elecprice_provider, then update data with
|
||||
Set ElecPriceAkkudoktor as provider, then update data with
|
||||
'/v1/prediction/update'
|
||||
and then request data with
|
||||
'/v1/prediction/list?key=elecprice_marketprice_wh' or
|
||||
@@ -164,6 +166,127 @@ Note:
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/admin/cache
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_get_v1_admin_cache_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_get_v1_admin_cache_get)
|
||||
|
||||
Fastapi Admin Cache Get
|
||||
|
||||
```
|
||||
Current cache management data.
|
||||
|
||||
Returns:
|
||||
data (dict): The management data.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/admin/cache/clear
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_clear_post_v1_admin_cache_clear_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_clear_post_v1_admin_cache_clear_post)
|
||||
|
||||
Fastapi Admin Cache Clear Post
|
||||
|
||||
```
|
||||
Clear the cache from expired data.
|
||||
|
||||
Deletes expired cache files.
|
||||
|
||||
Args:
|
||||
clear_all (Optional[bool]): Delete all cached files. Default is False.
|
||||
|
||||
Returns:
|
||||
data (dict): The management data after cleanup.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `clear_all` (query, optional): No description provided.
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
- **422**: Validation Error
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/admin/cache/load
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_load_post_v1_admin_cache_load_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_load_post_v1_admin_cache_load_post)
|
||||
|
||||
Fastapi Admin Cache Load Post
|
||||
|
||||
```
|
||||
Load cache management data.
|
||||
|
||||
Returns:
|
||||
data (dict): The management data that was loaded.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/admin/cache/save
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_save_post_v1_admin_cache_save_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_save_post_v1_admin_cache_save_post)
|
||||
|
||||
Fastapi Admin Cache Save Post
|
||||
|
||||
```
|
||||
Save the current cache management data.
|
||||
|
||||
Returns:
|
||||
data (dict): The management data that was saved.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/admin/server/restart
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_server_restart_post_v1_admin_server_restart_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_server_restart_post_v1_admin_server_restart_post)
|
||||
|
||||
Fastapi Admin Server Restart Post
|
||||
|
||||
```
|
||||
Restart the server.
|
||||
|
||||
Restart EOS properly by starting a new instance before exiting the old one.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/admin/server/shutdown
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_server_shutdown_post_v1_admin_server_shutdown_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_server_shutdown_post_v1_admin_server_shutdown_post)
|
||||
|
||||
Fastapi Admin Server Shutdown Post
|
||||
|
||||
```
|
||||
Shutdown the server.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/config
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_get_v1_config_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_get_v1_config_get)
|
||||
@@ -190,11 +313,11 @@ Returns:
|
||||
Fastapi Config Put
|
||||
|
||||
```
|
||||
Write the provided settings into the current settings.
|
||||
Update the current config with the provided settings.
|
||||
|
||||
The existing settings are completely overwritten. Note that for any setting
|
||||
value that is None, the configuration will fall back to values from other sources such as
|
||||
environment variables, the EOS configuration file, or default values.
|
||||
Note that for any setting value that is None or unset, the configuration will fall back to
|
||||
values from other sources such as environment variables, the EOS configuration file, or default
|
||||
values.
|
||||
|
||||
Args:
|
||||
settings (SettingsEOS): The settings to write into the current settings.
|
||||
@@ -203,311 +326,11 @@ Returns:
|
||||
configuration (ConfigEOS): The current configuration after the write.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
**Request Body**:
|
||||
|
||||
- `server_eos_host` (query, optional): EOS server IP address.
|
||||
|
||||
- `server_eos_port` (query, optional): EOS server IP port number.
|
||||
|
||||
- `server_eos_verbose` (query, optional): Enable debug output
|
||||
|
||||
- `server_eos_startup_eosdash` (query, optional): EOS server to start EOSdash server.
|
||||
|
||||
- `server_eosdash_host` (query, optional): EOSdash server IP address.
|
||||
|
||||
- `server_eosdash_port` (query, optional): EOSdash server IP port number.
|
||||
|
||||
- `weatherimport_file_path` (query, optional): Path to the file to import weather data from.
|
||||
|
||||
- `weatherimport_json` (query, optional): JSON string, dictionary of weather forecast value lists.
|
||||
|
||||
- `weather_provider` (query, optional): Weather provider id of provider to be used.
|
||||
|
||||
- `pvforecastimport_file_path` (query, optional): Path to the file to import PV forecast data from.
|
||||
|
||||
- `pvforecastimport_json` (query, optional): JSON string, dictionary of PV forecast value lists.
|
||||
|
||||
- `pvforecast_provider` (query, optional): PVForecast provider id of provider to be used.
|
||||
|
||||
- `pvforecast0_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast0_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast0_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast0_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast0_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast0_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast0_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast0_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast0_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast0_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast0_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast0_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast0_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast0_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast0_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast0_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `pvforecast1_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast1_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast1_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast1_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast1_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast1_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast1_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast1_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast1_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast1_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast1_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast1_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast1_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast1_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast1_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast1_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `pvforecast2_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast2_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast2_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast2_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast2_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast2_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast2_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast2_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast2_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast2_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast2_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast2_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast2_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast2_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast2_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast2_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `pvforecast3_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast3_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast3_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast3_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast3_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast3_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast3_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast3_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast3_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast3_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast3_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast3_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast3_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast3_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast3_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast3_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `pvforecast4_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast4_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast4_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast4_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast4_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast4_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast4_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast4_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast4_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast4_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast4_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast4_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast4_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast4_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast4_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast4_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `pvforecast5_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast5_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
|
||||
- `pvforecast5_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
|
||||
- `pvforecast5_peakpower` (query, optional): Nominal power of PV system in kW.
|
||||
|
||||
- `pvforecast5_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
|
||||
- `pvforecast5_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
|
||||
- `pvforecast5_loss` (query, optional): Sum of PV system losses in percent
|
||||
|
||||
- `pvforecast5_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
|
||||
|
||||
- `pvforecast5_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast5_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
|
||||
- `pvforecast5_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
|
||||
|
||||
- `pvforecast5_module_model` (query, optional): Model of the PV modules of this plane.
|
||||
|
||||
- `pvforecast5_inverter_model` (query, optional): Model of the inverter of this plane.
|
||||
|
||||
- `pvforecast5_inverter_paco` (query, optional): AC power rating of the inverter. [W]
|
||||
|
||||
- `pvforecast5_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
|
||||
|
||||
- `pvforecast5_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
|
||||
|
||||
- `load_import_file_path` (query, optional): Path to the file to import load data from.
|
||||
|
||||
- `load_import_json` (query, optional): JSON string, dictionary of load forecast value lists.
|
||||
|
||||
- `loadakkudoktor_year_energy` (query, optional): Yearly energy consumption (kWh).
|
||||
|
||||
- `load_provider` (query, optional): Load provider id of provider to be used.
|
||||
|
||||
- `elecpriceimport_file_path` (query, optional): Path to the file to import elecprice data from.
|
||||
|
||||
- `elecpriceimport_json` (query, optional): JSON string, dictionary of electricity price forecast value lists.
|
||||
|
||||
- `elecprice_provider` (query, optional): Electricity price provider id of provider to be used.
|
||||
|
||||
- `elecprice_charges_kwh` (query, optional): Electricity price charges (€/kWh).
|
||||
|
||||
- `prediction_hours` (query, optional): Number of hours into the future for predictions
|
||||
|
||||
- `prediction_historic_hours` (query, optional): Number of hours into the past for historical predictions data
|
||||
|
||||
- `latitude` (query, optional): Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)
|
||||
|
||||
- `longitude` (query, optional): Longitude in decimal degrees, within -180 to 180 (°)
|
||||
|
||||
- `optimization_hours` (query, optional): Number of hours into the future for optimizations.
|
||||
|
||||
- `optimization_penalty` (query, optional): Penalty factor used in optimization.
|
||||
|
||||
- `optimization_ev_available_charge_rates_percent` (query, optional): Charge rates available for the EV in percent of maximum charge.
|
||||
|
||||
- `measurement_load0_name` (query, optional): Name of the load0 source (e.g. 'Household', 'Heat Pump')
|
||||
|
||||
- `measurement_load1_name` (query, optional): Name of the load1 source (e.g. 'Household', 'Heat Pump')
|
||||
|
||||
- `measurement_load2_name` (query, optional): Name of the load2 source (e.g. 'Household', 'Heat Pump')
|
||||
|
||||
- `measurement_load3_name` (query, optional): Name of the load3 source (e.g. 'Household', 'Heat Pump')
|
||||
|
||||
- `measurement_load4_name` (query, optional): Name of the load4 source (e.g. 'Household', 'Heat Pump')
|
||||
|
||||
- `battery_provider` (query, optional): Id of Battery simulation provider.
|
||||
|
||||
- `battery_capacity` (query, optional): Battery capacity [Wh].
|
||||
|
||||
- `battery_initial_soc` (query, optional): Battery initial state of charge [%].
|
||||
|
||||
- `battery_soc_min` (query, optional): Battery minimum state of charge [%].
|
||||
|
||||
- `battery_soc_max` (query, optional): Battery maximum state of charge [%].
|
||||
|
||||
- `battery_charging_efficiency` (query, optional): Battery charging efficiency [%].
|
||||
|
||||
- `battery_discharging_efficiency` (query, optional): Battery discharging efficiency [%].
|
||||
|
||||
- `battery_max_charging_power` (query, optional): Battery maximum charge power [W].
|
||||
|
||||
- `bev_provider` (query, optional): Id of Battery Electric Vehicle simulation provider.
|
||||
|
||||
- `bev_capacity` (query, optional): Battery Electric Vehicle capacity [Wh].
|
||||
|
||||
- `bev_initial_soc` (query, optional): Battery Electric Vehicle initial state of charge [%].
|
||||
|
||||
- `bev_soc_max` (query, optional): Battery Electric Vehicle maximum state of charge [%].
|
||||
|
||||
- `bev_charging_efficiency` (query, optional): Battery Electric Vehicle charging efficiency [%].
|
||||
|
||||
- `bev_discharging_efficiency` (query, optional): Battery Electric Vehicle discharging efficiency [%].
|
||||
|
||||
- `bev_max_charging_power` (query, optional): Battery Electric Vehicle maximum charge power [W].
|
||||
|
||||
- `dishwasher_provider` (query, optional): Id of Dish Washer simulation provider.
|
||||
|
||||
- `dishwasher_consumption` (query, optional): Dish Washer energy consumption [Wh].
|
||||
|
||||
- `dishwasher_duration` (query, optional): Dish Washer usage duration [h].
|
||||
|
||||
- `inverter_provider` (query, optional): Id of PV Inverter simulation provider.
|
||||
|
||||
- `inverter_power_max` (query, optional): Inverter maximum power [W].
|
||||
|
||||
- `logging_level_default` (query, optional): EOS default logging level.
|
||||
|
||||
- `data_folder_path` (query, optional): Path to EOS data directory.
|
||||
|
||||
- `data_output_subpath` (query, optional): Sub-path for the EOS output data directory.
|
||||
|
||||
- `data_cache_subpath` (query, optional): Sub-path for the EOS cache data directory.
|
||||
- `application/json`: {
|
||||
"$ref": "#/components/schemas/SettingsEOS"
|
||||
}
|
||||
|
||||
**Responses**:
|
||||
|
||||
@@ -517,25 +340,6 @@ Returns:
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/config/file
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_get_v1_config_file_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_get_v1_config_file_get)
|
||||
|
||||
Fastapi Config File Get
|
||||
|
||||
```
|
||||
Get the settings as defined by the EOS configuration file.
|
||||
|
||||
Returns:
|
||||
settings (SettingsEOS): The settings defined by the EOS configuration file.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## PUT /v1/config/file
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_put_v1_config_file_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_put_v1_config_file_put)
|
||||
@@ -555,14 +359,14 @@ Returns:
|
||||
|
||||
---
|
||||
|
||||
## POST /v1/config/update
|
||||
## POST /v1/config/reset
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_update_post_v1_config_update_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_update_post_v1_config_update_post)
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_reset_post_v1_config_reset_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_reset_post_v1_config_reset_post)
|
||||
|
||||
Fastapi Config Update Post
|
||||
Fastapi Config Reset Post
|
||||
|
||||
```
|
||||
Update the configuration from the EOS configuration file.
|
||||
Reset the configuration to the EOS configuration file.
|
||||
|
||||
Returns:
|
||||
configuration (ConfigEOS): The current configuration after update.
|
||||
@@ -574,28 +378,25 @@ Returns:
|
||||
|
||||
---
|
||||
|
||||
## PUT /v1/config/value
|
||||
## GET /v1/config/{path}
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_value_put_v1_config_value_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_value_put_v1_config_value_put)
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_get_key_v1_config__path__get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_get_key_v1_config__path__get)
|
||||
|
||||
Fastapi Config Value Put
|
||||
Fastapi Config Get Key
|
||||
|
||||
```
|
||||
Set the configuration option in the settings.
|
||||
Get the value of a nested key or index in the config model.
|
||||
|
||||
Args:
|
||||
key (str): configuration key
|
||||
value (Any): configuration value
|
||||
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0").
|
||||
|
||||
Returns:
|
||||
configuration (ConfigEOS): The current configuration after the write.
|
||||
value (Any): The value of the selected nested key.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `key` (query, required): configuration key
|
||||
|
||||
- `value` (query, required): configuration value
|
||||
- `path` (path, required): The nested path to the configuration key (e.g., general/latitude).
|
||||
|
||||
**Responses**:
|
||||
|
||||
@@ -605,6 +406,58 @@ Returns:
|
||||
|
||||
---
|
||||
|
||||
## PUT /v1/config/{path}
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_put_key_v1_config__path__put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_put_key_v1_config__path__put)
|
||||
|
||||
Fastapi Config Put Key
|
||||
|
||||
```
|
||||
Update a nested key or index in the config model.
|
||||
|
||||
Args:
|
||||
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0").
|
||||
value (Any): The new value to assign to the key or index at path.
|
||||
|
||||
Returns:
|
||||
configuration (ConfigEOS): The current configuration after the update.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `path` (path, required): The nested path to the configuration key (e.g., general/latitude).
|
||||
|
||||
**Request Body**:
|
||||
|
||||
- `application/json`: {
|
||||
"description": "The value to assign to the specified configuration path.",
|
||||
"title": "Value"
|
||||
}
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
- **422**: Validation Error
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/health
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_health_get_v1_health_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_health_get_v1_health_get)
|
||||
|
||||
Fastapi Health Get
|
||||
|
||||
```
|
||||
Health check endpoint to verify that the EOS server is alive.
|
||||
```
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
---
|
||||
|
||||
## PUT /v1/measurement/data
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_measurement_data_put_v1_measurement_data_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_measurement_data_put_v1_measurement_data_put)
|
||||
@@ -821,6 +674,92 @@ Merge the measurement of given key and value into EOS measurements at given date
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/prediction/dataframe
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_dataframe_get_v1_prediction_dataframe_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_dataframe_get_v1_prediction_dataframe_get)
|
||||
|
||||
Fastapi Prediction Dataframe Get
|
||||
|
||||
```
|
||||
Get prediction for given key within given date range as series.
|
||||
|
||||
Args:
|
||||
key (str): Prediction key
|
||||
start_datetime (Optional[str]): Starting datetime (inclusive).
|
||||
Defaults to start datetime of latest prediction.
|
||||
end_datetime (Optional[str]: Ending datetime (exclusive).
|
||||
|
||||
Defaults to end datetime of latest prediction.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `keys` (query, required): Prediction keys.
|
||||
|
||||
- `start_datetime` (query, optional): Starting datetime (inclusive).
|
||||
|
||||
- `end_datetime` (query, optional): Ending datetime (exclusive).
|
||||
|
||||
- `interval` (query, optional): Time duration for each interval. Defaults to 1 hour.
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
- **422**: Validation Error
|
||||
|
||||
---
|
||||
|
||||
## PUT /v1/prediction/import/{provider_id}
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_import_provider_v1_prediction_import__provider_id__put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_import_provider_v1_prediction_import__provider_id__put)
|
||||
|
||||
Fastapi Prediction Import Provider
|
||||
|
||||
```
|
||||
Import prediction for given provider ID.
|
||||
|
||||
Args:
|
||||
provider_id: ID of provider to update.
|
||||
data: Prediction data.
|
||||
force_enable: Update data even if provider is disabled.
|
||||
Defaults to False.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `provider_id` (path, required): Provider ID.
|
||||
|
||||
- `force_enable` (query, optional): No description provided.
|
||||
|
||||
**Request Body**:
|
||||
|
||||
- `application/json`: {
|
||||
"anyOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/PydanticDateTimeDataFrame"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/PydanticDateTimeData"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"title": "Data"
|
||||
}
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
- **422**: Validation Error
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/prediction/keys
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_keys_get_v1_prediction_keys_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_keys_get_v1_prediction_keys_get)
|
||||
@@ -864,7 +803,32 @@ Args:
|
||||
|
||||
- `end_datetime` (query, optional): Ending datetime (exclusive).
|
||||
|
||||
- `interval` (query, optional): Time duration for each interval.
|
||||
- `interval` (query, optional): Time duration for each interval. Defaults to 1 hour.
|
||||
|
||||
**Responses**:
|
||||
|
||||
- **200**: Successful Response
|
||||
|
||||
- **422**: Validation Error
|
||||
|
||||
---
|
||||
|
||||
## GET /v1/prediction/providers
|
||||
|
||||
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_providers_get_v1_prediction_providers_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_providers_get_v1_prediction_providers_get)
|
||||
|
||||
Fastapi Prediction Providers Get
|
||||
|
||||
```
|
||||
Get a list of available prediction providers.
|
||||
|
||||
Args:
|
||||
enabled (bool): Return enabled/disabled providers. If unset, return all providers.
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
|
||||
- `enabled` (query, optional): No description provided.
|
||||
|
||||
**Responses**:
|
||||
|
||||
|
3
docs/_static/eos.css
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
.wy-nav-content {
|
||||
max-width: 90% !important;
|
||||
}
|
BIN
docs/_static/introduction/integration.png
vendored
Before Width: | Height: | Size: 58 KiB |
BIN
docs/_static/introduction/introduction.png
vendored
Before Width: | Height: | Size: 22 KiB |
BIN
docs/_static/introduction/overview.png
vendored
Before Width: | Height: | Size: 60 KiB |
9
docs/akkudoktoreos/about.md
Normal file
@@ -0,0 +1,9 @@
|
||||
% SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# About Akkudoktor EOS
|
||||
|
||||
The Energy System Simulation and Optimization System (EOS) provides a comprehensive solution for
|
||||
simulating and optimizing an energy system based on renewable energy sources. With a focus on
|
||||
photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements),
|
||||
heat pumps, electric vehicles, and consideration of electricity price data, this system enables
|
||||
forecasting and optimization of energy flow and costs over a specified period.
|
@@ -7,10 +7,9 @@ management.
|
||||
|
||||
## Storing Configuration
|
||||
|
||||
EOS stores configuration data in a **key-value store**, where a `configuration key` refers to the
|
||||
unique identifier used to store and retrieve specific configuration data. Note that the key-value
|
||||
store is memory-based, meaning all stored data will be lost upon restarting the EOS REST server if
|
||||
not saved to the `EOS configuration file`.
|
||||
EOS stores configuration data in a `nested structure`. Note that configuration changes inside EOS
|
||||
are updated in memory, meaning all changes will be lost upon restarting the EOS REST server if not
|
||||
saved to the `EOS configuration file`.
|
||||
|
||||
Some `configuration keys` are read-only and cannot be altered. These keys are either set up by other
|
||||
means, such as environment variables, or determined from other information.
|
||||
@@ -25,7 +24,8 @@ Use endpoint `PUT /v1/config/file` to save the current configuration to the
|
||||
|
||||
### Load Configuration File
|
||||
|
||||
Use endpoint `POST /v1/config/update` to update the configuration from the `EOS configuration file`.
|
||||
Use endpoint `POST /v1/config/reset` to reset the configuration to the values in the
|
||||
`EOS configuration file`.
|
||||
|
||||
## Configuration Sources and Priorities
|
||||
|
||||
@@ -36,26 +36,25 @@ The configuration sources and their priorities are as follows:
|
||||
3. `EOS Configuration File`: Read at startup of the REST server and on request
|
||||
4. `Default Values`
|
||||
|
||||
### Settings
|
||||
### Runtime Config Updates
|
||||
|
||||
Settings are sets of configuration data that take precedence over all other configuration data from
|
||||
different sources. Note that settings are not persistent. To make the current configuration with the
|
||||
current settings persistent, save the configuration to the `EOS configuration file`.
|
||||
The EOS configuration can be updated at runtime. Note that those updates are not persistent
|
||||
automatically. However it is possible to save the configuration to the `EOS configuration file`.
|
||||
|
||||
Use the following endpoints to change the current configuration settings:
|
||||
Use the following endpoints to change the current runtime configuration:
|
||||
|
||||
- `PUT /v1/config`: Replaces the entire configuration settings.
|
||||
- `PUT /v1/config/value`: Sets a specific configuration option.
|
||||
- `PUT /v1/config`: Update the entire or parts of the configuration.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
All `configuration keys` can be set by environment variables with the same name. EOS recognizes the
|
||||
following special environment variables:
|
||||
All `configuration keys` can be set by environment variables prefixed with `EOS_` and separated by
|
||||
`__` for nested structures. Environment variables are case insensitive.
|
||||
|
||||
EOS recognizes the following special environment variables (case sensitive):
|
||||
|
||||
- `EOS_CONFIG_DIR`: The directory to search for an EOS configuration file.
|
||||
- `EOS_DIR`: The directory used by EOS for data, which will also be searched for an EOS
|
||||
configuration file.
|
||||
- `EOS_LOGGING_LEVEL`: The logging level to use in EOS.
|
||||
|
||||
### EOS Configuration File
|
||||
|
||||
@@ -66,7 +65,7 @@ If you do not have a configuration file, it will be automatically created on the
|
||||
the REST server in a system-dependent location.
|
||||
|
||||
To determine the location of the configuration file used by EOS, ask the REST server. The endpoint
|
||||
`GET /v1/config` provides the `config_file_path` configuration key.
|
||||
`GET /v1/config` provides the `general.config_file_path` configuration key.
|
||||
|
||||
EOS searches for the configuration file in the following order:
|
||||
|
||||
@@ -75,9 +74,15 @@ EOS searches for the configuration file in the following order:
|
||||
3. A platform-specific default directory for EOS
|
||||
4. The current working directory
|
||||
|
||||
The first available configuration file found in these directories is loaded. If no configuration
|
||||
file is found, a default configuration file is created in the platform-specific default directory,
|
||||
and default settings are loaded into it.
|
||||
The first configuration file available in these directories is loaded. If no configuration file is
|
||||
found, a default configuration file is created, and the default settings are written to it. The
|
||||
location of the created configuration file follows the same order in which EOS searches for
|
||||
configuration files, and it depends on whether the relevant environment variables are set.
|
||||
|
||||
Use the following endpoints to interact with the configuration file:
|
||||
|
||||
- `PUT /v1/config/file`: Save the current configuration to the configuration file.
|
||||
- `PUT /v1/config/reset`: Reload the configuration file, all unsaved runtime configuration is reset.
|
||||
|
||||
### Default Values
|
||||
|
||||
|
@@ -1,5 +1,4 @@
|
||||
% SPDX-License-Identifier: Apache-2.0
|
||||
(integration-page)=
|
||||
|
||||
# Integration
|
||||
|
||||
@@ -28,8 +27,6 @@ Andreas Schmitz uses [Node-RED](https://nodered.org/) as part of his home automa
|
||||
[Home Assistant](https://www.home-assistant.io/) is an open-source home automation platform that
|
||||
emphasizes local control and user privacy.
|
||||
|
||||
(duetting-solution)=
|
||||
|
||||
### Home Assistant Resources
|
||||
|
||||
- Duetting's [EOS Home Assistant Addon](https://github.com/Duetting/ha_eos_addon) — Additional
|
||||
|
@@ -1,180 +0,0 @@
|
||||
% SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Introduction
|
||||
|
||||
The Energy System Simulation and Optimization System (EOS) provides a comprehensive
|
||||
solution for simulating and optimizing an energy system based on renewable energy
|
||||
sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load
|
||||
management (consumer requirements), heat pumps, electric vehicles, and consideration of
|
||||
electricity price data, this system enables forecasting and optimization of energy flow
|
||||
and costs over a specified period.
|
||||
|
||||
After successfully installing a PV system with or without battery storage, most owners
|
||||
first priority is often to charge the electric car with surplus energy in order to use
|
||||
the electricity generated by the PV system cost-effectively for electromobility.
|
||||
|
||||
After initial experiences, the desire to include battery storage and dynamic electricity
|
||||
prices in the solution soon arises. The market already offers various commercial and
|
||||
non-commercial solutions for this, such as the popular open source hardware and software
|
||||
solutions evcc or openWB.
|
||||
|
||||
Some solutions take into account the current values of the system such as PV power
|
||||
output, battery storage charge level or the current electricity price to decide whether
|
||||
to charge the electric car with PV surplus or from the grid (e.g. openWB), some use
|
||||
historical consumption values and PV forecast data for their calculations, but leave out
|
||||
the current electricity prices and charging the battery storage from the power grid
|
||||
(Predbat). Others are specialiced on working in combination with a specific smart home
|
||||
solution (e.g. emhass). Still others focus on certain consumers, such as the electric car,
|
||||
or are currently working on integrating the forecast values (evcc). And some are commercial
|
||||
devices that require an electrician to install them and expect a certain ecosystem
|
||||
(e.g. Sunny Home Manager).
|
||||
|
||||
The Akkudoktor EOS
|
||||
|
||||
- takes into account historical, current and forecast data such as consumption values, PV
|
||||
forecast data, electricity price forecast, battery storage and electric car charge levels
|
||||
- the simulation also takes into account the possibility of charging the battery storage
|
||||
from the grid at low electricity prices
|
||||
- is not limited to certain consumers, but includes electric cars, heat pumps or more
|
||||
powerful consumers such as tumble dryers
|
||||
- is independent of a specific smart home solution and can also be integrated into
|
||||
self-developed solutions if desired
|
||||
- is a free and independent open source software solution
|
||||
|
||||

|
||||
|
||||
The challenge is to charge (electric car) or start the consumers (washing machine, dryer)
|
||||
at the right time and to do so as cost-efficiently as possible. If PV yield forecast,
|
||||
battery storage and dynamic electricity price forecasts are included in the calculation,
|
||||
the possibilities increase, but unfortunately so does the complexity.
|
||||
|
||||
The Akkudoktor EOS addresses this challenge by simulating energy flows in the household
|
||||
based on target values, forecast data and current operating data over a 48-hour
|
||||
observation period, running through a large number of different scenarios and finally
|
||||
providing a cost-optimized plan for the current day controlling the relevant consumers.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Technical requirements
|
||||
- Input data
|
||||
|
||||
### Technical requirements
|
||||
|
||||
- reasonably fast computer on which EOS is installed
|
||||
- controllable energy system consisting of photovoltaic system, solar battery storage,
|
||||
energy intensive consumers that must provide the appropriate interfaces
|
||||
- integration solution for integrating the energy system and EOS
|
||||
|
||||
### Input Data
|
||||
|
||||

|
||||
|
||||
The EOS requires various types of data for the simulation:
|
||||
|
||||
Forecast data
|
||||
|
||||
- PV yield forecast
|
||||
- Expected household consumption
|
||||
- Electricity price forecast
|
||||
- Forecast temperature trend (if heatpump is used)
|
||||
|
||||
Basic data and current operating data
|
||||
|
||||
- Current charge level of the battery storage
|
||||
- Value of electricity in the battery storage
|
||||
- Current charge level of the electric car
|
||||
- Energy consumption and running time of dishwasher, washing machine and tumble dryer
|
||||
|
||||
Target values
|
||||
|
||||
- Charge level the electric car should reach in the next few hours
|
||||
- Consumers to run in the next few hours
|
||||
|
||||
There are various service providers available for PV forecasting that calculate forecast
|
||||
data for a PV system based on the various influencing factors, such as system size,
|
||||
orientation, location, time of year and weather conditions. EOS also offers a
|
||||
[PV forecasting service](#prediction-page) which can be used. This service uses
|
||||
public data in the background.
|
||||
|
||||
For the forecast of household consumption EOS provides a standard load curve for an
|
||||
average day based on annual household consumption that you can fetch via API. This data
|
||||
was compiled based on data from several households and provides an initial usable basis.
|
||||
Alternatively your own collected historical data could be used to reflect your personal
|
||||
consumption behaviour.
|
||||
|
||||
## Simulation Results
|
||||
|
||||
Based on the input data, the EOS uses a genetic algorithm to create a cost-optimized
|
||||
schedule for the coming hours from numerous simulations of the overall system.
|
||||
|
||||
The plan created contains for each of the coming hours
|
||||
|
||||
- Control information
|
||||
- whether and with what power the battery storage should be charged from the grid
|
||||
- when the battery storage should be charged via the PV system
|
||||
- whether discharging the battery storage is permitted or not
|
||||
- when and with what power the electric car should be charged
|
||||
- when a household appliance should be activated
|
||||
- Energy history information
|
||||
- Total load of the house
|
||||
- Grid consumption
|
||||
- Feed-in
|
||||
- Load of the planned household appliances
|
||||
- Charge level of the battery storage
|
||||
- Charge level of the electric car
|
||||
- Active losses
|
||||
- Cost information
|
||||
- Revenue per hour (when fed into the grid)
|
||||
- Total costs per hour (when drawn from the grid)
|
||||
- Overall balance (revenue-costs)
|
||||
- Cost development
|
||||
|
||||
If required, the simulation result can also be created and downloaded in graphical
|
||||
form as a PDF from EOS.
|
||||
|
||||
## Integration
|
||||
|
||||
The Akkudoktor EOS can be integrated into a wide variety of systems with a variety
|
||||
of components.
|
||||
|
||||

|
||||
|
||||
However, the components are not integrated by the EOS itself, but must be intergrated by
|
||||
the user using an integration solution and currently requires some effort and technical
|
||||
know-how.
|
||||
|
||||
Any [integration](#integration-page) solution that can act as an intermediary between the
|
||||
components and the REST API of EOS can be used. One possible solution that enables the
|
||||
integration of components and EOS is Node-RED. Another solution could be Home Assistant
|
||||
usings its built in features.
|
||||
|
||||
Access to the data and functions of the components can be done in a variety of ways.
|
||||
Node-RED offers a large number of types of nodes that allow access via the protocols
|
||||
commonly used in this area, such as Modbus or MQTT. Access to any existing databases,
|
||||
such as InfluxDB or PostgreSQL, is also possible via nodes provided by Node-RED.
|
||||
|
||||
It becomes easier if a smart home solution like Homa Assistant, openHAB or ioBroker or
|
||||
solutions such as evcc or openWB are already in use. In this case, these smart home
|
||||
solutions already take over the technical integration and communication with the components
|
||||
at a technical level and Node-RED offers nodes for accessing these solutions, so that the
|
||||
corresponding sources can be easily integrated into a flow.
|
||||
|
||||
In Home Assistant you could use an automation to prepare the input payload for EOS and
|
||||
then use the RESTful integration to call EOS. Based on this concept there is already a
|
||||
home assistand add-on created by [Duetting](#duetting-solution).
|
||||
|
||||
The plan created by EOS must also be executed via the chosen integration solution,
|
||||
with the respective devices receiving their instructions according to the plan.
|
||||
|
||||
## Limitations
|
||||
|
||||
The plan calculated by EOS is cost-optimized due to the genetic algorithm used, but not
|
||||
necessarily cost-optimal, since genetic algorithms do not always find the global optimum,
|
||||
but usually find good local optima very quickly in a large solution space.
|
||||
|
||||
## Links
|
||||
|
||||
- [German Video explaining the basic concept and installation process for the early version of EOS (YouTube)](https://www.youtube.com/live/ftQULW4-1ts?si=oDdBBifCpUmiCXaY)
|
||||
- [German Forum of Akkudoktor EOS](https://akkudoktor.net/c/der-akkudoktor/eos)
|
||||
- [Akkudoktor-EOS GitHub Repository](https://github.com/Akkudoktor-EOS/EOS)
|
||||
- [Latest EOS Documentation](https://akkudoktor-eos.readthedocs.io/en/latest/)
|
@@ -56,21 +56,21 @@ A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html)
|
||||
The EOS measurement store provides for storing meter readings of loads. There are currently five loads
|
||||
foreseen. The associated `measurement key`s are:
|
||||
|
||||
- `measurement_load0_mr`: Load0 meter reading [kWh]
|
||||
- `measurement_load1_mr`: Load1 meter reading [kWh]
|
||||
- `measurement_load2_mr`: Load2 meter reading [kWh]
|
||||
- `measurement_load3_mr`: Load3 meter reading [kWh]
|
||||
- `measurement_load4_mr`: Load4 meter reading [kWh]
|
||||
- `load0_mr`: Load0 meter reading [kWh]
|
||||
- `load1_mr`: Load1 meter reading [kWh]
|
||||
- `load2_mr`: Load2 meter reading [kWh]
|
||||
- `load3_mr`: Load3 meter reading [kWh]
|
||||
- `load4_mr`: Load4 meter reading [kWh]
|
||||
|
||||
For ease of use, you can assign descriptive names to the `measurement key`s to represent your
|
||||
system's load sources. Use the following `configuration options` to set these names
|
||||
(e.g., 'Dish Washer', 'Heat Pump'):
|
||||
|
||||
- `measurement_load0_name`: Name of the load0 source
|
||||
- `measurement_load1_name`: Name of the load1 source
|
||||
- `measurement_load2_name`: Name of the load2 source
|
||||
- `measurement_load3_name`: Name of the load3 source
|
||||
- `measurement_load4_name`: Name of the load4 source
|
||||
- `load0_name`: Name of the load0 source
|
||||
- `load1_name`: Name of the load1 source
|
||||
- `load2_name`: Name of the load2 source
|
||||
- `load3_name`: Name of the load3 source
|
||||
- `load4_name`: Name of the load4 source
|
||||
|
||||
Load measurements can be stored for any datetime. The values between different meter readings are
|
||||
linearly approximated. Since optimization occurs on the hour, storing values between hours is
|
||||
@@ -84,8 +84,8 @@ for specified intervals, usually one hour. This aggregated data can be used for
|
||||
The EOS measurement store also allows for the storage of meter readings for grid import and export.
|
||||
The associated `measurement key`s are:
|
||||
|
||||
- `measurement_grid_export_mr`: Export to grid meter reading [kWh]
|
||||
- `measurement_grid_import_mr`: Import from grid meter reading [kWh]
|
||||
- `grid_export_mr`: Export to grid meter reading [kWh]
|
||||
- `grid_import_mr`: Import from grid meter reading [kWh]
|
||||
|
||||
:::{admonition} Todo
|
||||
:class: note
|
||||
|
@@ -1,5 +1,4 @@
|
||||
% SPDX-License-Identifier: Apache-2.0
|
||||
(prediction-page)=
|
||||
|
||||
# Predictions
|
||||
|
||||
@@ -20,10 +19,14 @@ data is lost on re-start of the EOS REST server.
|
||||
## Prediction Providers
|
||||
|
||||
Most predictions can be sourced from various providers. The specific provider to use is configured
|
||||
in the EOS configuration. For example:
|
||||
in the EOS configuration and can be set by prediction type. For example:
|
||||
|
||||
```python
|
||||
weather_provider = "ClearOutside"
|
||||
{
|
||||
"weather": {
|
||||
"provider": "ClearOutside"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Some providers offer multiple prediction keys. For instance, a weather provider might provide data
|
||||
@@ -74,7 +77,7 @@ predictions are adjusted by real data from your system's measurements if given t
|
||||
|
||||
For example, the load prediction provider `LoadAkkudoktor` takes generic load data assembled by
|
||||
Akkudoktor.net, maps that to the yearly energy consumption given in the configuration option
|
||||
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `measurement_loads`
|
||||
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `loads`
|
||||
of your system.
|
||||
|
||||
## Prediction Updates
|
||||
@@ -110,21 +113,23 @@ Prediction keys:
|
||||
|
||||
Configuration options:
|
||||
|
||||
- `elecprice_provider`: Electricity price provider id of provider to be used.
|
||||
- `elecprice`: Electricity price configuration.
|
||||
|
||||
- `provider`: Electricity price provider id of provider to be used.
|
||||
|
||||
- `ElecPriceAkkudoktor`: Retrieves from Akkudoktor.net.
|
||||
- `ElecPriceImport`: Imports from a file or JSON string.
|
||||
|
||||
- `elecprice_charges_kwh`: Electricity price charges (€/kWh).
|
||||
- `elecpriceimport_file_path`: Path to the file to import electricity price forecast data from.
|
||||
- `elecpriceimport_json`: JSON string, dictionary of electricity price forecast value lists.
|
||||
- `charges_kwh`: Electricity price charges (€/kWh).
|
||||
- `provider_settings.import_file_path`: Path to the file to import electricity price forecast data from.
|
||||
- `provider_settings.import_json`: JSON string, dictionary of electricity price forecast value lists.
|
||||
|
||||
### ElecPriceAkkudoktor Provider
|
||||
|
||||
The `ElecPriceAkkudoktor` provider retrieves electricity prices directly from **Akkudoktor.net**,
|
||||
which supplies price data for the next 24 hours. For periods beyond 24 hours, the provider generates
|
||||
prices by extrapolating historical price data combined with the most recent actual prices obtained
|
||||
from Akkudoktor.net. Electricity price charges given in the `elecprice_charges_kwh` configuration
|
||||
from Akkudoktor.net. Electricity price charges given in the `charges_kwh` configuration
|
||||
option are added.
|
||||
|
||||
### ElecPriceImport Provider
|
||||
@@ -138,8 +143,11 @@ The prediction key for the electricity price forecast data is:
|
||||
- `elecprice_marketprice_wh`: Electricity market price per Wh (€/Wh).
|
||||
|
||||
The electricity proce forecast data must be provided in one of the formats described in
|
||||
<project:#prediction-import-providers>. The data source must be given in the
|
||||
`elecpriceimport_file_path` or `elecpriceimport_json` configuration option.
|
||||
<project:#prediction-import-providers>. The data source can be given in the
|
||||
`import_file_path` or `import_json` configuration option.
|
||||
|
||||
The data may additionally or solely be provided by the
|
||||
**PUT** `/v1/prediction/import/ElecPriceImport` endpoint.
|
||||
|
||||
## Load Prediction
|
||||
|
||||
@@ -151,14 +159,16 @@ Prediction keys:
|
||||
|
||||
Configuration options:
|
||||
|
||||
- `load_provider`: Load provider id of provider to be used.
|
||||
- `load`: Load configuration.
|
||||
|
||||
- `provider`: Load provider id of provider to be used.
|
||||
|
||||
- `LoadAkkudoktor`: Retrieves from local database.
|
||||
- `LoadImport`: Imports from a file or JSON string.
|
||||
|
||||
- `loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
|
||||
- `loadimport_file_path`: Path to the file to import load forecast data from.
|
||||
- `loadimport_json`: JSON string, dictionary of load forecast value lists.
|
||||
- `provider_settings.loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
|
||||
- `provider_settings.loadimport_file_path`: Path to the file to import load forecast data from.
|
||||
- `provider_settings.loadimport_json`: JSON string, dictionary of load forecast value lists.
|
||||
|
||||
### LoadAkkudoktor Provider
|
||||
|
||||
@@ -179,9 +189,12 @@ The prediction keys for the load forecast data are:
|
||||
- `load_mean_adjusted`: Predicted load mean value adjusted by load measurement (W).
|
||||
|
||||
The load forecast data must be provided in one of the formats described in
|
||||
<project:#prediction-import-providers>. The data source must be given in the `loadimport_file_path`
|
||||
<project:#prediction-import-providers>. The data source can be given in the `loadimport_file_path`
|
||||
or `loadimport_json` configuration option.
|
||||
|
||||
The data may additionally or solely be provided by the
|
||||
**PUT** `/v1/prediction/import/LoadImport` endpoint.
|
||||
|
||||
## PV Power Prediction
|
||||
|
||||
Prediction keys:
|
||||
@@ -191,48 +204,51 @@ Prediction keys:
|
||||
|
||||
Configuration options:
|
||||
|
||||
- `pvforecast_provider`: PVForecast provider id of provider to be used.
|
||||
- `general`: General configuration.
|
||||
|
||||
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
|
||||
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
|
||||
|
||||
- `pvforecast`: PV forecast configuration.
|
||||
|
||||
- `provider`: PVForecast provider id of provider to be used.
|
||||
|
||||
- `PVForecastAkkudoktor`: Retrieves from Akkudoktor.net.
|
||||
- `PVForecastImport`: Imports from a file or JSON string.
|
||||
|
||||
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
|
||||
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
|
||||
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
|
||||
- `planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
- `planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
|
||||
Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
|
||||
- `pvforecast<0..5>_pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
- `pvforecast<0..5>_mountingplace`: Type of mounting for PV system. Options are 'free' for free-standing
|
||||
and 'building' for building-integrated.
|
||||
- `pvforecast<0..5>_loss`: Sum of PV system losses in percent
|
||||
- `pvforecast<0..5>_trackingtype`: Type of suntracking. 0=fixed,
|
||||
- `planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
- `planes[].peakpower`: Nominal power of PV system in kW.
|
||||
- `planes[].pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
|
||||
- `planes[].mountingplace`: Type of mounting for PV system.
|
||||
Options are 'free' for free-standing and 'building' for building-integrated.
|
||||
- `planes[].loss`: Sum of PV system losses in percent
|
||||
- `planes[].trackingtype`: Type of suntracking.
|
||||
0=fixed,
|
||||
1=single horizontal axis aligned north-south,
|
||||
2=two-axis tracking,
|
||||
3=vertical axis tracking,
|
||||
4=single horizontal axis aligned east-west,
|
||||
5=single inclined axis aligned north-south.
|
||||
- `pvforecast<0..5>_optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
- `pvforecast<0..5>_optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
- `pvforecast<0..5>_albedo`: Proportion of the light hitting the ground that it reflects back.
|
||||
- `pvforecast<0..5>_module_model`: Model of the PV modules of this plane.
|
||||
- `pvforecast<0..5>_inverter_model`: Model of the inverter of this plane.
|
||||
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
|
||||
- `pvforecast<0..5>_modules_per_string`: Number of the PV modules of the strings of this plane.
|
||||
- `pvforecast<0..5>_strings_per_inverter`: Number of the strings of the inverter of this plane.
|
||||
- `pvforecastimport_file_path`: Path to the file to import PV forecast data from.
|
||||
- `pvforecastimport_json`: JSON string, dictionary of PV forecast value lists.
|
||||
- `planes[].optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
|
||||
- `planes[].optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
|
||||
- `planes[].albedo`: Proportion of the light hitting the ground that it reflects back.
|
||||
- `planes[].module_model`: Model of the PV modules of this plane.
|
||||
- `planes[].inverter_model`: Model of the inverter of this plane.
|
||||
- `planes[].inverter_paco`: AC power rating of the inverter. [W]
|
||||
- `planes[].modules_per_string`: Number of the PV modules of the strings of this plane.
|
||||
- `planes[].strings_per_inverter`: Number of the strings of the inverter of this plane.
|
||||
- `provider_settings.import_file_path`: Path to the file to import PV forecast data from.
|
||||
- `provider_settings.import_json`: JSON string, dictionary of PV forecast value lists.
|
||||
|
||||
---
|
||||
------
|
||||
|
||||
Some of the configuration options directly follow the
|
||||
[PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en)
|
||||
nomenclature.
|
||||
Detailed definitions taken from
|
||||
[PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en).
|
||||
|
||||
Detailed definitions taken from **PVGIS**:
|
||||
|
||||
- `pvforecast<0..5>_pvtechchoice`
|
||||
- `pvtechchoice`
|
||||
|
||||
The performance of PV modules depends on the temperature and on the solar irradiance, but the exact
|
||||
dependence varies between different types of PV modules. At the moment we can estimate the losses
|
||||
@@ -251,14 +267,14 @@ variations of the spectrum of sunlight affects the overall energy production fro
|
||||
the moment this calculation can be done for crystalline silicon and CdTe modules. Note that this
|
||||
calculation is not yet available when using the NSRDB solar radiation database.
|
||||
|
||||
- `pvforecast<0..5>_peakpower`
|
||||
- `peakpower`
|
||||
|
||||
This is the power that the manufacturer declares that the PV array can produce under standard test
|
||||
conditions (STC), which are a constant 1000W of solar irradiation per square meter in the plane of
|
||||
the array, at an array temperature of 25°C. The peak power should be entered in kilowatt-peak (kWp).
|
||||
If you do not know the declared peak power of your modules but instead know the area of the modules
|
||||
and the declared conversion efficiency (in percent), you can calculate the peak power as
|
||||
power = area \* efficiency / 100.
|
||||
power = area * efficiency / 100.
|
||||
|
||||
Bifacial modules: PVGIS doesn't make specific calculations for bifacial modules at present. Users
|
||||
who wish to explore the possible benefits of this technology can input the power value for Bifacial
|
||||
@@ -267,7 +283,7 @@ value and the bifaciality factor, φ (if reported in the module data sheet) as:
|
||||
P_BNPI = P_STC \* (1 + φ \* 0.135). NB this bifacial approach is not appropriate for BAPV or BIPV
|
||||
installations or for modules mounting on a N-S axis i.e. facing E-W.
|
||||
|
||||
- `pvforecast<0..5>_loss`
|
||||
- `loss`
|
||||
|
||||
The estimated system losses are all the losses in the system, which cause the power actually
|
||||
delivered to the electricity grid to be lower than the power produced by the PV modules. There are
|
||||
@@ -279,7 +295,7 @@ in the first years.
|
||||
We have given a default value of 14% for the overall losses. If you have a good idea that your value
|
||||
will be different (maybe due to a really high-efficiency inverter) you may reduce this value a little.
|
||||
|
||||
- `pvforecast<0..5>_mountingplace`
|
||||
- `mountingplace`
|
||||
|
||||
For fixed (non-tracking) systems, the way the modules are mounted will have an influence on the
|
||||
temperature of the module, which in turn affects the efficiency. Experiments have shown that if the
|
||||
@@ -295,7 +311,7 @@ Some types of mounting are in between these two extremes, for instance if the mo
|
||||
a roof with curved roof tiles, allowing air to move behind the modules. In such cases, the
|
||||
performance will be somewhere between the results of the two calculations that are possible here.
|
||||
|
||||
- `pvforecast<0..5>_userhorizon`
|
||||
- `userhorizon`
|
||||
|
||||
Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. In the user horizon
|
||||
data each number represents the horizon height in degrees in a certain compass direction around the
|
||||
@@ -305,71 +321,84 @@ represent equal angular distance around the horizon. For instance, if you have 3
|
||||
point is due north, the next is 10 degrees east of north, and so on, until the last point, 10
|
||||
degrees west of north.
|
||||
|
||||
---
|
||||
------
|
||||
|
||||
Most of the configuration options are in line with the
|
||||
[PVLib](https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html) definition for PVGIS data.
|
||||
|
||||
Detailed definitions from **PVLib** for PVGIS data.
|
||||
|
||||
- `pvforecast<0..5>_surface_tilt`:
|
||||
- `surface_tilt`:
|
||||
|
||||
Tilt angle from horizontal plane.
|
||||
|
||||
- `pvforecast<0..5>_surface_azimuth`
|
||||
- `surface_azimuth`
|
||||
|
||||
Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180,
|
||||
west=270). This is offset 180 degrees from the convention used by PVGIS.
|
||||
|
||||
---
|
||||
------
|
||||
|
||||
### PVForecastAkkudoktor Provider
|
||||
|
||||
The `PVForecastAkkudoktor` provider retrieves the PV power forecast data directly from
|
||||
**Akkudoktor.net**.
|
||||
|
||||
The following general configuration options of the PV system must be set:
|
||||
The following prediction configuration options of the PV system must be set:
|
||||
|
||||
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
|
||||
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
|
||||
- `general.latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
|
||||
- `general.longitude`: Longitude in decimal degrees, within -180 to 180 (°)
|
||||
|
||||
For each plane `<0..5>` of the PV system the following configuration options must be set:
|
||||
For each plane of the PV system the following configuration options must be set:
|
||||
|
||||
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
|
||||
- `pvforecast.planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
|
||||
- `pvforecast.planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
|
||||
Clockwise from north (north=0, east=90, south=180, west=270).
|
||||
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
|
||||
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
|
||||
- `pvforecast.planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
|
||||
- `pvforecast.planes[].inverter_paco`: AC power rating of the inverter. [W]
|
||||
- `pvforecast.planes[].peakpower`: Nominal power of PV system in kW.
|
||||
|
||||
Example:
|
||||
|
||||
```Python
|
||||
{
|
||||
"general": {
|
||||
"latitude": 50.1234,
|
||||
"longitude": 9.7654,
|
||||
"pvforecast_provider": "PVForecastAkkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
"pvforecast2_peakpower": 1.4,
|
||||
"pvforecast2_surface_azimuth": -40,
|
||||
"pvforecast2_surface_tilt": 60,
|
||||
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
||||
"pvforecast2_inverter_paco": 2000,
|
||||
"pvforecast3_peakpower": 1.6,
|
||||
"pvforecast3_surface_azimuth": 5,
|
||||
"pvforecast3_surface_tilt": 45,
|
||||
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
||||
"pvforecast3_inverter_paco": 1400,
|
||||
"pvforecast4_peakpower": None,
|
||||
},
|
||||
"pvforecast": {
|
||||
"provider": "PVForecastAkkudoktor",
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [20, 27, 22, 20],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [30, 30, 30, 50],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.4,
|
||||
"surface_azimuth": -40,
|
||||
"surface_tilt": 60,
|
||||
"userhorizon": [60, 30, 0, 30],
|
||||
"inverter_paco": 2000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.6,
|
||||
"surface_azimuth": 5,
|
||||
"surface_tilt": 45,
|
||||
"userhorizon": [45, 25, 30, 60],
|
||||
"inverter_paco": 1400,
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -385,8 +414,11 @@ The prediction keys for the PV forecast data are:
|
||||
- `pvforecast_dc_power`: Total AC power (W).
|
||||
|
||||
The PV forecast data must be provided in one of the formats described in
|
||||
<project:#prediction-import-providers>. The data source must be given in the
|
||||
`pvforecastimport_file_path` or `pvforecastimport_json` configuration option.
|
||||
<project:#prediction-import-providers>. The data source can be given in the
|
||||
`import_file_path` or `import_json` configuration option.
|
||||
|
||||
The data may additionally or solely be provided by the
|
||||
**PUT** `/v1/prediction/import/PVForecastImport` endpoint.
|
||||
|
||||
## Weather Prediction
|
||||
|
||||
@@ -417,14 +449,16 @@ Prediction keys:
|
||||
|
||||
Configuration options:
|
||||
|
||||
- `weather_provider`: Load provider id of provider to be used.
|
||||
- `weather`: General weather configuration.
|
||||
|
||||
- `provider`: Load provider id of provider to be used.
|
||||
|
||||
- `BrightSky`: Retrieves from [BrightSky](https://api.brightsky.dev).
|
||||
- `ClearOutside`: Retrieves from [ClearOutside](https://clearoutside.com/forecast).
|
||||
- `LoadImport`: Imports from a file or JSON string.
|
||||
|
||||
- `weatherimport_file_path`: Path to the file to import weatherforecast data from.
|
||||
- `weatherimport_json`: JSON string, dictionary of weather forecast value lists.
|
||||
- `provider_settings.import_file_path`: Path to the file to import weatherforecast data from.
|
||||
- `provider_settings.import_json`: JSON string, dictionary of weather forecast value lists.
|
||||
|
||||
### BrightSky Provider
|
||||
|
||||
@@ -481,7 +515,7 @@ The `WeatherImport` provider is designed to import weather forecast data from a
|
||||
string. An external entity should update the file or JSON string whenever new prediction data
|
||||
becomes available.
|
||||
|
||||
The prediction keys for the PV forecast data are:
|
||||
The prediction keys for the weather forecast data are:
|
||||
|
||||
- `weather_dew_point`: Dew Point (°C)
|
||||
- `weather_dhi`: Diffuse Horizontal Irradiance (W/m2)
|
||||
@@ -507,5 +541,8 @@ The prediction keys for the PV forecast data are:
|
||||
- `weather_wind_speed`: Wind Speed (kmph)
|
||||
|
||||
The PV forecast data must be provided in one of the formats described in
|
||||
<project:#prediction-import-providers>. The data source must be given in the
|
||||
`weatherimport_file_path` or `pvforecastimport_json` configuration option.
|
||||
<project:#prediction-import-providers>. The data source can be given in the
|
||||
`import_file_path` or `import_json` configuration option.
|
||||
|
||||
The data may additionally or solely be provided by the
|
||||
**PUT** `/v1/prediction/import/WeatherImport` endpoint.
|
||||
|
@@ -99,6 +99,7 @@ html_theme_options = {
|
||||
"logo_only": False,
|
||||
"titles_only": True,
|
||||
}
|
||||
html_css_files = ["eos.css"]
|
||||
|
||||
# -- Options for autodoc -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
|
||||
|
@@ -8,32 +8,12 @@
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: Overview
|
||||
|
||||
akkudoktoreos/introduction.md
|
||||
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: Tutorials
|
||||
:caption: 'Contents:'
|
||||
|
||||
welcome.md
|
||||
akkudoktoreos/about.md
|
||||
develop/getting_started.md
|
||||
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: How-To Guides
|
||||
|
||||
develop/CONTRIBUTING.md
|
||||
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:caption: Reference
|
||||
|
||||
akkudoktoreos/architecture.md
|
||||
akkudoktoreos/configuration.md
|
||||
akkudoktoreos/optimization.md
|
||||
@@ -42,7 +22,6 @@ akkudoktoreos/measurement.md
|
||||
akkudoktoreos/integration.md
|
||||
akkudoktoreos/serverapi.md
|
||||
akkudoktoreos/api.rst
|
||||
|
||||
```
|
||||
|
||||
## Indices and tables
|
||||
|
12094
openapi.json
@@ -1,6 +1,5 @@
|
||||
-r requirements.txt
|
||||
gitpython==3.1.44
|
||||
linkify-it-py==2.0.3
|
||||
myst-parser==4.0.1
|
||||
sphinx==8.2.3
|
||||
sphinx_rtd_theme==3.0.2
|
||||
|
@@ -1,8 +1,13 @@
|
||||
cachebox==4.4.2
|
||||
numpy==2.2.4
|
||||
numpydantic==1.6.8
|
||||
matplotlib==3.10.1
|
||||
fastapi[standard]==0.115.11
|
||||
python-fasthtml==0.12.4
|
||||
MonsterUI==0.0.29
|
||||
markdown-it-py==3.0.0
|
||||
mdit-py-plugins==0.4.2
|
||||
bokeh==3.6.3
|
||||
uvicorn==0.34.0
|
||||
scikit-learn==1.6.1
|
||||
timezonefinder==6.5.8
|
||||
@@ -11,6 +16,9 @@ requests==2.32.3
|
||||
pandas==2.2.3
|
||||
pendulum==3.0.0
|
||||
platformdirs==4.3.7
|
||||
psutil==6.1.1
|
||||
pvlib==0.12.0
|
||||
pydantic==2.10.6
|
||||
statsmodels==0.14.4
|
||||
pydantic-settings==2.7.0
|
||||
linkify-it-py==2.0.3
|
||||
|
@@ -150,7 +150,7 @@ def main():
|
||||
|
||||
try:
|
||||
if args.input_file:
|
||||
with open(args.input_file, "r", encoding="utf8") as f:
|
||||
with open(args.input_file, "r", encoding="utf-8", newline=None) as f:
|
||||
content = f.read()
|
||||
elif args.input:
|
||||
content = args.input
|
||||
@@ -164,7 +164,7 @@ def main():
|
||||
)
|
||||
if args.output_file:
|
||||
# Write to file
|
||||
with open(args.output_file, "w", encoding="utf8") as f:
|
||||
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f:
|
||||
f.write(extracted_content)
|
||||
else:
|
||||
# Write to std output
|
||||
|
@@ -2,132 +2,280 @@
|
||||
"""Utility functions for Configuration specification generation."""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import textwrap
|
||||
from pathlib import Path
|
||||
from typing import Any, Union
|
||||
|
||||
from akkudoktoreos.config.config import get_config
|
||||
from pydantic.fields import ComputedFieldInfo, FieldInfo
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from akkudoktoreos.config.config import ConfigEOS, GeneralSettings, get_config
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.utils.docs import get_model_structure_from_examples
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
config_eos = get_config()
|
||||
|
||||
# Fixed set of prefixes to filter configuration values and their respective titles
|
||||
CONFIG_PREFIXES = {
|
||||
"battery": "Battery Device Simulation Configuration",
|
||||
"bev": "Battery Electric Vehicle Device Simulation Configuration",
|
||||
"dishwasher": "Dishwasher Device Simulation Configuration",
|
||||
"inverter": "Inverter Device Simulation Configuration",
|
||||
"measurement": "Measurement Configuration",
|
||||
"optimization": "General Optimization Configuration",
|
||||
"server": "Server Configuration",
|
||||
"elecprice": "Electricity Price Prediction Configuration",
|
||||
"load": "Load Prediction Configuration",
|
||||
"logging": "Logging Configuration",
|
||||
"prediction": "General Prediction Configuration",
|
||||
"pvforecast": "PV Forecast Configuration",
|
||||
"weather": "Weather Forecast Configuration",
|
||||
}
|
||||
documented_types: set[PydanticBaseModel] = set()
|
||||
undocumented_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
|
||||
|
||||
# Static set of configuration names to include in a separate table
|
||||
GENERAL_CONFIGS = [
|
||||
"config_default_file_path",
|
||||
"config_file_path",
|
||||
"config_folder_path",
|
||||
"config_keys",
|
||||
"config_keys_read_only",
|
||||
"data_cache_path",
|
||||
"data_cache_subpath",
|
||||
"data_folder_path",
|
||||
"data_output_path",
|
||||
"data_output_subpath",
|
||||
"latitude",
|
||||
"longitude",
|
||||
"package_root_path",
|
||||
"timezone",
|
||||
global_config_dict: dict[str, Any] = dict()
|
||||
|
||||
|
||||
def get_title(config: PydanticBaseModel) -> str:
|
||||
if config.__doc__ is None:
|
||||
raise NameError(f"Missing docstring: {config}")
|
||||
return config.__doc__.strip().splitlines()[0].strip(".")
|
||||
|
||||
|
||||
def get_body(config: PydanticBaseModel) -> str:
|
||||
if config.__doc__ is None:
|
||||
raise NameError(f"Missing docstring: {config}")
|
||||
return textwrap.dedent("\n".join(config.__doc__.strip().splitlines()[1:])).strip()
|
||||
|
||||
|
||||
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
|
||||
resolved_types: list[tuple[type, list[str]]] = []
|
||||
|
||||
origin = getattr(field_type, "__origin__", field_type)
|
||||
if origin is Union:
|
||||
for arg in getattr(field_type, "__args__", []):
|
||||
resolved_types.extend(resolve_nested_types(arg, parent_types))
|
||||
elif origin is list:
|
||||
for arg in getattr(field_type, "__args__", []):
|
||||
resolved_types.extend(resolve_nested_types(arg, parent_types + ["list"]))
|
||||
else:
|
||||
resolved_types.append((field_type, parent_types))
|
||||
|
||||
return resolved_types
|
||||
|
||||
|
||||
def create_model_from_examples(
|
||||
model_class: PydanticBaseModel, multiple: bool
|
||||
) -> list[PydanticBaseModel]:
|
||||
"""Create a model instance with default or example values, respecting constraints."""
|
||||
return [
|
||||
model_class(**data) for data in get_model_structure_from_examples(model_class, multiple)
|
||||
]
|
||||
|
||||
|
||||
def generate_config_table_md(configs, title):
|
||||
def build_nested_structure(keys: list[str], value: Any) -> Any:
|
||||
if not keys:
|
||||
return value
|
||||
|
||||
current_key = keys[0]
|
||||
if current_key == "list":
|
||||
return [build_nested_structure(keys[1:], value)]
|
||||
else:
|
||||
return {current_key: build_nested_structure(keys[1:], value)}
|
||||
|
||||
|
||||
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
|
||||
default_value = ""
|
||||
if regular_field:
|
||||
if (val := field_info.default) is not PydanticUndefined:
|
||||
default_value = val
|
||||
else:
|
||||
default_value = "required"
|
||||
else:
|
||||
default_value = "N/A"
|
||||
return default_value
|
||||
|
||||
|
||||
def get_type_name(field_type: type) -> str:
|
||||
type_name = str(field_type).replace("typing.", "").replace("pathlib._local", "pathlib")
|
||||
if type_name.startswith("<class"):
|
||||
type_name = field_type.__name__
|
||||
return type_name
|
||||
|
||||
|
||||
def generate_config_table_md(
|
||||
config: PydanticBaseModel,
|
||||
toplevel_keys: list[str],
|
||||
prefix: str,
|
||||
toplevel: bool = False,
|
||||
extra_config: bool = False,
|
||||
) -> str:
|
||||
"""Generate a markdown table for given configurations.
|
||||
|
||||
Args:
|
||||
configs (dict): Configuration values with keys and their descriptions.
|
||||
title (str): Title for the table.
|
||||
config (PydanticBaseModel): PydanticBaseModel configuration definition.
|
||||
prefix (str): Prefix for table entries.
|
||||
|
||||
Returns:
|
||||
str: The markdown table as a string.
|
||||
"""
|
||||
if not configs:
|
||||
return ""
|
||||
table = ""
|
||||
if toplevel:
|
||||
title = get_title(config)
|
||||
|
||||
table = f"## {title}\n\n"
|
||||
table += ":::{table} " + f"{title}\n:widths: 10 10 5 5 30\n:align: left\n\n"
|
||||
table += "| Name | Type | Read-Only | Default | Description |\n"
|
||||
table += "| ---- | ---- | --------- | ------- | ----------- |\n"
|
||||
for name, config in sorted(configs.items()):
|
||||
type_name = config["type"]
|
||||
if type_name.startswith("typing."):
|
||||
type_name = type_name[len("typing.") :]
|
||||
table += f"| `{config['name']}` | `{type_name}` | `{config['read-only']}` | `{config['default']}` | {config['description']} |\n"
|
||||
heading_level = "###" if extra_config else "##"
|
||||
env_header = ""
|
||||
env_header_underline = ""
|
||||
env_width = ""
|
||||
if not extra_config:
|
||||
env_header = "| Environment Variable "
|
||||
env_header_underline = "| -------------------- "
|
||||
env_width = "20 "
|
||||
|
||||
table += f"{heading_level} {title}\n\n"
|
||||
|
||||
body = get_body(config)
|
||||
if body:
|
||||
table += body
|
||||
table += "\n\n"
|
||||
|
||||
table += (
|
||||
":::{table} "
|
||||
+ f"{'::'.join(toplevel_keys)}\n:widths: 10 {env_width}10 5 5 30\n:align: left\n\n"
|
||||
)
|
||||
table += f"| Name {env_header}| Type | Read-Only | Default | Description |\n"
|
||||
table += f"| ---- {env_header_underline}| ---- | --------- | ------- | ----------- |\n"
|
||||
|
||||
for field_name, field_info in list(config.model_fields.items()) + list(
|
||||
config.model_computed_fields.items()
|
||||
):
|
||||
regular_field = isinstance(field_info, FieldInfo)
|
||||
|
||||
config_name = field_name if extra_config else field_name.upper()
|
||||
field_type = field_info.annotation if regular_field else field_info.return_type
|
||||
default_value = get_default_value(field_info, regular_field)
|
||||
description = field_info.description if field_info.description else "-"
|
||||
read_only = "rw" if regular_field else "ro"
|
||||
type_name = get_type_name(field_type)
|
||||
|
||||
env_entry = ""
|
||||
if not extra_config:
|
||||
if regular_field:
|
||||
env_entry = f"| `{prefix}{config_name}` "
|
||||
else:
|
||||
env_entry = "| "
|
||||
table += f"| {field_name} {env_entry}| `{type_name}` | `{read_only}` | `{default_value}` | {description} |\n"
|
||||
|
||||
inner_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
|
||||
|
||||
def extract_nested_models(subtype: Any, subprefix: str, parent_types: list[str]):
|
||||
if subtype in inner_types.keys():
|
||||
return
|
||||
nested_types = resolve_nested_types(subtype, [])
|
||||
for nested_type, nested_parent_types in nested_types:
|
||||
if issubclass(nested_type, PydanticBaseModel):
|
||||
new_parent_types = parent_types + nested_parent_types
|
||||
if "list" in parent_types:
|
||||
new_prefix = ""
|
||||
else:
|
||||
new_prefix = f"{subprefix}"
|
||||
inner_types.setdefault(nested_type, (new_prefix, new_parent_types))
|
||||
for nested_field_name, nested_field_info in list(
|
||||
nested_type.model_fields.items()
|
||||
) + list(nested_type.model_computed_fields.items()):
|
||||
nested_field_type = nested_field_info.annotation
|
||||
if new_prefix:
|
||||
new_prefix += f"{nested_field_name.upper()}__"
|
||||
extract_nested_models(
|
||||
nested_field_type,
|
||||
new_prefix,
|
||||
new_parent_types + [nested_field_name],
|
||||
)
|
||||
|
||||
extract_nested_models(field_type, f"{prefix}{config_name}__", toplevel_keys + [field_name])
|
||||
|
||||
for new_type, info in inner_types.items():
|
||||
if new_type not in documented_types:
|
||||
undocumented_types.setdefault(new_type, (info[0], info[1]))
|
||||
|
||||
if toplevel:
|
||||
table += ":::\n\n" # Add an empty line after the table
|
||||
|
||||
has_examples_list = toplevel_keys[-1] == "list"
|
||||
instance_list = create_model_from_examples(config, has_examples_list)
|
||||
if instance_list:
|
||||
ins_dict_list = []
|
||||
ins_out_dict_list = []
|
||||
for ins in instance_list:
|
||||
# Transform to JSON (and manually to dict) to use custom serializers and then merge with parent keys
|
||||
ins_json = ins.model_dump_json(include_computed_fields=False)
|
||||
ins_dict_list.append(json.loads(ins_json))
|
||||
|
||||
ins_out_json = ins.model_dump_json(include_computed_fields=True)
|
||||
ins_out_dict_list.append(json.loads(ins_out_json))
|
||||
|
||||
same_output = ins_out_dict_list == ins_dict_list
|
||||
same_output_str = "/Output" if same_output else ""
|
||||
|
||||
table += f"#{heading_level} Example Input{same_output_str}\n\n"
|
||||
table += "```{eval-rst}\n"
|
||||
table += ".. code-block:: json\n\n"
|
||||
if has_examples_list:
|
||||
input_dict = build_nested_structure(toplevel_keys[:-1], ins_dict_list)
|
||||
if not extra_config:
|
||||
global_config_dict[toplevel_keys[0]] = ins_dict_list
|
||||
else:
|
||||
input_dict = build_nested_structure(toplevel_keys, ins_dict_list[0])
|
||||
if not extra_config:
|
||||
global_config_dict[toplevel_keys[0]] = ins_dict_list[0]
|
||||
table += textwrap.indent(json.dumps(input_dict, indent=4), " ")
|
||||
table += "\n"
|
||||
table += "```\n\n"
|
||||
|
||||
if not same_output:
|
||||
table += f"#{heading_level} Example Output\n\n"
|
||||
table += "```{eval-rst}\n"
|
||||
table += ".. code-block:: json\n\n"
|
||||
if has_examples_list:
|
||||
output_dict = build_nested_structure(toplevel_keys[:-1], ins_out_dict_list)
|
||||
else:
|
||||
output_dict = build_nested_structure(toplevel_keys, ins_out_dict_list[0])
|
||||
table += textwrap.indent(json.dumps(output_dict, indent=4), " ")
|
||||
table += "\n"
|
||||
table += "```\n\n"
|
||||
|
||||
while undocumented_types:
|
||||
extra_config_type, extra_info = undocumented_types.popitem()
|
||||
documented_types.add(extra_config_type)
|
||||
table += generate_config_table_md(
|
||||
extra_config_type, extra_info[1], extra_info[0], True, True
|
||||
)
|
||||
|
||||
return table
|
||||
|
||||
|
||||
def generate_config_md() -> str:
|
||||
def generate_config_md(config_eos: ConfigEOS) -> str:
|
||||
"""Generate configuration specification in Markdown with extra tables for prefixed values.
|
||||
|
||||
Returns:
|
||||
str: The Markdown representation of the configuration spec.
|
||||
"""
|
||||
configs = {}
|
||||
config_keys = config_eos.config_keys
|
||||
config_keys_read_only = config_eos.config_keys_read_only
|
||||
for config_key in config_keys:
|
||||
config = {}
|
||||
config["name"] = config_key
|
||||
config["value"] = getattr(config_eos, config_key)
|
||||
# Fix file path for general settings to not show local/test file path
|
||||
GeneralSettings._config_file_path = Path(
|
||||
"/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
|
||||
)
|
||||
GeneralSettings._config_folder_path = config_eos.general.config_file_path.parent
|
||||
|
||||
if config_key in config_keys_read_only:
|
||||
config["read-only"] = "ro"
|
||||
computed_field_info = config_eos.__pydantic_decorators__.computed_fields[
|
||||
config_key
|
||||
].info
|
||||
config["default"] = "N/A"
|
||||
config["description"] = computed_field_info.description
|
||||
config["type"] = str(computed_field_info.return_type)
|
||||
else:
|
||||
config["read-only"] = "rw"
|
||||
field_info = config_eos.model_fields[config_key]
|
||||
config["default"] = field_info.default
|
||||
config["description"] = field_info.description
|
||||
config["type"] = str(field_info.annotation)
|
||||
|
||||
configs[config_key] = config
|
||||
|
||||
# Generate markdown for the main table
|
||||
markdown = "# Configuration Table\n\n"
|
||||
|
||||
# Generate table for general configuration names
|
||||
general_configs = {k: v for k, v in configs.items() if k in GENERAL_CONFIGS}
|
||||
for k in general_configs.keys():
|
||||
del configs[k] # Remove general configs from the main configs dictionary
|
||||
markdown += generate_config_table_md(general_configs, "General Configuration Values")
|
||||
# Generate tables for each top level config
|
||||
for field_name, field_info in config_eos.model_fields.items():
|
||||
field_type = field_info.annotation
|
||||
markdown += generate_config_table_md(
|
||||
field_type, [field_name], f"EOS_{field_name.upper()}__", True
|
||||
)
|
||||
|
||||
non_prefixed_configs = {k: v for k, v in configs.items()}
|
||||
# Full config
|
||||
markdown += "## Full example Config\n\n"
|
||||
markdown += "```{eval-rst}\n"
|
||||
markdown += ".. code-block:: json\n\n"
|
||||
# Test for valid config first
|
||||
config_eos.merge_settings_from_dict(global_config_dict)
|
||||
markdown += textwrap.indent(json.dumps(global_config_dict, indent=4), " ")
|
||||
markdown += "\n"
|
||||
markdown += "```\n\n"
|
||||
|
||||
# Generate tables for each prefix (sorted by value) and remove prefixed configs from the main dictionary
|
||||
sorted_prefixes = sorted(CONFIG_PREFIXES.items(), key=lambda item: item[1])
|
||||
for prefix, title in sorted_prefixes:
|
||||
prefixed_configs = {k: v for k, v in configs.items() if k.startswith(prefix)}
|
||||
for k in prefixed_configs.keys():
|
||||
del non_prefixed_configs[k]
|
||||
markdown += generate_config_table_md(prefixed_configs, title)
|
||||
|
||||
# Generate markdown for the remaining non-prefixed configs if any
|
||||
if non_prefixed_configs:
|
||||
markdown += generate_config_table_md(non_prefixed_configs, "Other Configuration Values")
|
||||
|
||||
# Assure the is no double \n at end of file
|
||||
# Assure there is no double \n at end of file
|
||||
markdown = markdown.rstrip("\n")
|
||||
markdown += "\n"
|
||||
|
||||
@@ -145,12 +293,15 @@ def main():
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
config_eos = get_config()
|
||||
|
||||
try:
|
||||
config_md = generate_config_md()
|
||||
config_md = generate_config_md(config_eos)
|
||||
if os.name == "nt":
|
||||
config_md = config_md.replace("127.0.0.1", "0.0.0.0").replace("\\\\", "/")
|
||||
if args.output_file:
|
||||
# Write to file
|
||||
with open(args.output_file, "w", encoding="utf8") as f:
|
||||
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f:
|
||||
f.write(config_md)
|
||||
else:
|
||||
# Write to std output
|
||||
@@ -158,7 +309,8 @@ def main():
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during Configuration Specification generation: {e}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
# keep throwing error to debug potential problems (e.g. invalid examples)
|
||||
raise e
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -16,6 +16,7 @@ Example:
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
@@ -37,6 +38,11 @@ def generate_openapi() -> dict:
|
||||
routes=app.routes,
|
||||
)
|
||||
|
||||
# Fix file path for general settings to not show local/test file path
|
||||
general = openapi_spec["components"]["schemas"]["ConfigEOS"]["properties"]["general"]["default"]
|
||||
general["config_file_path"] = "/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
|
||||
general["config_folder_path"] = "/home/user/.config/net.akkudoktoreos.net"
|
||||
|
||||
return openapi_spec
|
||||
|
||||
|
||||
@@ -52,9 +58,11 @@ def main():
|
||||
try:
|
||||
openapi_spec = generate_openapi()
|
||||
openapi_spec_str = json.dumps(openapi_spec, indent=2)
|
||||
if os.name == "nt":
|
||||
openapi_spec_str = openapi_spec_str.replace("127.0.0.1", "0.0.0.0")
|
||||
if args.output_file:
|
||||
# Write to file
|
||||
with open(args.output_file, "w", encoding="utf8") as f:
|
||||
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f:
|
||||
f.write(openapi_spec_str)
|
||||
else:
|
||||
# Write to std output
|
||||
|
@@ -3,6 +3,7 @@
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import git
|
||||
@@ -284,9 +285,11 @@ def main():
|
||||
|
||||
try:
|
||||
openapi_md = generate_openapi_md()
|
||||
if os.name == "nt":
|
||||
openapi_md = openapi_md.replace("127.0.0.1", "0.0.0.0")
|
||||
if args.output_file:
|
||||
# Write to file
|
||||
with open(args.output_file, "w", encoding="utf8") as f:
|
||||
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f:
|
||||
f.write(openapi_md)
|
||||
else:
|
||||
# Write to std output
|
||||
|
@@ -30,42 +30,63 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
|
||||
"""
|
||||
# Make a config
|
||||
settings = {
|
||||
# -- General --
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
# -- Predictions --
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
# PV Forecast
|
||||
"pvforecast_provider": "PVForecastAkkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
"pvforecast2_peakpower": 1.4,
|
||||
"pvforecast2_surface_azimuth": -40,
|
||||
"pvforecast2_surface_tilt": 60,
|
||||
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
||||
"pvforecast2_inverter_paco": 2000,
|
||||
"pvforecast3_peakpower": 1.6,
|
||||
"pvforecast3_surface_azimuth": 5,
|
||||
"pvforecast3_surface_tilt": 45,
|
||||
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
||||
"pvforecast3_inverter_paco": 1400,
|
||||
"pvforecast4_peakpower": None,
|
||||
"pvforecast": {
|
||||
"provider": "PVForecastAkkudoktor",
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [20, 27, 22, 20],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [30, 30, 30, 50],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.4,
|
||||
"surface_azimuth": -40,
|
||||
"surface_tilt": 60,
|
||||
"userhorizon": [60, 30, 0, 30],
|
||||
"inverter_paco": 2000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.6,
|
||||
"surface_azimuth": 5,
|
||||
"surface_tilt": 45,
|
||||
"userhorizon": [45, 25, 30, 60],
|
||||
"inverter_paco": 1400,
|
||||
},
|
||||
],
|
||||
},
|
||||
# Weather Forecast
|
||||
"weather_provider": "ClearOutside",
|
||||
"weather": {
|
||||
"provider": "ClearOutside",
|
||||
},
|
||||
# Electricity Price Forecast
|
||||
"elecprice_provider": "ElecPriceAkkudoktor",
|
||||
"elecprice": {
|
||||
"provider": "ElecPriceAkkudoktor",
|
||||
},
|
||||
# Load Forecast
|
||||
"load_provider": "LoadAkkudoktor",
|
||||
"load": {
|
||||
"provider": "LoadAkkudoktor",
|
||||
"provider_settings": {
|
||||
"loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh
|
||||
},
|
||||
},
|
||||
# -- Simulations --
|
||||
}
|
||||
config_eos = get_config()
|
||||
@@ -129,20 +150,20 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
|
||||
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
||||
},
|
||||
"pv_akku": {
|
||||
"device_id": "battery1",
|
||||
"capacity_wh": 26400,
|
||||
"initial_soc_percentage": 15,
|
||||
"min_soc_percentage": 15,
|
||||
},
|
||||
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
|
||||
"eauto": {
|
||||
"device_id": "ev1",
|
||||
"min_soc_percentage": 50,
|
||||
"capacity_wh": 60000,
|
||||
"charging_efficiency": 0.95,
|
||||
"max_charge_power_w": 11040,
|
||||
"initial_soc_percentage": 5,
|
||||
},
|
||||
"inverter": {
|
||||
"max_power_wh": 10000,
|
||||
},
|
||||
"temperature_forecast": temperature_forecast,
|
||||
"start_solution": start_solution,
|
||||
}
|
||||
@@ -283,20 +304,20 @@ def prepare_optimization_parameters() -> OptimizationParameters:
|
||||
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
||||
},
|
||||
"pv_akku": {
|
||||
"device_id": "battery1",
|
||||
"capacity_wh": 26400,
|
||||
"initial_soc_percentage": 15,
|
||||
"min_soc_percentage": 15,
|
||||
},
|
||||
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
|
||||
"eauto": {
|
||||
"device_id": "ev1",
|
||||
"min_soc_percentage": 50,
|
||||
"capacity_wh": 60000,
|
||||
"charging_efficiency": 0.95,
|
||||
"max_charge_power_w": 11040,
|
||||
"initial_soc_percentage": 5,
|
||||
},
|
||||
"inverter": {
|
||||
"max_power_wh": 10000,
|
||||
},
|
||||
"temperature_forecast": temperature_forecast,
|
||||
"start_solution": start_solution,
|
||||
}
|
||||
@@ -330,7 +351,9 @@ def run_optimization(
|
||||
|
||||
# Initialize the optimization problem using the default configuration
|
||||
config_eos = get_config()
|
||||
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
|
||||
config_eos.merge_settings_from_dict(
|
||||
{"prediction": {"hours": 48}, "optimization": {"hours": 48}}
|
||||
)
|
||||
opt_class = optimization_problem(verbose=verbose, fixed_seed=seed)
|
||||
|
||||
# Perform the optimisation based on the provided parameters and start hour
|
||||
|
@@ -16,32 +16,47 @@ prediction_eos = get_prediction()
|
||||
def config_pvforecast() -> dict:
|
||||
"""Configure settings for PV forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
"pvforecast_provider": "PVForecastAkkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
"pvforecast2_peakpower": 1.4,
|
||||
"pvforecast2_surface_azimuth": -40,
|
||||
"pvforecast2_surface_tilt": 60,
|
||||
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
||||
"pvforecast2_inverter_paco": 2000,
|
||||
"pvforecast3_peakpower": 1.6,
|
||||
"pvforecast3_surface_azimuth": 5,
|
||||
"pvforecast3_surface_tilt": 45,
|
||||
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
||||
"pvforecast3_inverter_paco": 1400,
|
||||
"pvforecast4_peakpower": None,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
"pvforecast": {
|
||||
"provider": "PVForecastAkkudoktor",
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [20, 27, 22, 20],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [30, 30, 30, 50],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.4,
|
||||
"surface_azimuth": -40,
|
||||
"surface_tilt": 60,
|
||||
"userhorizon": [60, 30, 0, 30],
|
||||
"inverter_paco": 2000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.6,
|
||||
"surface_azimuth": 5,
|
||||
"surface_tilt": 45,
|
||||
"userhorizon": [45, 25, 30, 60],
|
||||
"inverter_paco": 1400,
|
||||
},
|
||||
],
|
||||
},
|
||||
}
|
||||
return settings
|
||||
|
||||
@@ -49,10 +64,15 @@ def config_pvforecast() -> dict:
|
||||
def config_weather() -> dict:
|
||||
"""Configure settings for weather forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
"weather": dict(),
|
||||
}
|
||||
return settings
|
||||
|
||||
@@ -60,10 +80,15 @@ def config_weather() -> dict:
|
||||
def config_elecprice() -> dict:
|
||||
"""Configure settings for electricity price forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
"elecprice": dict(),
|
||||
}
|
||||
return settings
|
||||
|
||||
@@ -71,10 +96,14 @@ def config_elecprice() -> dict:
|
||||
def config_load() -> dict:
|
||||
"""Configure settings for load forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
}
|
||||
return settings
|
||||
|
||||
@@ -92,30 +121,40 @@ def run_prediction(provider_id: str, verbose: bool = False) -> str:
|
||||
# Initialize the oprediction
|
||||
config_eos = get_config()
|
||||
prediction_eos = get_prediction()
|
||||
if verbose:
|
||||
print(f"\nProvider ID: {provider_id}")
|
||||
if provider_id in ("PVForecastAkkudoktor",):
|
||||
settings = config_pvforecast()
|
||||
settings["pvforecast_provider"] = provider_id
|
||||
forecast = "pvforecast"
|
||||
elif provider_id in ("BrightSky", "ClearOutside"):
|
||||
settings = config_weather()
|
||||
settings["weather_provider"] = provider_id
|
||||
forecast = "weather"
|
||||
elif provider_id in ("ElecPriceAkkudoktor",):
|
||||
settings = config_elecprice()
|
||||
settings["elecprice_provider"] = provider_id
|
||||
forecast = "elecprice"
|
||||
elif provider_id in ("LoadAkkudoktor",):
|
||||
settings = config_elecprice()
|
||||
settings["loadakkudoktor_year_energy"] = 1000
|
||||
settings["load_provider"] = provider_id
|
||||
forecast = "load"
|
||||
settings["load"]["loadakkudoktor_year_energy"] = 1000
|
||||
else:
|
||||
raise ValueError(f"Unknown provider '{provider_id}'.")
|
||||
settings[forecast]["provider"] = provider_id
|
||||
config_eos.merge_settings_from_dict(settings)
|
||||
|
||||
provider = prediction_eos.provider_by_id(provider_id)
|
||||
|
||||
prediction_eos.update_data()
|
||||
|
||||
# Return result of prediction
|
||||
provider = prediction_eos.provider_by_id(provider_id)
|
||||
if verbose:
|
||||
print(f"\nProvider ID: {provider.provider_id()}")
|
||||
print("----------")
|
||||
print("\nSettings\n----------")
|
||||
print(settings)
|
||||
print("\nProvider\n----------")
|
||||
print(f"elecprice.provider: {config_eos.elecprice.provider}")
|
||||
print(f"load.provider: {config_eos.load.provider}")
|
||||
print(f"pvforecast.provider: {config_eos.pvforecast.provider}")
|
||||
print(f"weather.provider: {config_eos.weather.provider}")
|
||||
print(f"enabled: {provider.enabled()}")
|
||||
for key in provider.record_keys:
|
||||
print(f"\n{key}\n----------")
|
||||
print(f"Array: {provider.key_to_array(key)}")
|
||||
|
@@ -12,30 +12,36 @@ Key features:
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar, List, Optional
|
||||
from typing import Any, ClassVar, Optional, Type
|
||||
|
||||
from platformdirs import user_config_dir, user_data_dir
|
||||
from pydantic import Field, ValidationError, computed_field
|
||||
from pydantic import Field, computed_field
|
||||
from pydantic_settings import (
|
||||
BaseSettings,
|
||||
JsonConfigSettingsSource,
|
||||
PydanticBaseSettingsSource,
|
||||
SettingsConfigDict,
|
||||
)
|
||||
|
||||
# settings
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.core.cachesettings import CacheCommonSettings
|
||||
from akkudoktoreos.core.coreabc import SingletonMixin
|
||||
from akkudoktoreos.core.decorators import classproperty
|
||||
from akkudoktoreos.core.emsettings import EnergyManagementCommonSettings
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.logsettings import LoggingCommonSettings
|
||||
from akkudoktoreos.devices.devices import DevicesCommonSettings
|
||||
from akkudoktoreos.core.pydantic import access_nested_value, merge_models
|
||||
from akkudoktoreos.devices.settings import DevicesCommonSettings
|
||||
from akkudoktoreos.measurement.measurement import MeasurementCommonSettings
|
||||
from akkudoktoreos.optimization.optimization import OptimizationCommonSettings
|
||||
from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings
|
||||
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
|
||||
from akkudoktoreos.prediction.load import LoadCommonSettings
|
||||
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
|
||||
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
|
||||
from akkudoktoreos.prediction.prediction import PredictionCommonSettings
|
||||
from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings
|
||||
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
|
||||
from akkudoktoreos.prediction.weather import WeatherCommonSettings
|
||||
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
|
||||
from akkudoktoreos.server.server import ServerCommonSettings
|
||||
from akkudoktoreos.utils.datetimeutil import to_timezone
|
||||
from akkudoktoreos.utils.utils import UtilsCommonSettings
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -59,61 +65,173 @@ def get_absolute_path(
|
||||
return None
|
||||
|
||||
|
||||
class ConfigCommonSettings(SettingsBaseModel):
|
||||
"""Settings for common configuration."""
|
||||
class GeneralSettings(SettingsBaseModel):
|
||||
"""Settings for common configuration.
|
||||
|
||||
General configuration to set directories of cache and output files and system location (latitude
|
||||
and longitude).
|
||||
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
|
||||
determines the time zone based on latitude and longitude.
|
||||
|
||||
Attributes:
|
||||
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
|
||||
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
|
||||
|
||||
Properties:
|
||||
timezone (Optional[str]): Computed time zone string based on the specified latitude
|
||||
and longitude.
|
||||
|
||||
Validators:
|
||||
validate_latitude (float): Ensures `latitude` is within the range -90 to 90.
|
||||
validate_longitude (float): Ensures `longitude` is within the range -180 to 180.
|
||||
"""
|
||||
|
||||
_config_folder_path: ClassVar[Optional[Path]] = None
|
||||
_config_file_path: ClassVar[Optional[Path]] = None
|
||||
|
||||
data_folder_path: Optional[Path] = Field(
|
||||
default=None, description="Path to EOS data directory."
|
||||
default=None, description="Path to EOS data directory.", examples=[None, "/home/eos/data"]
|
||||
)
|
||||
|
||||
data_output_subpath: Optional[Path] = Field(
|
||||
"output", description="Sub-path for the EOS output data directory."
|
||||
default="output", description="Sub-path for the EOS output data directory."
|
||||
)
|
||||
|
||||
data_cache_subpath: Optional[Path] = Field(
|
||||
"cache", description="Sub-path for the EOS cache data directory."
|
||||
latitude: Optional[float] = Field(
|
||||
default=52.52,
|
||||
ge=-90.0,
|
||||
le=90.0,
|
||||
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
|
||||
)
|
||||
longitude: Optional[float] = Field(
|
||||
default=13.405,
|
||||
ge=-180.0,
|
||||
le=180.0,
|
||||
description="Longitude in decimal degrees, within -180 to 180 (°)",
|
||||
)
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def timezone(self) -> Optional[str]:
|
||||
"""Compute timezone based on latitude and longitude."""
|
||||
if self.latitude and self.longitude:
|
||||
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
|
||||
return None
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def data_output_path(self) -> Optional[Path]:
|
||||
"""Compute data_output_path based on data_folder_path."""
|
||||
return get_absolute_path(self.data_folder_path, self.data_output_subpath)
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def data_cache_path(self) -> Optional[Path]:
|
||||
"""Compute data_cache_path based on data_folder_path."""
|
||||
return get_absolute_path(self.data_folder_path, self.data_cache_subpath)
|
||||
def config_folder_path(self) -> Optional[Path]:
|
||||
"""Path to EOS configuration directory."""
|
||||
return self._config_folder_path
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_file_path(self) -> Optional[Path]:
|
||||
"""Path to EOS configuration file."""
|
||||
return self._config_file_path
|
||||
|
||||
|
||||
class SettingsEOS(
|
||||
ConfigCommonSettings,
|
||||
LoggingCommonSettings,
|
||||
DevicesCommonSettings,
|
||||
MeasurementCommonSettings,
|
||||
OptimizationCommonSettings,
|
||||
PredictionCommonSettings,
|
||||
ElecPriceCommonSettings,
|
||||
ElecPriceImportCommonSettings,
|
||||
LoadCommonSettings,
|
||||
LoadAkkudoktorCommonSettings,
|
||||
LoadImportCommonSettings,
|
||||
PVForecastCommonSettings,
|
||||
PVForecastImportCommonSettings,
|
||||
WeatherCommonSettings,
|
||||
WeatherImportCommonSettings,
|
||||
ServerCommonSettings,
|
||||
UtilsCommonSettings,
|
||||
):
|
||||
"""Settings for all EOS."""
|
||||
class SettingsEOS(BaseSettings):
|
||||
"""Settings for all EOS.
|
||||
|
||||
pass
|
||||
Used by updating the configuration with specific settings only.
|
||||
"""
|
||||
|
||||
general: Optional[GeneralSettings] = Field(
|
||||
default=None,
|
||||
description="General Settings",
|
||||
)
|
||||
cache: Optional[CacheCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Cache Settings",
|
||||
)
|
||||
ems: Optional[EnergyManagementCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Energy Management Settings",
|
||||
)
|
||||
logging: Optional[LoggingCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Logging Settings",
|
||||
)
|
||||
devices: Optional[DevicesCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Devices Settings",
|
||||
)
|
||||
measurement: Optional[MeasurementCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Measurement Settings",
|
||||
)
|
||||
optimization: Optional[OptimizationCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Optimization Settings",
|
||||
)
|
||||
prediction: Optional[PredictionCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Prediction Settings",
|
||||
)
|
||||
elecprice: Optional[ElecPriceCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Electricity Price Settings",
|
||||
)
|
||||
load: Optional[LoadCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Load Settings",
|
||||
)
|
||||
pvforecast: Optional[PVForecastCommonSettings] = Field(
|
||||
default=None,
|
||||
description="PV Forecast Settings",
|
||||
)
|
||||
weather: Optional[WeatherCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Weather Settings",
|
||||
)
|
||||
server: Optional[ServerCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Server Settings",
|
||||
)
|
||||
utils: Optional[UtilsCommonSettings] = Field(
|
||||
default=None,
|
||||
description="Utilities Settings",
|
||||
)
|
||||
|
||||
model_config = SettingsConfigDict(
|
||||
env_nested_delimiter="__",
|
||||
nested_model_default_partial_update=True,
|
||||
env_prefix="EOS_",
|
||||
ignored_types=(classproperty,),
|
||||
)
|
||||
|
||||
|
||||
class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
class SettingsEOSDefaults(SettingsEOS):
|
||||
"""Settings for all of EOS with defaults.
|
||||
|
||||
Used by ConfigEOS instance to make all fields available.
|
||||
"""
|
||||
|
||||
general: GeneralSettings = GeneralSettings()
|
||||
cache: CacheCommonSettings = CacheCommonSettings()
|
||||
ems: EnergyManagementCommonSettings = EnergyManagementCommonSettings()
|
||||
logging: LoggingCommonSettings = LoggingCommonSettings()
|
||||
devices: DevicesCommonSettings = DevicesCommonSettings()
|
||||
measurement: MeasurementCommonSettings = MeasurementCommonSettings()
|
||||
optimization: OptimizationCommonSettings = OptimizationCommonSettings()
|
||||
prediction: PredictionCommonSettings = PredictionCommonSettings()
|
||||
elecprice: ElecPriceCommonSettings = ElecPriceCommonSettings()
|
||||
load: LoadCommonSettings = LoadCommonSettings()
|
||||
pvforecast: PVForecastCommonSettings = PVForecastCommonSettings()
|
||||
weather: WeatherCommonSettings = WeatherCommonSettings()
|
||||
server: ServerCommonSettings = ServerCommonSettings()
|
||||
utils: UtilsCommonSettings = UtilsCommonSettings()
|
||||
|
||||
|
||||
class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
|
||||
"""Singleton configuration handler for the EOS application.
|
||||
|
||||
ConfigEOS extends `SettingsEOS` with support for default configuration paths and automatic
|
||||
@@ -143,8 +261,6 @@ class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
in one part of the application reflects across all references to this class.
|
||||
|
||||
Attributes:
|
||||
_settings (ClassVar[SettingsEOS]): Holds application-wide settings.
|
||||
_file_settings (ClassVar[SettingsEOS]): Stores configuration loaded from file.
|
||||
config_folder_path (Optional[Path]): Path to the configuration directory.
|
||||
config_file_path (Optional[Path]): Path to the configuration file.
|
||||
|
||||
@@ -155,7 +271,7 @@ class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
To initialize and access configuration attributes (only one instance is created):
|
||||
```python
|
||||
config_eos = ConfigEOS() # Always returns the same instance
|
||||
print(config_eos.prediction_hours) # Access a setting from the loaded configuration
|
||||
print(config_eos.prediction.hours) # Access a setting from the loaded configuration
|
||||
```
|
||||
|
||||
"""
|
||||
@@ -167,111 +283,120 @@ class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
ENCODING: ClassVar[str] = "UTF-8"
|
||||
CONFIG_FILE_NAME: ClassVar[str] = "EOS.config.json"
|
||||
|
||||
_settings: ClassVar[Optional[SettingsEOS]] = None
|
||||
_file_settings: ClassVar[Optional[SettingsEOS]] = None
|
||||
@classmethod
|
||||
def settings_customise_sources(
|
||||
cls,
|
||||
settings_cls: Type[BaseSettings],
|
||||
init_settings: PydanticBaseSettingsSource,
|
||||
env_settings: PydanticBaseSettingsSource,
|
||||
dotenv_settings: PydanticBaseSettingsSource,
|
||||
file_secret_settings: PydanticBaseSettingsSource,
|
||||
) -> tuple[PydanticBaseSettingsSource, ...]:
|
||||
"""Customizes the order and handling of settings sources for a Pydantic BaseSettings subclass.
|
||||
|
||||
_config_folder_path: Optional[Path] = None
|
||||
_config_file_path: Optional[Path] = None
|
||||
This method determines the sources for application configuration settings, including
|
||||
environment variables, dotenv files and JSON configuration files.
|
||||
It ensures that a default configuration file exists and creates one if necessary.
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_folder_path(self) -> Optional[Path]:
|
||||
"""Path to EOS configuration directory."""
|
||||
return self._config_folder_path
|
||||
Args:
|
||||
settings_cls (Type[BaseSettings]): The Pydantic BaseSettings class for which sources are customized.
|
||||
init_settings (PydanticBaseSettingsSource): The initial settings source, typically passed at runtime.
|
||||
env_settings (PydanticBaseSettingsSource): Settings sourced from environment variables.
|
||||
dotenv_settings (PydanticBaseSettingsSource): Settings sourced from a dotenv file.
|
||||
file_secret_settings (PydanticBaseSettingsSource): Unused (needed for parent class interface).
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_file_path(self) -> Optional[Path]:
|
||||
"""Path to EOS configuration file."""
|
||||
return self._config_file_path
|
||||
Returns:
|
||||
tuple[PydanticBaseSettingsSource, ...]: A tuple of settings sources in the order they should be applied.
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_default_file_path(self) -> Path:
|
||||
Behavior:
|
||||
1. Checks for the existence of a JSON configuration file in the expected location.
|
||||
2. If the configuration file does not exist, creates the directory (if needed) and attempts to copy a
|
||||
default configuration file to the location. If the copy fails, uses the default configuration file directly.
|
||||
3. Creates a `JsonConfigSettingsSource` for both the configuration file and the default configuration file.
|
||||
4. Updates class attributes `GeneralSettings._config_folder_path` and
|
||||
`GeneralSettings._config_file_path` to reflect the determined paths.
|
||||
5. Returns a tuple containing all provided and newly created settings sources in the desired order.
|
||||
|
||||
Notes:
|
||||
- This method logs a warning if the default configuration file cannot be copied.
|
||||
- It ensures that a fallback to the default configuration file is always possible.
|
||||
"""
|
||||
setting_sources = [
|
||||
init_settings,
|
||||
env_settings,
|
||||
dotenv_settings,
|
||||
]
|
||||
|
||||
file_settings: Optional[JsonConfigSettingsSource] = None
|
||||
config_file, exists = cls._get_config_file_path()
|
||||
config_dir = config_file.parent
|
||||
if not exists:
|
||||
config_dir.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
shutil.copy2(cls.config_default_file_path, config_file)
|
||||
except Exception as exc:
|
||||
logger.warning(f"Could not copy default config: {exc}. Using default config...")
|
||||
config_file = cls.config_default_file_path
|
||||
config_dir = config_file.parent
|
||||
try:
|
||||
file_settings = JsonConfigSettingsSource(settings_cls, json_file=config_file)
|
||||
setting_sources.append(file_settings)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error reading config file '{config_file}' (falling back to default config): {e}"
|
||||
)
|
||||
default_settings = JsonConfigSettingsSource(
|
||||
settings_cls, json_file=cls.config_default_file_path
|
||||
)
|
||||
GeneralSettings._config_folder_path = config_dir
|
||||
GeneralSettings._config_file_path = config_file
|
||||
|
||||
setting_sources.append(default_settings)
|
||||
return tuple(setting_sources)
|
||||
|
||||
@classproperty
|
||||
def config_default_file_path(cls) -> Path:
|
||||
"""Compute the default config file path."""
|
||||
return self.package_root_path.joinpath("data/default.config.json")
|
||||
return cls.package_root_path.joinpath("data/default.config.json")
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def package_root_path(self) -> Path:
|
||||
@classproperty
|
||||
def package_root_path(cls) -> Path:
|
||||
"""Compute the package root path."""
|
||||
return Path(__file__).parent.parent.resolve()
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_keys(self) -> List[str]:
|
||||
"""Returns the keys of all fields in the configuration."""
|
||||
key_list = []
|
||||
key_list.extend(list(self.model_fields.keys()))
|
||||
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
|
||||
return key_list
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def config_keys_read_only(self) -> List[str]:
|
||||
"""Returns the keys of all read only fields in the configuration."""
|
||||
key_list = []
|
||||
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
|
||||
return key_list
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Initializes the singleton ConfigEOS instance.
|
||||
|
||||
Configuration data is loaded from a configuration file or a default one is created if none
|
||||
exists.
|
||||
"""
|
||||
super().__init__()
|
||||
self.from_config_file()
|
||||
self.update()
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
self._setup(self, *args, **kwargs)
|
||||
|
||||
@property
|
||||
def settings(self) -> Optional[SettingsEOS]:
|
||||
"""Returns global settings for EOS.
|
||||
def _setup(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Re-initialize global settings."""
|
||||
# Assure settings base knows EOS configuration
|
||||
SettingsBaseModel.config = self
|
||||
# (Re-)load settings
|
||||
SettingsEOSDefaults.__init__(self, *args, **kwargs)
|
||||
# Init config file and data folder pathes
|
||||
self._create_initial_config_file()
|
||||
self._update_data_folder_path()
|
||||
|
||||
Settings generally provide configuration for EOS and are typically set only once.
|
||||
|
||||
Returns:
|
||||
SettingsEOS: The settings for EOS or None.
|
||||
"""
|
||||
return ConfigEOS._settings
|
||||
|
||||
@classmethod
|
||||
def _merge_and_update_settings(cls, settings: SettingsEOS) -> None:
|
||||
"""Merge new and available settings.
|
||||
|
||||
Args:
|
||||
settings (SettingsEOS): The new settings to apply.
|
||||
"""
|
||||
for key in SettingsEOS.model_fields:
|
||||
if value := getattr(settings, key, None):
|
||||
setattr(cls._settings, key, value)
|
||||
|
||||
def merge_settings(self, settings: SettingsEOS, force: Optional[bool] = None) -> None:
|
||||
def merge_settings(self, settings: SettingsEOS) -> None:
|
||||
"""Merges the provided settings into the global settings for EOS, with optional overwrite.
|
||||
|
||||
Args:
|
||||
settings (SettingsEOS): The settings to apply globally.
|
||||
force (Optional[bool]): If True, overwrites the existing settings completely.
|
||||
If False, the new settings are merged to the existing ones with priority for
|
||||
the new ones. Defaults to False.
|
||||
|
||||
Raises:
|
||||
ValueError: If settings are already set and `force` is not True or
|
||||
if the `settings` is not a `SettingsEOS` instance.
|
||||
ValueError: If the `settings` is not a `SettingsEOS` instance.
|
||||
"""
|
||||
if not isinstance(settings, SettingsEOS):
|
||||
raise ValueError(f"Settings must be an instance of SettingsEOS: '{settings}'.")
|
||||
|
||||
if ConfigEOS._settings is None or force:
|
||||
ConfigEOS._settings = settings
|
||||
else:
|
||||
self._merge_and_update_settings(settings)
|
||||
|
||||
# Update configuration after merging
|
||||
self.update()
|
||||
self.merge_settings_from_dict(settings.model_dump(exclude_none=True, exclude_unset=True))
|
||||
|
||||
def merge_settings_from_dict(self, data: dict) -> None:
|
||||
"""Merges the provided dictionary data into the current instance.
|
||||
@@ -289,141 +414,109 @@ class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
|
||||
Example:
|
||||
>>> config = get_config()
|
||||
>>> new_data = {"prediction_hours": 24, "server_eos_port": 8000}
|
||||
>>> new_data = {"prediction": {"hours": 24}, "server": {"port": 8000}}
|
||||
>>> config.merge_settings_from_dict(new_data)
|
||||
"""
|
||||
# Create new settings instance with reset optional fields and merged data
|
||||
settings = SettingsEOS.from_dict(data)
|
||||
self.merge_settings(settings)
|
||||
self._setup(**merge_models(self, data))
|
||||
|
||||
def reset_settings(self) -> None:
|
||||
"""Reset all available settings.
|
||||
"""Reset all changed settings to environment/config file defaults.
|
||||
|
||||
This functions basically deletes the settings provided before.
|
||||
"""
|
||||
ConfigEOS._settings = None
|
||||
self._setup()
|
||||
|
||||
def set_config_value(self, path: str, value: Any) -> None:
|
||||
"""Set a configuration value based on the provided path.
|
||||
|
||||
Supports string paths (with '/' separators) or sequence paths (list/tuple).
|
||||
Trims leading and trailing '/' from string paths.
|
||||
|
||||
Args:
|
||||
path (str): The path to the configuration key (e.g., "key1/key2/key3" or key1/key2/0).
|
||||
value (Any]): The value to set.
|
||||
"""
|
||||
access_nested_value(self, path, True, value)
|
||||
|
||||
def get_config_value(self, path: str) -> Any:
|
||||
"""Get a configuration value based on the provided path.
|
||||
|
||||
Supports string paths (with '/' separators) or sequence paths (list/tuple).
|
||||
Trims leading and trailing '/' from string paths.
|
||||
|
||||
Args:
|
||||
path (str): The path to the configuration key (e.g., "key1/key2/key3" or key1/key2/0).
|
||||
|
||||
Returns:
|
||||
Any: The retrieved value.
|
||||
"""
|
||||
return access_nested_value(self, path, False)
|
||||
|
||||
def _create_initial_config_file(self) -> None:
|
||||
if self.general.config_file_path and not self.general.config_file_path.exists():
|
||||
self.general.config_file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
with self.general.config_file_path.open("w", encoding="utf-8", newline="\n") as f:
|
||||
f.write(self.model_dump_json(indent=4))
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Could not write configuration file '{self.general.config_file_path}': {e}"
|
||||
)
|
||||
|
||||
def _update_data_folder_path(self) -> None:
|
||||
"""Updates path to the data directory."""
|
||||
# From Settings
|
||||
if self.settings and (data_dir := self.settings.data_folder_path):
|
||||
if data_dir := self.general.data_folder_path:
|
||||
try:
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.data_folder_path = data_dir
|
||||
self.general.data_folder_path = data_dir
|
||||
return
|
||||
except:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not setup data dir: {e}")
|
||||
# From EOS_DIR env
|
||||
env_dir = os.getenv(self.EOS_DIR)
|
||||
if env_dir is not None:
|
||||
if env_dir := os.getenv(self.EOS_DIR):
|
||||
try:
|
||||
data_dir = Path(env_dir).resolve()
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.data_folder_path = data_dir
|
||||
self.general.data_folder_path = data_dir
|
||||
return
|
||||
except:
|
||||
pass
|
||||
# From configuration file
|
||||
if self._file_settings and (data_dir := self._file_settings.data_folder_path):
|
||||
try:
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.data_folder_path = data_dir
|
||||
return
|
||||
except:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not setup data dir: {e}")
|
||||
# From platform specific default path
|
||||
try:
|
||||
data_dir = Path(user_data_dir(self.APP_NAME, self.APP_AUTHOR))
|
||||
if data_dir is not None:
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.data_folder_path = data_dir
|
||||
self.general.data_folder_path = data_dir
|
||||
return
|
||||
except:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not setup data dir: {e}")
|
||||
# Current working directory
|
||||
data_dir = Path.cwd()
|
||||
self.data_folder_path = data_dir
|
||||
self.general.data_folder_path = data_dir
|
||||
|
||||
def _get_config_file_path(self) -> tuple[Path, bool]:
|
||||
@classmethod
|
||||
def _get_config_file_path(cls) -> tuple[Path, bool]:
|
||||
"""Finds the a valid configuration file or returns the desired path for a new config file.
|
||||
|
||||
Returns:
|
||||
tuple[Path, bool]: The path to the configuration directory and if there is already a config file there
|
||||
"""
|
||||
config_dirs = []
|
||||
env_base_dir = os.getenv(self.EOS_DIR)
|
||||
env_config_dir = os.getenv(self.EOS_CONFIG_DIR)
|
||||
env_base_dir = os.getenv(cls.EOS_DIR)
|
||||
env_config_dir = os.getenv(cls.EOS_CONFIG_DIR)
|
||||
env_dir = get_absolute_path(env_base_dir, env_config_dir)
|
||||
logger.debug(f"Envionment config dir: '{env_dir}'")
|
||||
logger.debug(f"Environment config dir: '{env_dir}'")
|
||||
if env_dir is not None:
|
||||
config_dirs.append(env_dir.resolve())
|
||||
config_dirs.append(Path(user_config_dir(self.APP_NAME)))
|
||||
config_dirs.append(Path(user_config_dir(cls.APP_NAME, cls.APP_AUTHOR)))
|
||||
config_dirs.append(Path.cwd())
|
||||
for cdir in config_dirs:
|
||||
cfile = cdir.joinpath(self.CONFIG_FILE_NAME)
|
||||
cfile = cdir.joinpath(cls.CONFIG_FILE_NAME)
|
||||
if cfile.exists():
|
||||
logger.debug(f"Found config file: '{cfile}'")
|
||||
return cfile, True
|
||||
return config_dirs[0].joinpath(self.CONFIG_FILE_NAME), False
|
||||
|
||||
def settings_from_config_file(self) -> tuple[SettingsEOS, Path]:
|
||||
"""Load settings from the configuration file.
|
||||
|
||||
If the config file does not exist, it will be created.
|
||||
|
||||
Returns:
|
||||
tuple of settings and path
|
||||
settings (SettingsEOS): The settings defined by the EOS configuration file.
|
||||
path (pathlib.Path): The path of the configuration file.
|
||||
|
||||
Raises:
|
||||
ValueError: If the configuration file is invalid or incomplete.
|
||||
"""
|
||||
config_file, exists = self._get_config_file_path()
|
||||
config_dir = config_file.parent
|
||||
|
||||
# Create config directory and copy default config if file does not exist
|
||||
if not exists:
|
||||
config_dir.mkdir(parents=True, exist_ok=True)
|
||||
try:
|
||||
shutil.copy2(self.config_default_file_path, config_file)
|
||||
except Exception as exc:
|
||||
logger.warning(f"Could not copy default config: {exc}. Using default config...")
|
||||
config_file = self.config_default_file_path
|
||||
config_dir = config_file.parent
|
||||
|
||||
# Load and validate the configuration file
|
||||
with config_file.open("r", encoding=self.ENCODING) as f_in:
|
||||
try:
|
||||
json_str = f_in.read()
|
||||
settings = SettingsEOS.model_validate_json(json_str)
|
||||
except ValidationError as exc:
|
||||
raise ValueError(f"Configuration '{config_file}' is incomplete or not valid: {exc}")
|
||||
|
||||
return settings, config_file
|
||||
|
||||
def from_config_file(self) -> tuple[SettingsEOS, Path]:
|
||||
"""Load the configuration file settings for EOS.
|
||||
|
||||
Returns:
|
||||
tuple of settings and path
|
||||
settings (SettingsEOS): The settings defined by the EOS configuration file.
|
||||
path (pathlib.Path): The path of the configuration file.
|
||||
|
||||
Raises:
|
||||
ValueError: If the configuration file is invalid or incomplete.
|
||||
"""
|
||||
# Load settings from config file
|
||||
ConfigEOS._file_settings, config_file = self.settings_from_config_file()
|
||||
|
||||
# Update configuration in memory
|
||||
self.update()
|
||||
|
||||
# Everything worked, remember the values
|
||||
self._config_folder_path = config_file.parent
|
||||
self._config_file_path = config_file
|
||||
|
||||
return ConfigEOS._file_settings, config_file
|
||||
return config_dirs[0].joinpath(cls.CONFIG_FILE_NAME), False
|
||||
|
||||
def to_config_file(self) -> None:
|
||||
"""Saves the current configuration to the configuration file.
|
||||
@@ -433,77 +526,24 @@ class ConfigEOS(SingletonMixin, SettingsEOS):
|
||||
Raises:
|
||||
ValueError: If the configuration file path is not specified or can not be written to.
|
||||
"""
|
||||
if not self.config_file_path:
|
||||
if not self.general.config_file_path:
|
||||
raise ValueError("Configuration file path unknown.")
|
||||
with self.config_file_path.open("w", encoding=self.ENCODING) as f_out:
|
||||
try:
|
||||
json_str = super().to_json()
|
||||
# Write to file
|
||||
with self.general.config_file_path.open("w", encoding="utf-8", newline="\n") as f_out:
|
||||
json_str = super().model_dump_json()
|
||||
f_out.write(json_str)
|
||||
# Also remember as actual settings
|
||||
ConfigEOS._file_settings = SettingsEOS.model_validate_json(json_str)
|
||||
except ValidationError as exc:
|
||||
raise ValueError(f"Could not update '{self.config_file_path}': {exc}")
|
||||
|
||||
def _config_value(self, key: str) -> Any:
|
||||
"""Retrieves the configuration value for a specific key, following a priority order.
|
||||
|
||||
Values are fetched in the following order:
|
||||
1. Settings.
|
||||
2. Environment variables.
|
||||
3. EOS configuration file.
|
||||
4. Current configuration.
|
||||
5. Field default constants.
|
||||
|
||||
Args:
|
||||
key (str): The configuration key to retrieve.
|
||||
|
||||
Returns:
|
||||
Any: The configuration value, or None if not found.
|
||||
"""
|
||||
# Settings
|
||||
if ConfigEOS._settings:
|
||||
if (value := getattr(self.settings, key, None)) is not None:
|
||||
return value
|
||||
|
||||
# Environment variables
|
||||
if (value := os.getenv(key)) is not None:
|
||||
try:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return value
|
||||
|
||||
# EOS configuration file.
|
||||
if self._file_settings:
|
||||
if (value := getattr(self._file_settings, key, None)) is not None:
|
||||
return value
|
||||
|
||||
# Current configuration - key is valid as called by update().
|
||||
if (value := getattr(self, key, None)) is not None:
|
||||
return value
|
||||
|
||||
# Field default constants
|
||||
if (value := ConfigEOS.model_fields[key].default) is not None:
|
||||
return value
|
||||
|
||||
logger.debug(f"Value for configuration key '{key}' not found or is {value}")
|
||||
return None
|
||||
|
||||
def update(self) -> None:
|
||||
"""Updates all configuration fields.
|
||||
|
||||
This method updates all configuration fields using the following order for value retrieval:
|
||||
1. Settings.
|
||||
1. Current settings.
|
||||
2. Environment variables.
|
||||
3. EOS configuration file.
|
||||
4. Current configuration.
|
||||
5. Field default constants.
|
||||
4. Field default constants.
|
||||
|
||||
The first non None value in priority order is taken.
|
||||
"""
|
||||
self._update_data_folder_path()
|
||||
for key in self.model_fields:
|
||||
setattr(self, key, self._config_value(key))
|
||||
self._setup(**self.model_dump())
|
||||
|
||||
|
||||
def get_config() -> ConfigEOS:
|
||||
|
@@ -1,13 +1,12 @@
|
||||
"""Abstract and base classes for configuration."""
|
||||
|
||||
from typing import Any, ClassVar
|
||||
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
|
||||
|
||||
class SettingsBaseModel(PydanticBaseModel):
|
||||
"""Base model class for all settings configurations.
|
||||
"""Base model class for all settings configurations."""
|
||||
|
||||
Note:
|
||||
Settings property names shall be disjunctive to all existing settings' property names.
|
||||
"""
|
||||
|
||||
pass
|
||||
# EOS configuration - set by ConfigEOS
|
||||
config: ClassVar[Any] = None
|
||||
|
@@ -1,32 +1,14 @@
|
||||
"""Class for in-memory managing of cache files.
|
||||
"""In-memory and file caching.
|
||||
|
||||
The `CacheFileStore` class is a singleton-based, thread-safe key-value store for managing
|
||||
temporary file objects, allowing the creation, retrieval, and management of cache files.
|
||||
|
||||
Classes:
|
||||
--------
|
||||
- CacheFileStore: A thread-safe, singleton class for in-memory managing of file-like cache objects.
|
||||
- CacheFileStoreMeta: Metaclass for enforcing the singleton behavior in `CacheFileStore`.
|
||||
|
||||
Example usage:
|
||||
--------------
|
||||
# CacheFileStore usage
|
||||
>>> cache_store = CacheFileStore()
|
||||
>>> cache_store.create('example_key')
|
||||
>>> cache_file = cache_store.get('example_key')
|
||||
>>> cache_file.write('Some data')
|
||||
>>> cache_file.seek(0)
|
||||
>>> print(cache_file.read()) # Output: 'Some data'
|
||||
|
||||
Notes:
|
||||
------
|
||||
- Cache files are automatically associated with the current date unless specified.
|
||||
Decorators and classes for caching results of computations,
|
||||
both in memory (using an LRU cache) and in temporary files. It also includes
|
||||
mechanisms for managing cache file expiration and retrieval.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
import hashlib
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import tempfile
|
||||
@@ -35,8 +17,8 @@ from typing import (
|
||||
IO,
|
||||
Any,
|
||||
Callable,
|
||||
ClassVar,
|
||||
Dict,
|
||||
Generic,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
@@ -44,29 +26,226 @@ from typing import (
|
||||
TypeVar,
|
||||
)
|
||||
|
||||
import cachebox
|
||||
from pendulum import DateTime, Duration
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, SingletonMixin
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
# ---------------------------------
|
||||
# In-Memory Caching Functionality
|
||||
# ---------------------------------
|
||||
|
||||
# Define a type variable for methods and functions
|
||||
TCallable = TypeVar("TCallable", bound=Callable[..., Any])
|
||||
|
||||
|
||||
def cache_until_update_store_callback(event: int, key: Any, value: Any) -> None:
|
||||
"""Calback function for CacheUntilUpdateStore."""
|
||||
CacheUntilUpdateStore.last_event = event
|
||||
CacheUntilUpdateStore.last_key = key
|
||||
CacheUntilUpdateStore.last_value = value
|
||||
if event == cachebox.EVENT_MISS:
|
||||
CacheUntilUpdateStore.miss_count += 1
|
||||
elif event == cachebox.EVENT_HIT:
|
||||
CacheUntilUpdateStore.hit_count += 1
|
||||
else:
|
||||
# unreachable code
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class CacheUntilUpdateStore(SingletonMixin):
|
||||
"""Singleton-based in-memory LRU (Least Recently Used) cache.
|
||||
|
||||
This cache is shared across the application to store results of decorated
|
||||
methods or functions until the next EMS (Energy Management System) update.
|
||||
|
||||
The cache uses an LRU eviction strategy, storing up to 100 items, with the oldest
|
||||
items being evicted once the cache reaches its capacity.
|
||||
"""
|
||||
|
||||
cache: ClassVar[cachebox.LRUCache] = cachebox.LRUCache(maxsize=100, iterable=None, capacity=100)
|
||||
last_event: ClassVar[Optional[int]] = None
|
||||
last_key: ClassVar[Any] = None
|
||||
last_value: ClassVar[Any] = None
|
||||
hit_count: ClassVar[int] = 0
|
||||
miss_count: ClassVar[int] = 0
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Initializes the `CacheUntilUpdateStore` instance with default parameters.
|
||||
|
||||
The cache uses an LRU eviction strategy with a maximum size of 100 items.
|
||||
This cache is a singleton, meaning only one instance will exist throughout
|
||||
the application lifecycle.
|
||||
|
||||
Example:
|
||||
>>> cache = CacheUntilUpdateStore()
|
||||
"""
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
"""Propagates method calls to the cache object.
|
||||
|
||||
This method allows you to call methods on the underlying cache object,
|
||||
and it will delegate the call to the cache's corresponding method.
|
||||
|
||||
Args:
|
||||
name (str): The name of the method being called.
|
||||
|
||||
Returns:
|
||||
Callable: A method bound to the cache object.
|
||||
|
||||
Raises:
|
||||
AttributeError: If the cache object does not have the requested method.
|
||||
|
||||
Example:
|
||||
>>> result = cache.get("key")
|
||||
"""
|
||||
# This will return a method of the target cache, or raise an AttributeError
|
||||
target_attr = getattr(self.cache, name)
|
||||
if callable(target_attr):
|
||||
return target_attr
|
||||
else:
|
||||
return target_attr
|
||||
|
||||
def __getitem__(self, key: Any) -> Any:
|
||||
"""Retrieves an item from the cache by its key.
|
||||
|
||||
Args:
|
||||
key (Any): The key used for subscripting to retrieve an item.
|
||||
|
||||
Returns:
|
||||
Any: The value corresponding to the key in the cache.
|
||||
|
||||
Raises:
|
||||
KeyError: If the key does not exist in the cache.
|
||||
|
||||
Example:
|
||||
>>> value = cache["user_data"]
|
||||
"""
|
||||
return CacheUntilUpdateStore.cache[key]
|
||||
|
||||
def __setitem__(self, key: Any, value: Any) -> None:
|
||||
"""Stores an item in the cache.
|
||||
|
||||
Args:
|
||||
key (Any): The key used to store the item in the cache.
|
||||
value (Any): The value to store.
|
||||
|
||||
Example:
|
||||
>>> cache["user_data"] = {"name": "Alice", "age": 30}
|
||||
"""
|
||||
CacheUntilUpdateStore.cache[key] = value
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Returns the number of items in the cache."""
|
||||
return len(CacheUntilUpdateStore.cache)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Provides a string representation of the CacheUntilUpdateStore object."""
|
||||
return repr(CacheUntilUpdateStore.cache)
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clears the cache, removing all stored items.
|
||||
|
||||
This method propagates the `clear` method call to the underlying cache object,
|
||||
ensuring that the cache is emptied when necessary (e.g., at the end of the energy
|
||||
management system run).
|
||||
|
||||
Example:
|
||||
>>> cache.clear()
|
||||
"""
|
||||
if hasattr(self.cache, "clear") and callable(getattr(self.cache, "clear")):
|
||||
CacheUntilUpdateStore.cache.clear()
|
||||
CacheUntilUpdateStore.last_event = None
|
||||
CacheUntilUpdateStore.last_key = None
|
||||
CacheUntilUpdateStore.last_value = None
|
||||
CacheUntilUpdateStore.miss_count = 0
|
||||
CacheUntilUpdateStore.hit_count = 0
|
||||
else:
|
||||
raise AttributeError(f"'{self.cache.__class__.__name__}' object has no method 'clear'")
|
||||
|
||||
|
||||
def cachemethod_until_update(method: TCallable) -> TCallable:
|
||||
"""Decorator for in memory caching the result of an instance method.
|
||||
|
||||
This decorator caches the method's result in `CacheUntilUpdateStore`, ensuring
|
||||
that subsequent calls with the same arguments return the cached result until the
|
||||
next EMS update cycle.
|
||||
|
||||
Args:
|
||||
method (Callable): The instance method to be decorated.
|
||||
|
||||
Returns:
|
||||
Callable: The wrapped method with caching functionality.
|
||||
|
||||
Example:
|
||||
>>> class MyClass:
|
||||
>>> @cachemethod_until_update
|
||||
>>> def expensive_method(self, param: str) -> str:
|
||||
>>> # Perform expensive computation
|
||||
>>> return f"Computed {param}"
|
||||
"""
|
||||
|
||||
@cachebox.cachedmethod(
|
||||
cache=CacheUntilUpdateStore().cache, callback=cache_until_update_store_callback
|
||||
)
|
||||
@functools.wraps(method)
|
||||
def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
result = method(self, *args, **kwargs)
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def cache_until_update(func: TCallable) -> TCallable:
|
||||
"""Decorator for in memory caching the result of a standalone function.
|
||||
|
||||
This decorator caches the function's result in `CacheUntilUpdateStore`, ensuring
|
||||
that subsequent calls with the same arguments return the cached result until the
|
||||
next EMS update cycle.
|
||||
|
||||
Args:
|
||||
func (Callable): The function to be decorated.
|
||||
|
||||
Returns:
|
||||
Callable: The wrapped function with caching functionality.
|
||||
|
||||
Example:
|
||||
>>> @cache_until_next_update
|
||||
>>> def expensive_function(param: str) -> str:
|
||||
>>> # Perform expensive computation
|
||||
>>> return f"Computed {param}"
|
||||
"""
|
||||
|
||||
@cachebox.cached(
|
||||
cache=CacheUntilUpdateStore().cache, callback=cache_until_update_store_callback
|
||||
)
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
||||
result = func(*args, **kwargs)
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
# ---------------------------------
|
||||
# Cache File Management
|
||||
# ---------------------------------
|
||||
|
||||
Param = ParamSpec("Param")
|
||||
RetType = TypeVar("RetType")
|
||||
|
||||
|
||||
class CacheFileRecord(BaseModel):
|
||||
# Enable custom serialization globally in config
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
validate_assignment=True,
|
||||
)
|
||||
|
||||
class CacheFileRecord(PydanticBaseModel):
|
||||
cache_file: Any = Field(..., description="File descriptor of the cache file.")
|
||||
until_datetime: DateTime = Field(..., description="Datetime until the cache file is valid.")
|
||||
ttl_duration: Optional[Duration] = Field(
|
||||
@@ -74,24 +253,7 @@ class CacheFileRecord(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class CacheFileStoreMeta(type, Generic[T]):
|
||||
"""A thread-safe implementation of CacheFileStore."""
|
||||
|
||||
_instances: dict[CacheFileStoreMeta[T], T] = {}
|
||||
|
||||
_lock: threading.Lock = threading.Lock()
|
||||
"""Lock object to synchronize threads on first access to CacheFileStore."""
|
||||
|
||||
def __call__(cls) -> T:
|
||||
"""Return CacheFileStore instance."""
|
||||
with cls._lock:
|
||||
if cls not in cls._instances:
|
||||
instance = super().__call__()
|
||||
cls._instances[cls] = instance
|
||||
return cls._instances[cls]
|
||||
|
||||
|
||||
class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
class CacheFileStore(ConfigMixin, SingletonMixin):
|
||||
"""A key-value store that manages file-like tempfile objects to be used as cache files.
|
||||
|
||||
Cache files are associated with a date. If no date is specified, the cache files are
|
||||
@@ -105,7 +267,7 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
store (dict): A dictionary that holds the in-memory cache file objects
|
||||
with their associated keys and dates.
|
||||
|
||||
Example usage:
|
||||
Example:
|
||||
>>> cache_store = CacheFileStore()
|
||||
>>> cache_store.create('example_file')
|
||||
>>> cache_file = cache_store.get('example_file')
|
||||
@@ -114,14 +276,18 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
>>> print(cache_file.read()) # Output: 'Some data'
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Initializes the CacheFileStore instance.
|
||||
|
||||
This constructor sets up an empty key-value store (a dictionary) where each key
|
||||
corresponds to a cache file that is associated with a given key and an optional date.
|
||||
"""
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
self._store: Dict[str, CacheFileRecord] = {}
|
||||
self._store_lock = threading.Lock()
|
||||
self._store_lock = threading.RLock()
|
||||
self._store_file = self.config.cache.path().joinpath("cachefilestore.json")
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _until_datetime_by_options(
|
||||
self,
|
||||
@@ -329,9 +495,9 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
# File already available
|
||||
cache_file_obj = cache_item.cache_file
|
||||
else:
|
||||
self.config.data_cache_path.mkdir(parents=True, exist_ok=True)
|
||||
self.config.cache.path().mkdir(parents=True, exist_ok=True)
|
||||
cache_file_obj = tempfile.NamedTemporaryFile(
|
||||
mode=mode, delete=delete, suffix=suffix, dir=self.config.data_cache_path
|
||||
mode=mode, delete=delete, suffix=suffix, dir=self.config.cache.path()
|
||||
)
|
||||
self._store[cache_file_key] = CacheFileRecord(
|
||||
cache_file=cache_file_obj,
|
||||
@@ -502,7 +668,7 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
|
||||
def clear(
|
||||
self,
|
||||
clear_all: bool = False,
|
||||
clear_all: Optional[bool] = None,
|
||||
before_datetime: Optional[Any] = None,
|
||||
) -> None:
|
||||
"""Deletes all cache files or those expiring before `before_datetime`.
|
||||
@@ -516,8 +682,6 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
Raises:
|
||||
OSError: If there's an error during file deletion.
|
||||
"""
|
||||
delete_keys = [] # List of keys to delete, prevent deleting when traversing the store
|
||||
|
||||
# Some weired logic to prevent calling to_datetime on clear_all.
|
||||
# Clear_all may be set on __del__. At this time some info for to_datetime will
|
||||
# not be available anymore.
|
||||
@@ -528,6 +692,8 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
before_datetime = to_datetime(before_datetime)
|
||||
|
||||
with self._store_lock: # Synchronize access to _store
|
||||
delete_keys = [] # List of keys to delete, prevent deleting when traversing the store
|
||||
|
||||
for cache_file_key, cache_item in self._store.items():
|
||||
# Some weired logic to prevent calling to_datetime on clear_all.
|
||||
# Clear_all may be set on __del__. At this time some info for to_datetime will
|
||||
@@ -566,6 +732,89 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
|
||||
for delete_key in delete_keys:
|
||||
del self._store[delete_key]
|
||||
|
||||
def current_store(self) -> dict:
|
||||
"""Current state of the store.
|
||||
|
||||
Returns:
|
||||
data (dict): current cache management data.
|
||||
"""
|
||||
with self._store_lock:
|
||||
store_current = {}
|
||||
for key, record in self._store.items():
|
||||
ttl_duration = record.ttl_duration
|
||||
if ttl_duration:
|
||||
ttl_duration = ttl_duration.total_seconds()
|
||||
store_current[key] = {
|
||||
# Convert file-like objects to file paths for serialization
|
||||
"cache_file": self._get_file_path(record.cache_file),
|
||||
"mode": record.cache_file.mode,
|
||||
"until_datetime": to_datetime(record.until_datetime, as_string=True),
|
||||
"ttl_duration": ttl_duration,
|
||||
}
|
||||
return store_current
|
||||
|
||||
def save_store(self) -> dict:
|
||||
"""Saves the current state of the store to a file.
|
||||
|
||||
Returns:
|
||||
data (dict): cache management data that was saved.
|
||||
"""
|
||||
with self._store_lock:
|
||||
self._store_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
store_to_save = self.current_store()
|
||||
with self._store_file.open("w", encoding="utf-8", newline="\n") as f:
|
||||
try:
|
||||
json.dump(store_to_save, f, indent=4)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving cache file store: {e}")
|
||||
return store_to_save
|
||||
|
||||
def load_store(self) -> dict:
|
||||
"""Loads the state of the store from a file.
|
||||
|
||||
Returns:
|
||||
data (dict): cache management data that was loaded.
|
||||
"""
|
||||
with self._store_lock:
|
||||
store_loaded = {}
|
||||
if self._store_file.exists():
|
||||
with self._store_file.open("r", encoding="utf-8", newline=None) as f:
|
||||
try:
|
||||
store_to_load = json.load(f)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error loading cache file store: {e}\n"
|
||||
+ f"Deleting the store file {self._store_file}."
|
||||
)
|
||||
self._store_file.unlink()
|
||||
return {}
|
||||
for key, record in store_to_load.items():
|
||||
if record is None:
|
||||
continue
|
||||
if key in self._store.keys():
|
||||
# Already available - do not overwrite by record from file
|
||||
continue
|
||||
try:
|
||||
cache_file_obj = open(
|
||||
record["cache_file"], "rb+" if "b" in record["mode"] else "r+"
|
||||
)
|
||||
except Exception as e:
|
||||
cache_file_record = record["cache_file"]
|
||||
logger.warning(f"Can not open cache file '{cache_file_record}': {e}")
|
||||
continue
|
||||
ttl_duration = record["ttl_duration"]
|
||||
if ttl_duration:
|
||||
ttl_duration = to_duration(float(record["ttl_duration"]))
|
||||
self._store[key] = CacheFileRecord(
|
||||
cache_file=cache_file_obj,
|
||||
until_datetime=record["until_datetime"],
|
||||
ttl_duration=ttl_duration,
|
||||
)
|
||||
cache_file_obj.seek(0)
|
||||
# Remember newly loaded
|
||||
store_loaded[key] = record
|
||||
return store_loaded
|
||||
|
||||
|
||||
def cache_in_file(
|
||||
ignore_params: List[str] = [],
|
32
src/akkudoktoreos/core/cachesettings.py
Normal file
@@ -0,0 +1,32 @@
|
||||
"""Settings for caching.
|
||||
|
||||
Kept in an extra module to avoid cyclic dependencies on package import.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
|
||||
|
||||
class CacheCommonSettings(SettingsBaseModel):
|
||||
"""Cache Configuration."""
|
||||
|
||||
subpath: Optional[Path] = Field(
|
||||
default="cache", description="Sub-path for the EOS cache data directory."
|
||||
)
|
||||
|
||||
cleanup_interval: float = Field(
|
||||
default=5 * 60, description="Intervall in seconds for EOS file cache cleanup."
|
||||
)
|
||||
|
||||
# Do not make this a pydantic computed field. The pydantic model must be fully initialized
|
||||
# to have access to config.general, which may not be the case if it is a computed field.
|
||||
def path(self) -> Optional[Path]:
|
||||
"""Compute cache path based on general.data_folder_path."""
|
||||
data_cache_path = self.config.general.data_folder_path
|
||||
if data_cache_path is None or self.subpath is None:
|
||||
return None
|
||||
return data_cache_path.joinpath(self.subpath)
|
@@ -265,6 +265,14 @@ class SingletonMixin:
|
||||
class MySingletonModel(SingletonMixin, PydanticBaseModel):
|
||||
name: str
|
||||
|
||||
# implement __init__ to avoid re-initialization of parent classes:
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
# Your initialisation here
|
||||
...
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
instance1 = MySingletonModel(name="Instance 1")
|
||||
instance2 = MySingletonModel(name="Instance 2")
|
||||
|
||||
|
@@ -811,7 +811,8 @@ class DataSequence(DataBase, MutableSequence):
|
||||
dates, values = self.key_to_lists(
|
||||
key=key, start_datetime=start_datetime, end_datetime=end_datetime, dropna=dropna
|
||||
)
|
||||
return pd.Series(data=values, index=pd.DatetimeIndex(dates), name=key)
|
||||
series = pd.Series(data=values, index=pd.DatetimeIndex(dates), name=key)
|
||||
return series
|
||||
|
||||
def key_from_series(self, key: str, series: pd.Series) -> None:
|
||||
"""Update the DataSequence from a Pandas Series.
|
||||
@@ -953,6 +954,44 @@ class DataSequence(DataBase, MutableSequence):
|
||||
array = resampled.values
|
||||
return array
|
||||
|
||||
def to_dataframe(
|
||||
self,
|
||||
start_datetime: Optional[DateTime] = None,
|
||||
end_datetime: Optional[DateTime] = None,
|
||||
) -> pd.DataFrame:
|
||||
"""Converts the sequence of DataRecord instances into a Pandas DataFrame.
|
||||
|
||||
Args:
|
||||
start_datetime (Optional[datetime]): The lower bound for filtering (inclusive).
|
||||
Defaults to the earliest possible datetime if None.
|
||||
end_datetime (Optional[datetime]): The upper bound for filtering (exclusive).
|
||||
Defaults to the latest possible datetime if None.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: A DataFrame containing the filtered data from all records.
|
||||
"""
|
||||
if not self.records:
|
||||
return pd.DataFrame() # Return empty DataFrame if no records exist
|
||||
|
||||
# Use filter_by_datetime to get filtered records
|
||||
filtered_records = self.filter_by_datetime(start_datetime, end_datetime)
|
||||
|
||||
# Convert filtered records to a dictionary list
|
||||
data = [record.model_dump() for record in filtered_records]
|
||||
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame(data)
|
||||
if df.empty:
|
||||
return df
|
||||
|
||||
# Ensure `date_time` column exists and use it for the index
|
||||
if not "date_time" in df.columns:
|
||||
error_msg = f"Cannot create dataframe: no `date_time` column in `{df}`."
|
||||
logger.error(error_msg)
|
||||
raise TypeError(error_msg)
|
||||
df.index = pd.DatetimeIndex(df["date_time"])
|
||||
return df
|
||||
|
||||
def sort_by_datetime(self, reverse: bool = False) -> None:
|
||||
"""Sort the DataRecords in the sequence by their date_time attribute.
|
||||
|
||||
@@ -1110,7 +1149,7 @@ class DataProvider(SingletonMixin, DataSequence):
|
||||
|
||||
To be implemented by derived classes.
|
||||
"""
|
||||
return self.provider_id() == self.config.abstract_provider
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
@@ -1121,6 +1160,11 @@ class DataProvider(SingletonMixin, DataSequence):
|
||||
"""
|
||||
pass
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def update_data(
|
||||
self,
|
||||
force_enable: Optional[bool] = False,
|
||||
@@ -1460,7 +1504,7 @@ class DataImportMixin:
|
||||
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
|
||||
logger.debug(f"PydanticDateTimeDataFrame import: {error_msg}")
|
||||
|
||||
# Try dictionary with special keys start_datetime and intervall
|
||||
# Try dictionary with special keys start_datetime and interval
|
||||
try:
|
||||
import_data = PydanticDateTimeData.model_validate_json(json_str)
|
||||
self.import_from_dict(import_data.to_dict())
|
||||
@@ -1520,7 +1564,7 @@ class DataImportMixin:
|
||||
and `key_prefix = "load"`, only the "load_mean" key will be processed even though
|
||||
both keys are in the record.
|
||||
"""
|
||||
with import_file_path.open("r") as import_file:
|
||||
with import_file_path.open("r", encoding="utf-8", newline=None) as import_file:
|
||||
import_str = import_file.read()
|
||||
self.import_from_json(
|
||||
import_str, key_prefix=key_prefix, start_datetime=start_datetime, interval=interval
|
||||
@@ -1595,6 +1639,11 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
)
|
||||
return list(key_set)
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __getitem__(self, key: str) -> pd.Series:
|
||||
"""Retrieve a Pandas Series for a specified key from the data in each DataProvider.
|
||||
|
||||
@@ -1797,6 +1846,88 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
|
||||
return array
|
||||
|
||||
def keys_to_dataframe(
|
||||
self,
|
||||
keys: list[str],
|
||||
start_datetime: Optional[DateTime] = None,
|
||||
end_datetime: Optional[DateTime] = None,
|
||||
interval: Optional[Any] = None, # Duration assumed
|
||||
fill_method: Optional[str] = None,
|
||||
) -> pd.DataFrame:
|
||||
"""Retrieve a dataframe indexed by fixed time intervals for specified keys from the data in each DataProvider.
|
||||
|
||||
Generates a pandas DataFrame using the NumPy arrays for each specified key, ensuring a common time index..
|
||||
|
||||
Args:
|
||||
keys (list[str]): A list of field names to retrieve.
|
||||
start_datetime (datetime, optional): Start date for filtering records (inclusive).
|
||||
end_datetime (datetime, optional): End date for filtering records (exclusive).
|
||||
interval (duration, optional): The fixed time interval. Defaults to 1 hour.
|
||||
fill_method (str, optional): Method to handle missing values during resampling.
|
||||
- 'linear': Linearly interpolate missing values (for numeric data only).
|
||||
- 'ffill': Forward fill missing values.
|
||||
- 'bfill': Backward fill missing values.
|
||||
- 'none': Defaults to 'linear' for numeric values, otherwise 'ffill'.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: A DataFrame where each column represents a key's array with a common time index.
|
||||
|
||||
Raises:
|
||||
KeyError: If no valid data is found for any of the requested keys.
|
||||
ValueError: If any retrieved array has a different time index than the first one.
|
||||
"""
|
||||
# Ensure datetime objects are normalized
|
||||
start_datetime = to_datetime(start_datetime, to_maxtime=False) if start_datetime else None
|
||||
end_datetime = to_datetime(end_datetime, to_maxtime=False) if end_datetime else None
|
||||
if interval is None:
|
||||
interval = to_duration("1 hour")
|
||||
if start_datetime is None:
|
||||
# Take earliest datetime of all providers that are enabled
|
||||
for provider in self.enabled_providers:
|
||||
if start_datetime is None:
|
||||
start_datetime = provider.min_datetime
|
||||
elif (
|
||||
provider.min_datetime
|
||||
and compare_datetimes(provider.min_datetime, start_datetime).lt
|
||||
):
|
||||
start_datetime = provider.min_datetime
|
||||
if end_datetime is None:
|
||||
# Take latest datetime of all providers that are enabled
|
||||
for provider in self.enabled_providers:
|
||||
if end_datetime is None:
|
||||
end_datetime = provider.max_datetime
|
||||
elif (
|
||||
provider.max_datetime
|
||||
and compare_datetimes(provider.max_datetime, end_datetime).gt
|
||||
):
|
||||
end_datetime = provider.min_datetime
|
||||
if end_datetime:
|
||||
end_datetime.add(seconds=1)
|
||||
|
||||
# Create a DatetimeIndex based on start, end, and interval
|
||||
reference_index = pd.date_range(
|
||||
start=start_datetime, end=end_datetime, freq=interval, inclusive="left"
|
||||
)
|
||||
|
||||
data = {}
|
||||
for key in keys:
|
||||
try:
|
||||
array = self.key_to_array(key, start_datetime, end_datetime, interval, fill_method)
|
||||
|
||||
if len(array) != len(reference_index):
|
||||
raise ValueError(
|
||||
f"Array length mismatch for key '{key}' (expected {len(reference_index)}, got {len(array)})"
|
||||
)
|
||||
|
||||
data[key] = array
|
||||
except KeyError as e:
|
||||
raise KeyError(f"Failed to retrieve data for key '{key}': {e}")
|
||||
|
||||
if not data:
|
||||
raise KeyError(f"No valid data found for the requested keys {keys}.")
|
||||
|
||||
return pd.DataFrame(data, index=reference_index)
|
||||
|
||||
def provider_by_id(self, provider_id: str) -> DataProvider:
|
||||
"""Retrieves a data provider by its unique identifier.
|
||||
|
||||
|
47
src/akkudoktoreos/core/decorators.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Optional
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class classproperty:
|
||||
"""A decorator to define a read-only property at the class level.
|
||||
|
||||
This class replaces the built-in `property` which is no longer available in
|
||||
combination with @classmethod since Python 3.13 to allow a method to be
|
||||
accessed as a property on the class itself, rather than an instance. This
|
||||
is useful when you want a property-like syntax for methods that depend on
|
||||
the class rather than any instance of the class.
|
||||
|
||||
Example:
|
||||
class MyClass:
|
||||
_value = 42
|
||||
|
||||
@classproperty
|
||||
def value(cls):
|
||||
return cls._value
|
||||
|
||||
print(MyClass.value) # Outputs: 42
|
||||
|
||||
Methods:
|
||||
__get__: Retrieves the value of the class property by calling the
|
||||
decorated method on the class.
|
||||
|
||||
Parameters:
|
||||
fget (Callable[[Any], Any]): A method that takes the class as an
|
||||
argument and returns a value.
|
||||
|
||||
Raises:
|
||||
AssertionError: If `fget` is not defined when `__get__` is called.
|
||||
"""
|
||||
|
||||
def __init__(self, fget: Callable[[Any], Any]) -> None:
|
||||
self.fget = fget
|
||||
|
||||
def __get__(self, _: Any, owner_cls: Optional[type[Any]] = None) -> Any:
|
||||
if owner_cls is None:
|
||||
return self
|
||||
assert self.fget is not None
|
||||
return self.fget(owner_cls)
|
@@ -6,19 +6,20 @@ from pendulum import DateTime
|
||||
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from akkudoktoreos.core.cache import CacheUntilUpdateStore
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel
|
||||
from akkudoktoreos.devices.battery import Battery
|
||||
from akkudoktoreos.devices.generic import HomeAppliance
|
||||
from akkudoktoreos.devices.inverter import Inverter
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class EnergieManagementSystemParameters(ParametersBaseModel):
|
||||
class EnergyManagementParameters(ParametersBaseModel):
|
||||
pv_prognose_wh: list[float] = Field(
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
|
||||
)
|
||||
@@ -107,7 +108,7 @@ class SimulationResult(ParametersBaseModel):
|
||||
return NumpyEncoder.convert_numpy(field)[0]
|
||||
|
||||
|
||||
class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
|
||||
class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
@@ -116,16 +117,33 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
# Start datetime.
|
||||
_start_datetime: ClassVar[Optional[DateTime]] = None
|
||||
|
||||
# last run datetime. Used by energy management task
|
||||
_last_datetime: ClassVar[Optional[DateTime]] = None
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def start_datetime(self) -> DateTime:
|
||||
"""The starting datetime of the current or latest energy management."""
|
||||
if EnergieManagementSystem._start_datetime is None:
|
||||
EnergieManagementSystem.set_start_datetime()
|
||||
return EnergieManagementSystem._start_datetime
|
||||
if EnergyManagement._start_datetime is None:
|
||||
EnergyManagement.set_start_datetime()
|
||||
return EnergyManagement._start_datetime
|
||||
|
||||
@classmethod
|
||||
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
|
||||
"""Set the start datetime for the next energy management cycle.
|
||||
|
||||
If no datetime is provided, the current datetime is used.
|
||||
|
||||
The start datetime is always rounded down to the nearest hour
|
||||
(i.e., setting minutes, seconds, and microseconds to zero).
|
||||
|
||||
Args:
|
||||
start_datetime (Optional[DateTime]): The datetime to set as the start.
|
||||
If None, the current datetime is used.
|
||||
|
||||
Returns:
|
||||
DateTime: The adjusted start datetime.
|
||||
"""
|
||||
if start_datetime is None:
|
||||
start_datetime = to_datetime()
|
||||
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
|
||||
@@ -169,9 +187,14 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
parameters: EnergyManagementParameters,
|
||||
ev: Optional[Battery] = None,
|
||||
home_appliance: Optional[HomeAppliance] = None,
|
||||
inverter: Optional[Inverter] = None,
|
||||
@@ -193,9 +216,9 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.battery:
|
||||
@@ -238,26 +261,83 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
is mostly relevant to prediction providers.
|
||||
force_update (bool, optional): If True, forces to update the data even if still cached.
|
||||
"""
|
||||
# Throw away any cached results of the last run.
|
||||
CacheUntilUpdateStore().clear()
|
||||
self.set_start_hour(start_hour=start_hour)
|
||||
self.config.update()
|
||||
|
||||
# Check for run definitions
|
||||
if self.start_datetime is None:
|
||||
error_msg = "Start datetime unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.prediction_hours is None:
|
||||
if self.config.prediction.hours is None:
|
||||
error_msg = "Prediction hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.optimisation_hours is None:
|
||||
error_msg = "Optimisation hours unknown."
|
||||
if self.config.optimization.hours is None:
|
||||
error_msg = "Optimization hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
self.prediction.update_data(force_enable=force_enable, force_update=force_update)
|
||||
# TODO: Create optimisation problem that calls into devices.update_data() for simulations.
|
||||
|
||||
def manage_energy(self) -> None:
|
||||
"""Repeating task for managing energy.
|
||||
|
||||
This task should be executed by the server regularly (e.g., every 10 seconds)
|
||||
to ensure proper energy management. Configuration changes to the energy management interval
|
||||
will only take effect if this task is executed.
|
||||
|
||||
- Initializes and runs the energy management for the first time if it has never been run
|
||||
before.
|
||||
- If the energy management interval is not configured or invalid (NaN), the task will not
|
||||
trigger any repeated energy management runs.
|
||||
- Compares the current time with the last run time and runs the energy management if the
|
||||
interval has elapsed.
|
||||
- Logs any exceptions that occur during the initialization or execution of the energy
|
||||
management.
|
||||
|
||||
Note: The task maintains the interval even if some intervals are missed.
|
||||
"""
|
||||
current_datetime = to_datetime()
|
||||
|
||||
if EnergyManagement._last_datetime is None:
|
||||
# Never run before
|
||||
try:
|
||||
# Try to run a first energy management. May fail due to config incomplete.
|
||||
self.run()
|
||||
# Remember energy run datetime.
|
||||
EnergyManagement._last_datetime = current_datetime
|
||||
except Exception as e:
|
||||
message = f"EOS init: {e}"
|
||||
logger.error(message)
|
||||
return
|
||||
|
||||
if self.config.ems.interval is None or self.config.ems.interval == float("nan"):
|
||||
# No Repetition
|
||||
return
|
||||
|
||||
if (
|
||||
compare_datetimes(current_datetime, self._last_datetime).time_diff
|
||||
< self.config.ems.interval
|
||||
):
|
||||
# Wait for next run
|
||||
return
|
||||
|
||||
try:
|
||||
self.run()
|
||||
except Exception as e:
|
||||
message = f"EOS run: {e}"
|
||||
logger.error(message)
|
||||
|
||||
# Remember the energy management run - keep on interval even if we missed some intervals
|
||||
while (
|
||||
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
|
||||
>= self.config.ems.interval
|
||||
):
|
||||
EnergyManagement._last_datetime.add(seconds=self.config.ems.interval)
|
||||
|
||||
def set_start_hour(self, start_hour: Optional[int] = None) -> None:
|
||||
"""Sets start datetime to given hour.
|
||||
|
||||
@@ -435,9 +515,9 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
|
||||
|
||||
# Initialize the Energy Management System, it is a singleton.
|
||||
ems = EnergieManagementSystem()
|
||||
ems = EnergyManagement()
|
||||
|
||||
|
||||
def get_ems() -> EnergieManagementSystem:
|
||||
def get_ems() -> EnergyManagement:
|
||||
"""Gets the EOS Energy Management System."""
|
||||
return ems
|
||||
|
26
src/akkudoktoreos/core/emsettings.py
Normal file
@@ -0,0 +1,26 @@
|
||||
"""Settings for energy management.
|
||||
|
||||
Kept in an extra module to avoid cyclic dependencies on package import.
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
|
||||
|
||||
class EnergyManagementCommonSettings(SettingsBaseModel):
|
||||
"""Energy Management Configuration."""
|
||||
|
||||
startup_delay: float = Field(
|
||||
default=5,
|
||||
ge=1,
|
||||
description="Startup delay in seconds for EOS energy management runs.",
|
||||
)
|
||||
|
||||
interval: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Intervall in seconds between EOS energy management runs.",
|
||||
examples=["300"],
|
||||
)
|
@@ -52,6 +52,10 @@ def get_logger(
|
||||
# Create a logger with the specified name
|
||||
logger = pylogging.getLogger(name)
|
||||
logger.propagate = True
|
||||
# This is already supported by pydantic-settings in LoggingCommonSettings, however in case
|
||||
# loading the config itself fails and to set the level before we load the config, we set it here manually.
|
||||
if logging_level is None and (env_level := os.getenv("EOS_LOGGING__LEVEL")) is not None:
|
||||
logging_level = env_level
|
||||
if logging_level is not None:
|
||||
level = logging_str_to_level(logging_level)
|
||||
logger.setLevel(level)
|
||||
|
@@ -4,7 +4,6 @@ Kept in an extra module to avoid cyclic dependencies on package import.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field, computed_field, field_validator
|
||||
@@ -14,21 +13,20 @@ from akkudoktoreos.core.logabc import logging_str_to_level
|
||||
|
||||
|
||||
class LoggingCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for logging."""
|
||||
"""Logging Configuration."""
|
||||
|
||||
logging_level_default: Optional[str] = Field(
|
||||
default=None, description="EOS default logging level."
|
||||
level: Optional[str] = Field(
|
||||
default=None,
|
||||
description="EOS default logging level.",
|
||||
examples=["INFO", "DEBUG", "WARNING", "ERROR", "CRITICAL"],
|
||||
)
|
||||
|
||||
# Validators
|
||||
@field_validator("logging_level_default", mode="after")
|
||||
@field_validator("level", mode="after")
|
||||
@classmethod
|
||||
def set_default_logging_level(cls, value: Optional[str]) -> Optional[str]:
|
||||
if isinstance(value, str) and value.upper() == "NONE":
|
||||
value = None
|
||||
if value is None and (env_level := os.getenv("EOS_LOGGING_LEVEL")) is not None:
|
||||
# Take default logging level from special environment variable
|
||||
value = env_level
|
||||
if value is None:
|
||||
return None
|
||||
level = logging_str_to_level(value)
|
||||
@@ -38,7 +36,7 @@ class LoggingCommonSettings(SettingsBaseModel):
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def logging_level_root(self) -> str:
|
||||
def root_level(self) -> str:
|
||||
"""Root logger logging level."""
|
||||
level = logging.getLogger().getEffectiveLevel()
|
||||
level_name = logging.getLevelName(level)
|
||||
|
@@ -14,6 +14,7 @@ Key Features:
|
||||
|
||||
import json
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List, Optional, Type, Union
|
||||
from zoneinfo import ZoneInfo
|
||||
|
||||
@@ -35,6 +36,85 @@ from pydantic import (
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
|
||||
|
||||
def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
def deep_update(source_dict: dict[str, Any], update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
for key, value in source_dict.items():
|
||||
if isinstance(value, dict) and isinstance(update_dict.get(key), dict):
|
||||
update_dict[key] = deep_update(update_dict[key], value)
|
||||
else:
|
||||
update_dict[key] = value
|
||||
return update_dict
|
||||
|
||||
source_dict = source.model_dump(exclude_unset=True)
|
||||
merged_dict = deep_update(source_dict, deepcopy(update_dict))
|
||||
|
||||
return merged_dict
|
||||
|
||||
|
||||
def access_nested_value(
|
||||
model: BaseModel, path: str, setter: bool, value: Optional[Any] = None
|
||||
) -> Any:
|
||||
"""Get or set a nested model value based on the provided path.
|
||||
|
||||
Supports string paths (with '/' separators) or sequence paths (list/tuple).
|
||||
Trims leading and trailing '/' from string paths.
|
||||
|
||||
Args:
|
||||
model (BaseModel): The model object for partial assignment.
|
||||
path (str): The path to the model key (e.g., "key1/key2/key3" or key1/key2/0).
|
||||
setter (bool): True to set value at path, False to return value at path.
|
||||
value (Optional[Any]): The value to set.
|
||||
|
||||
Returns:
|
||||
Any: The retrieved value if acting as a getter, or None if setting a value.
|
||||
"""
|
||||
path_elements = path.strip("/").split("/")
|
||||
|
||||
cfg: Any = model
|
||||
parent: BaseModel = model
|
||||
model_key: str = ""
|
||||
|
||||
for i, key in enumerate(path_elements):
|
||||
is_final_key = i == len(path_elements) - 1
|
||||
|
||||
if isinstance(cfg, list):
|
||||
try:
|
||||
idx = int(key)
|
||||
if is_final_key:
|
||||
if not setter: # Getter
|
||||
return cfg[idx]
|
||||
else: # Setter
|
||||
new_list = list(cfg)
|
||||
new_list[idx] = value
|
||||
# Trigger validation
|
||||
setattr(parent, model_key, new_list)
|
||||
else:
|
||||
cfg = cfg[idx]
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Error updating model: {e}") from e
|
||||
except (ValueError, IndexError) as e:
|
||||
raise IndexError(f"Invalid list index at {path}: {key}") from e
|
||||
|
||||
elif isinstance(cfg, BaseModel):
|
||||
parent = cfg
|
||||
model_key = key
|
||||
if is_final_key:
|
||||
if not setter: # Getter
|
||||
return getattr(cfg, key)
|
||||
else: # Setter
|
||||
try:
|
||||
# Verification also if nested value is provided opposed to just setattr
|
||||
# Will merge partial assignment
|
||||
cfg = cfg.__pydantic_validator__.validate_assignment(cfg, key, value)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error updating model: {e}") from e
|
||||
else:
|
||||
cfg = getattr(cfg, key)
|
||||
|
||||
else:
|
||||
raise KeyError(f"Key '{key}' not found in model.")
|
||||
|
||||
|
||||
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
"""Custom type adapter for Pendulum DateTime fields."""
|
||||
|
||||
@@ -113,9 +193,16 @@ class PydanticBaseModel(BaseModel):
|
||||
return value
|
||||
|
||||
# Override Pydantic’s serialization for all DateTime fields
|
||||
def model_dump(self, *args: Any, **kwargs: Any) -> dict:
|
||||
def model_dump(
|
||||
self, *args: Any, include_computed_fields: bool = True, **kwargs: Any
|
||||
) -> dict[str, Any]:
|
||||
"""Custom dump method to handle serialization for DateTime fields."""
|
||||
result = super().model_dump(*args, **kwargs)
|
||||
|
||||
if not include_computed_fields:
|
||||
for computed_field_name in self.model_computed_fields:
|
||||
result.pop(computed_field_name, None)
|
||||
|
||||
for key, value in result.items():
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
result[key] = PydanticTypeAdapterDateTime.serialize(value)
|
||||
@@ -170,6 +257,10 @@ class PydanticBaseModel(BaseModel):
|
||||
"""
|
||||
return cls.model_validate(data)
|
||||
|
||||
def model_dump_json(self, *args: Any, indent: Optional[int] = None, **kwargs: Any) -> str:
|
||||
data = self.model_dump(*args, **kwargs)
|
||||
return json.dumps(data, indent=indent, default=str)
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Convert the PydanticBaseModel instance to a JSON string.
|
||||
|
||||
@@ -346,6 +437,10 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index])
|
||||
df.index = index
|
||||
|
||||
# Check if 'date_time' column exists, if not, create it
|
||||
if "date_time" not in df.columns:
|
||||
df["date_time"] = df.index
|
||||
|
||||
dtype_mapping = {
|
||||
"int": int,
|
||||
"float": float,
|
||||
|
@@ -1,113 +1,2 @@
|
||||
{
|
||||
"config_file_path": null,
|
||||
"config_folder_path": null,
|
||||
"data_cache_path": null,
|
||||
"data_cache_subpath": null,
|
||||
"data_folder_path": null,
|
||||
"data_output_path": null,
|
||||
"data_output_subpath": null,
|
||||
"elecprice_charges_kwh": 0.21,
|
||||
"elecprice_provider": null,
|
||||
"elecpriceimport_file_path": null,
|
||||
"latitude": 52.5,
|
||||
"load_import_file_path": null,
|
||||
"load_name": null,
|
||||
"load_provider": null,
|
||||
"loadakkudoktor_year_energy": null,
|
||||
"logging_level": "INFO",
|
||||
"longitude": 13.4,
|
||||
"optimization_ev_available_charge_rates_percent": null,
|
||||
"optimization_hours": 48,
|
||||
"optimization_penalty": null,
|
||||
"prediction_historic_hours": 48,
|
||||
"prediction_hours": 48,
|
||||
"pvforecast0_albedo": null,
|
||||
"pvforecast0_inverter_model": null,
|
||||
"pvforecast0_inverter_paco": null,
|
||||
"pvforecast0_loss": null,
|
||||
"pvforecast0_module_model": null,
|
||||
"pvforecast0_modules_per_string": null,
|
||||
"pvforecast0_mountingplace": "free",
|
||||
"pvforecast0_optimal_surface_tilt": false,
|
||||
"pvforecast0_optimalangles": false,
|
||||
"pvforecast0_peakpower": null,
|
||||
"pvforecast0_pvtechchoice": "crystSi",
|
||||
"pvforecast0_strings_per_inverter": null,
|
||||
"pvforecast0_surface_azimuth": 180,
|
||||
"pvforecast0_surface_tilt": 0,
|
||||
"pvforecast0_trackingtype": 0,
|
||||
"pvforecast0_userhorizon": null,
|
||||
"pvforecast1_albedo": null,
|
||||
"pvforecast1_inverter_model": null,
|
||||
"pvforecast1_inverter_paco": null,
|
||||
"pvforecast1_loss": 0,
|
||||
"pvforecast1_module_model": null,
|
||||
"pvforecast1_modules_per_string": null,
|
||||
"pvforecast1_mountingplace": "free",
|
||||
"pvforecast1_optimal_surface_tilt": false,
|
||||
"pvforecast1_optimalangles": false,
|
||||
"pvforecast1_peakpower": null,
|
||||
"pvforecast1_pvtechchoice": "crystSi",
|
||||
"pvforecast1_strings_per_inverter": null,
|
||||
"pvforecast1_surface_azimuth": 180,
|
||||
"pvforecast1_surface_tilt": 0,
|
||||
"pvforecast1_trackingtype": 0,
|
||||
"pvforecast1_userhorizon": null,
|
||||
"pvforecast2_albedo": null,
|
||||
"pvforecast2_inverter_model": null,
|
||||
"pvforecast2_inverter_paco": null,
|
||||
"pvforecast2_loss": 0,
|
||||
"pvforecast2_module_model": null,
|
||||
"pvforecast2_modules_per_string": null,
|
||||
"pvforecast2_mountingplace": "free",
|
||||
"pvforecast2_optimal_surface_tilt": false,
|
||||
"pvforecast2_optimalangles": false,
|
||||
"pvforecast2_peakpower": null,
|
||||
"pvforecast2_pvtechchoice": "crystSi",
|
||||
"pvforecast2_strings_per_inverter": null,
|
||||
"pvforecast2_surface_azimuth": 180,
|
||||
"pvforecast2_surface_tilt": 0,
|
||||
"pvforecast2_trackingtype": 0,
|
||||
"pvforecast2_userhorizon": null,
|
||||
"pvforecast3_albedo": null,
|
||||
"pvforecast3_inverter_model": null,
|
||||
"pvforecast3_inverter_paco": null,
|
||||
"pvforecast3_loss": 0,
|
||||
"pvforecast3_module_model": null,
|
||||
"pvforecast3_modules_per_string": null,
|
||||
"pvforecast3_mountingplace": "free",
|
||||
"pvforecast3_optimal_surface_tilt": false,
|
||||
"pvforecast3_optimalangles": false,
|
||||
"pvforecast3_peakpower": null,
|
||||
"pvforecast3_pvtechchoice": "crystSi",
|
||||
"pvforecast3_strings_per_inverter": null,
|
||||
"pvforecast3_surface_azimuth": 180,
|
||||
"pvforecast3_surface_tilt": 0,
|
||||
"pvforecast3_trackingtype": 0,
|
||||
"pvforecast3_userhorizon": null,
|
||||
"pvforecast4_albedo": null,
|
||||
"pvforecast4_inverter_model": null,
|
||||
"pvforecast4_inverter_paco": null,
|
||||
"pvforecast4_loss": 0,
|
||||
"pvforecast4_module_model": null,
|
||||
"pvforecast4_modules_per_string": null,
|
||||
"pvforecast4_mountingplace": "free",
|
||||
"pvforecast4_optimal_surface_tilt": false,
|
||||
"pvforecast4_optimalangles": false,
|
||||
"pvforecast4_peakpower": null,
|
||||
"pvforecast4_pvtechchoice": "crystSi",
|
||||
"pvforecast4_strings_per_inverter": null,
|
||||
"pvforecast4_surface_azimuth": 180,
|
||||
"pvforecast4_surface_tilt": 0,
|
||||
"pvforecast4_trackingtype": 0,
|
||||
"pvforecast4_userhorizon": null,
|
||||
"pvforecast_provider": null,
|
||||
"pvforecastimport_file_path": null,
|
||||
"server_eos_startup_eosdash": true,
|
||||
"server_eos_host": "0.0.0.0",
|
||||
"server_eos_port": 8503,
|
||||
"server_eosdash_host": "0.0.0.0",
|
||||
"server_eosdash_port": 8504,
|
||||
"weather_provider": null,
|
||||
"weatherimport_file_path": null
|
||||
}
|
||||
|
@@ -1,11 +1,14 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import Field, field_validator
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.devices.devicesabc import DeviceBase
|
||||
from akkudoktoreos.devices.devicesabc import (
|
||||
DeviceBase,
|
||||
DeviceOptimizeResult,
|
||||
DeviceParameters,
|
||||
)
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -22,14 +25,26 @@ def max_charging_power_field(description: Optional[str] = None) -> float:
|
||||
|
||||
|
||||
def initial_soc_percentage_field(description: str) -> int:
|
||||
return Field(default=0, ge=0, le=100, description=description)
|
||||
return Field(default=0, ge=0, le=100, description=description, examples=[42])
|
||||
|
||||
|
||||
class BaseBatteryParameters(ParametersBaseModel):
|
||||
"""Base class for battery parameters with fields for capacity, efficiency, and state of charge."""
|
||||
def discharging_efficiency_field(default_value: float) -> float:
|
||||
return Field(
|
||||
default=default_value,
|
||||
gt=0,
|
||||
le=1,
|
||||
description="A float representing the discharge efficiency of the battery.",
|
||||
)
|
||||
|
||||
|
||||
class BaseBatteryParameters(DeviceParameters):
|
||||
"""Battery Device Simulation Configuration."""
|
||||
|
||||
device_id: str = Field(description="ID of battery", examples=["battery1"])
|
||||
capacity_wh: int = Field(
|
||||
gt=0, description="An integer representing the capacity of the battery in watt-hours."
|
||||
gt=0,
|
||||
description="An integer representing the capacity of the battery in watt-hours.",
|
||||
examples=[8000],
|
||||
)
|
||||
charging_efficiency: float = Field(
|
||||
default=0.88,
|
||||
@@ -37,12 +52,7 @@ class BaseBatteryParameters(ParametersBaseModel):
|
||||
le=1,
|
||||
description="A float representing the charging efficiency of the battery.",
|
||||
)
|
||||
discharging_efficiency: float = Field(
|
||||
default=0.88,
|
||||
gt=0,
|
||||
le=1,
|
||||
description="A float representing the discharge efficiency of the battery.",
|
||||
)
|
||||
discharging_efficiency: float = discharging_efficiency_field(0.88)
|
||||
max_charge_power_w: Optional[float] = max_charging_power_field()
|
||||
initial_soc_percentage: int = initial_soc_percentage_field(
|
||||
"An integer representing the state of charge of the battery at the **start** of the current hour (not the current state)."
|
||||
@@ -52,6 +62,7 @@ class BaseBatteryParameters(ParametersBaseModel):
|
||||
ge=0,
|
||||
le=100,
|
||||
description="An integer representing the minimum state of charge (SOC) of the battery in percentage.",
|
||||
examples=[10],
|
||||
)
|
||||
max_soc_percentage: int = Field(
|
||||
default=100,
|
||||
@@ -66,17 +77,19 @@ class SolarPanelBatteryParameters(BaseBatteryParameters):
|
||||
|
||||
|
||||
class ElectricVehicleParameters(BaseBatteryParameters):
|
||||
"""Parameters specific to an electric vehicle (EV)."""
|
||||
"""Battery Electric Vehicle Device Simulation Configuration."""
|
||||
|
||||
discharging_efficiency: float = 1.0
|
||||
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
|
||||
discharging_efficiency: float = discharging_efficiency_field(1.0)
|
||||
initial_soc_percentage: int = initial_soc_percentage_field(
|
||||
"An integer representing the current state of charge (SOC) of the battery in percentage."
|
||||
)
|
||||
|
||||
|
||||
class ElectricVehicleResult(BaseModel):
|
||||
class ElectricVehicleResult(DeviceOptimizeResult):
|
||||
"""Result class containing information related to the electric vehicle's charging and discharging behavior."""
|
||||
|
||||
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
|
||||
charge_array: list[float] = Field(
|
||||
description="Hourly charging status (0 for no charging, 1 for charging)."
|
||||
)
|
||||
@@ -84,7 +97,6 @@ class ElectricVehicleResult(BaseModel):
|
||||
description="Hourly discharging status (0 for no discharging, 1 for discharging)."
|
||||
)
|
||||
discharging_efficiency: float = Field(description="The discharge efficiency as a float..")
|
||||
hours: int = Field(description="Number of hours in the simulation.")
|
||||
capacity_wh: int = Field(description="Capacity of the EV’s battery in watt-hours.")
|
||||
charging_efficiency: float = Field(description="Charging efficiency as a float..")
|
||||
max_charge_power_w: int = Field(description="Maximum charging power in watts.")
|
||||
@@ -103,67 +115,18 @@ class ElectricVehicleResult(BaseModel):
|
||||
class Battery(DeviceBase):
|
||||
"""Represents a battery device with methods to simulate energy charging and discharging."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
parameters: Optional[BaseBatteryParameters] = None,
|
||||
hours: Optional[int] = 24,
|
||||
provider_id: Optional[str] = None,
|
||||
):
|
||||
# Initialize configuration and parameters
|
||||
self.provider_id = provider_id
|
||||
self.prefix = "<invalid>"
|
||||
if self.provider_id == "GenericBattery":
|
||||
self.prefix = "battery"
|
||||
elif self.provider_id == "GenericBEV":
|
||||
self.prefix = "bev"
|
||||
def __init__(self, parameters: Optional[BaseBatteryParameters] = None):
|
||||
self.parameters: Optional[BaseBatteryParameters] = None
|
||||
super().__init__(parameters)
|
||||
|
||||
self.parameters = parameters
|
||||
if hours is None:
|
||||
self.hours = self.total_hours # TODO where does that come from?
|
||||
else:
|
||||
self.hours = hours
|
||||
|
||||
self.initialised = False
|
||||
|
||||
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
|
||||
if self.parameters is not None:
|
||||
self.setup()
|
||||
|
||||
def setup(self) -> None:
|
||||
def _setup(self) -> None:
|
||||
"""Sets up the battery parameters based on configuration or provided parameters."""
|
||||
if self.initialised:
|
||||
return
|
||||
|
||||
if self.provider_id:
|
||||
# Setup from configuration
|
||||
self.capacity_wh = getattr(self.config, f"{self.prefix}_capacity")
|
||||
self.initial_soc_percentage = getattr(self.config, f"{self.prefix}_initial_soc")
|
||||
self.hours = self.total_hours # TODO where does that come from?
|
||||
self.charging_efficiency = getattr(self.config, f"{self.prefix}_charging_efficiency")
|
||||
self.discharging_efficiency = getattr(
|
||||
self.config, f"{self.prefix}_discharging_efficiency"
|
||||
)
|
||||
self.max_charge_power_w = getattr(self.config, f"{self.prefix}_max_charging_power")
|
||||
|
||||
if self.provider_id == "GenericBattery":
|
||||
self.min_soc_percentage = getattr(
|
||||
self.config,
|
||||
f"{self.prefix}_soc_min",
|
||||
)
|
||||
else:
|
||||
self.min_soc_percentage = 0
|
||||
|
||||
self.max_soc_percentage = getattr(
|
||||
self.config,
|
||||
f"{self.prefix}_soc_max",
|
||||
)
|
||||
elif self.parameters:
|
||||
# Setup from parameters
|
||||
assert self.parameters is not None
|
||||
self.capacity_wh = self.parameters.capacity_wh
|
||||
self.initial_soc_percentage = self.parameters.initial_soc_percentage
|
||||
self.charging_efficiency = self.parameters.charging_efficiency
|
||||
self.discharging_efficiency = self.parameters.discharging_efficiency
|
||||
self.max_charge_power_w = self.parameters.max_charge_power_w
|
||||
|
||||
# Only assign for storage battery
|
||||
self.min_soc_percentage = (
|
||||
self.parameters.min_soc_percentage
|
||||
@@ -171,13 +134,11 @@ class Battery(DeviceBase):
|
||||
else 0
|
||||
)
|
||||
self.max_soc_percentage = self.parameters.max_soc_percentage
|
||||
else:
|
||||
error_msg = "Parameters and provider ID are missing. Cannot instantiate."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Initialize state of charge
|
||||
if self.max_charge_power_w is None:
|
||||
if self.parameters.max_charge_power_w is not None:
|
||||
self.max_charge_power_w = self.parameters.max_charge_power_w
|
||||
else:
|
||||
self.max_charge_power_w = self.capacity_wh # TODO this should not be equal capacity_wh
|
||||
self.discharge_array = np.full(self.hours, 1)
|
||||
self.charge_array = np.full(self.hours, 1)
|
||||
@@ -185,11 +146,10 @@ class Battery(DeviceBase):
|
||||
self.min_soc_wh = (self.min_soc_percentage / 100) * self.capacity_wh
|
||||
self.max_soc_wh = (self.max_soc_percentage / 100) * self.capacity_wh
|
||||
|
||||
self.initialised = True
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Converts the object to a dictionary representation."""
|
||||
return {
|
||||
"device_id": self.device_id,
|
||||
"capacity_wh": self.capacity_wh,
|
||||
"initial_soc_percentage": self.initial_soc_percentage,
|
||||
"soc_wh": self.soc_wh,
|
||||
|
@@ -1,307 +1,42 @@
|
||||
from typing import Any, ClassVar, Dict, Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import Field, computed_field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.core.coreabc import SingletonMixin
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.devices.battery import Battery
|
||||
from akkudoktoreos.devices.devicesabc import DevicesBase
|
||||
from akkudoktoreos.devices.generic import HomeAppliance
|
||||
from akkudoktoreos.devices.inverter import Inverter
|
||||
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
|
||||
from akkudoktoreos.utils.datetimeutil import to_duration
|
||||
from akkudoktoreos.devices.settings import DevicesCommonSettings
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DevicesCommonSettings(SettingsBaseModel):
|
||||
"""Base configuration for devices simulation settings."""
|
||||
|
||||
# Battery
|
||||
# -------
|
||||
battery_provider: Optional[str] = Field(
|
||||
default=None, description="Id of Battery simulation provider."
|
||||
)
|
||||
battery_capacity: Optional[int] = Field(default=None, description="Battery capacity [Wh].")
|
||||
battery_initial_soc: Optional[int] = Field(
|
||||
default=None, description="Battery initial state of charge [%]."
|
||||
)
|
||||
battery_soc_min: Optional[int] = Field(
|
||||
default=None, description="Battery minimum state of charge [%]."
|
||||
)
|
||||
battery_soc_max: Optional[int] = Field(
|
||||
default=None, description="Battery maximum state of charge [%]."
|
||||
)
|
||||
battery_charging_efficiency: Optional[float] = Field(
|
||||
default=None, description="Battery charging efficiency [%]."
|
||||
)
|
||||
battery_discharging_efficiency: Optional[float] = Field(
|
||||
default=None, description="Battery discharging efficiency [%]."
|
||||
)
|
||||
battery_max_charging_power: Optional[int] = Field(
|
||||
default=None, description="Battery maximum charge power [W]."
|
||||
)
|
||||
|
||||
# Battery Electric Vehicle
|
||||
# ------------------------
|
||||
bev_provider: Optional[str] = Field(
|
||||
default=None, description="Id of Battery Electric Vehicle simulation provider."
|
||||
)
|
||||
bev_capacity: Optional[int] = Field(
|
||||
default=None, description="Battery Electric Vehicle capacity [Wh]."
|
||||
)
|
||||
bev_initial_soc: Optional[int] = Field(
|
||||
default=None, description="Battery Electric Vehicle initial state of charge [%]."
|
||||
)
|
||||
bev_soc_max: Optional[int] = Field(
|
||||
default=None, description="Battery Electric Vehicle maximum state of charge [%]."
|
||||
)
|
||||
bev_charging_efficiency: Optional[float] = Field(
|
||||
default=None, description="Battery Electric Vehicle charging efficiency [%]."
|
||||
)
|
||||
bev_discharging_efficiency: Optional[float] = Field(
|
||||
default=None, description="Battery Electric Vehicle discharging efficiency [%]."
|
||||
)
|
||||
bev_max_charging_power: Optional[int] = Field(
|
||||
default=None, description="Battery Electric Vehicle maximum charge power [W]."
|
||||
)
|
||||
|
||||
# Home Appliance - Dish Washer
|
||||
# ----------------------------
|
||||
dishwasher_provider: Optional[str] = Field(
|
||||
default=None, description="Id of Dish Washer simulation provider."
|
||||
)
|
||||
dishwasher_consumption: Optional[int] = Field(
|
||||
default=None, description="Dish Washer energy consumption [Wh]."
|
||||
)
|
||||
dishwasher_duration: Optional[int] = Field(
|
||||
default=None, description="Dish Washer usage duration [h]."
|
||||
)
|
||||
|
||||
# PV Inverter
|
||||
# -----------
|
||||
inverter_provider: Optional[str] = Field(
|
||||
default=None, description="Id of PV Inverter simulation provider."
|
||||
)
|
||||
inverter_power_max: Optional[float] = Field(
|
||||
default=None, description="Inverter maximum power [W]."
|
||||
)
|
||||
|
||||
|
||||
class Devices(SingletonMixin, DevicesBase):
|
||||
# Results of the devices simulation and
|
||||
# insights into various parameters over the entire forecast period.
|
||||
# -----------------------------------------------------------------
|
||||
last_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The load in watt-hours per hour."
|
||||
)
|
||||
eauto_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The state of charge of the EV for each hour."
|
||||
)
|
||||
einnahmen_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="The revenue from grid feed-in or other sources in euros per hour.",
|
||||
)
|
||||
home_appliance_wh_per_hour: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="The energy consumption of a household appliance in watt-hours per hour.",
|
||||
)
|
||||
kosten_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The costs in euros per hour."
|
||||
)
|
||||
grid_import_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The grid energy drawn in watt-hours per hour."
|
||||
)
|
||||
grid_export_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The energy fed into the grid in watt-hours per hour."
|
||||
)
|
||||
verluste_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None, description="The losses in watt-hours per hour."
|
||||
)
|
||||
akku_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="The state of charge of the battery (not the EV) in percentage per hour.",
|
||||
)
|
||||
def __init__(self, settings: Optional[DevicesCommonSettings] = None):
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__()
|
||||
if settings is None:
|
||||
settings = self.config.devices
|
||||
if settings is None:
|
||||
return
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def total_balance_euro(self) -> float:
|
||||
"""The total balance of revenues minus costs in euros."""
|
||||
return self.total_revenues_euro - self.total_costs_euro
|
||||
# initialize devices
|
||||
if settings.batteries is not None:
|
||||
for battery_params in settings.batteries:
|
||||
self.add_device(Battery(battery_params))
|
||||
if settings.inverters is not None:
|
||||
for inverter_params in settings.inverters:
|
||||
self.add_device(Inverter(inverter_params))
|
||||
if settings.home_appliances is not None:
|
||||
for home_appliance_params in settings.home_appliances:
|
||||
self.add_device(HomeAppliance(home_appliance_params))
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def total_revenues_euro(self) -> float:
|
||||
"""The total revenues in euros."""
|
||||
if self.einnahmen_euro_pro_stunde is None:
|
||||
return 0
|
||||
return np.nansum(self.einnahmen_euro_pro_stunde)
|
||||
self.post_setup()
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def total_costs_euro(self) -> float:
|
||||
"""The total costs in euros."""
|
||||
if self.kosten_euro_pro_stunde is None:
|
||||
return 0
|
||||
return np.nansum(self.kosten_euro_pro_stunde)
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def total_losses_wh(self) -> float:
|
||||
"""The total losses in watt-hours over the entire period."""
|
||||
if self.verluste_wh_pro_stunde is None:
|
||||
return 0
|
||||
return np.nansum(self.verluste_wh_pro_stunde)
|
||||
|
||||
# Devices
|
||||
# TODO: Make devices class a container of device simulation providers.
|
||||
# Device simulations to be used are then enabled in the configuration.
|
||||
battery: ClassVar[Battery] = Battery(provider_id="GenericBattery")
|
||||
ev: ClassVar[Battery] = Battery(provider_id="GenericBEV")
|
||||
home_appliance: ClassVar[HomeAppliance] = HomeAppliance(provider_id="GenericDishWasher")
|
||||
inverter: ClassVar[Inverter] = Inverter(
|
||||
self_consumption_predictor=SelfConsumptionProbabilityInterpolator,
|
||||
battery=battery,
|
||||
provider_id="GenericInverter",
|
||||
)
|
||||
|
||||
def update_data(self) -> None:
|
||||
"""Update device simulation data."""
|
||||
# Assure devices are set up
|
||||
self.battery.setup()
|
||||
self.ev.setup()
|
||||
self.home_appliance.setup()
|
||||
self.inverter.setup()
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
self.last_wh_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.grid_export_wh_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.grid_import_wh_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.kosten_euro_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.einnahmen_euro_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.akku_soc_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.eauto_soc_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.verluste_wh_pro_stunde = np.full((self.total_hours), np.nan)
|
||||
self.home_appliance_wh_per_hour = np.full((self.total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
simulation_step = to_duration("1 hour")
|
||||
if self.battery:
|
||||
self.akku_soc_pro_stunde[0] = self.battery.current_soc_percentage()
|
||||
if self.ev:
|
||||
self.eauto_soc_pro_stunde[0] = self.ev.current_soc_percentage()
|
||||
|
||||
# Get predictions for full device simulation time range
|
||||
# gesamtlast[stunde]
|
||||
load_total_mean = self.prediction.key_to_array(
|
||||
"load_total_mean",
|
||||
start_datetime=self.start_datetime,
|
||||
end_datetime=self.end_datetime,
|
||||
interval=simulation_step,
|
||||
)
|
||||
# pv_prognose_wh[stunde]
|
||||
pvforecast_ac_power = self.prediction.key_to_array(
|
||||
"pvforecast_ac_power",
|
||||
start_datetime=self.start_datetime,
|
||||
end_datetime=self.end_datetime,
|
||||
interval=simulation_step,
|
||||
)
|
||||
# strompreis_euro_pro_wh[stunde]
|
||||
elecprice_marketprice_wh = self.prediction.key_to_array(
|
||||
"elecprice_marketprice_wh",
|
||||
start_datetime=self.start_datetime,
|
||||
end_datetime=self.end_datetime,
|
||||
interval=simulation_step,
|
||||
)
|
||||
# einspeiseverguetung_euro_pro_wh_arr[stunde]
|
||||
# TODO: Create prediction for einspeiseverguetung_euro_pro_wh_arr
|
||||
einspeiseverguetung_euro_pro_wh_arr = np.full((self.total_hours), 0.078)
|
||||
|
||||
for stunde_since_now in range(0, self.total_hours):
|
||||
hour = self.start_datetime.hour + stunde_since_now
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
consumption = load_total_mean[stunde_since_now]
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
# Home appliances
|
||||
if self.home_appliance:
|
||||
ha_load = self.home_appliance.get_load_for_hour(hour)
|
||||
consumption += ha_load
|
||||
self.home_appliance_wh_per_hour[stunde_since_now] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if self.ev:
|
||||
if self.ev_charge_hours[hour] > 0:
|
||||
geladene_menge_eauto, verluste_eauto = self.ev.charge_energy(
|
||||
None, hour, relative_power=self.ev_charge_hours[hour]
|
||||
)
|
||||
consumption += geladene_menge_eauto
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
||||
self.eauto_soc_pro_stunde[stunde_since_now] = self.ev.current_soc_percentage()
|
||||
|
||||
# Process inverter logic
|
||||
grid_export, grid_import, losses, self_consumption = (0.0, 0.0, 0.0, 0.0)
|
||||
if self.battery:
|
||||
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
|
||||
if self.inverter:
|
||||
generation = pvforecast_ac_power[hour]
|
||||
grid_export, grid_import, losses, self_consumption = self.inverter.process_energy(
|
||||
generation, consumption, hour
|
||||
)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if self.battery and self.ac_charge_hours[hour] > 0.0:
|
||||
self.battery.set_charge_allowed_for_hour(1, hour)
|
||||
geladene_menge, verluste_wh = self.battery.charge_energy(
|
||||
None, hour, relative_power=self.ac_charge_hours[hour]
|
||||
)
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.battery.current_soc_percentage())
|
||||
consumption += geladene_menge
|
||||
grid_import += geladene_menge
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
|
||||
|
||||
self.grid_export_wh_pro_stunde[stunde_since_now] = grid_export
|
||||
self.grid_import_wh_pro_stunde[stunde_since_now] = grid_import
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] += losses
|
||||
self.last_wh_pro_stunde[stunde_since_now] = consumption
|
||||
|
||||
# Financial calculations
|
||||
self.kosten_euro_pro_stunde[stunde_since_now] = (
|
||||
grid_import * self.strompreis_euro_pro_wh[hour]
|
||||
)
|
||||
self.einnahmen_euro_pro_stunde[stunde_since_now] = (
|
||||
grid_export * self.einspeiseverguetung_euro_pro_wh_arr[hour]
|
||||
)
|
||||
|
||||
# battery SOC tracking
|
||||
if self.battery:
|
||||
self.akku_soc_pro_stunde[stunde_since_now] = self.battery.current_soc_percentage()
|
||||
else:
|
||||
self.akku_soc_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
def report_dict(self) -> Dict[str, Any]:
|
||||
"""Provides devices simulation output as a dictionary."""
|
||||
out: Dict[str, Optional[Union[np.ndarray, float]]] = {
|
||||
"Last_Wh_pro_Stunde": self.last_wh_pro_stunde,
|
||||
"grid_export_Wh_pro_Stunde": self.grid_export_wh_pro_stunde,
|
||||
"grid_import_Wh_pro_Stunde": self.grid_import_wh_pro_stunde,
|
||||
"Kosten_Euro_pro_Stunde": self.kosten_euro_pro_stunde,
|
||||
"akku_soc_pro_stunde": self.akku_soc_pro_stunde,
|
||||
"Einnahmen_Euro_pro_Stunde": self.einnahmen_euro_pro_stunde,
|
||||
"Gesamtbilanz_Euro": self.total_balance_euro,
|
||||
"EAuto_SoC_pro_Stunde": self.eauto_soc_pro_stunde,
|
||||
"Gesamteinnahmen_Euro": self.total_revenues_euro,
|
||||
"Gesamtkosten_Euro": self.total_costs_euro,
|
||||
"Verluste_Pro_Stunde": self.verluste_wh_pro_stunde,
|
||||
"Gesamt_Verluste": self.total_losses_wh,
|
||||
"Home_appliance_wh_per_hour": self.home_appliance_wh_per_hour,
|
||||
}
|
||||
return out
|
||||
def post_setup(self) -> None:
|
||||
for device in self.devices.values():
|
||||
device.post_setup()
|
||||
|
||||
|
||||
# Initialize the Devices simulation, it is a singleton.
|
||||
|
@@ -1,22 +1,45 @@
|
||||
"""Abstract and base classes for devices."""
|
||||
|
||||
from typing import Optional
|
||||
from enum import Enum
|
||||
from typing import Optional, Type
|
||||
|
||||
from pendulum import DateTime
|
||||
from pydantic import ConfigDict, computed_field
|
||||
from pydantic import Field, computed_field
|
||||
|
||||
from akkudoktoreos.core.coreabc import (
|
||||
ConfigMixin,
|
||||
DevicesMixin,
|
||||
EnergyManagementSystemMixin,
|
||||
PredictionMixin,
|
||||
)
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.utils.datetimeutil import to_duration
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DeviceParameters(ParametersBaseModel):
|
||||
device_id: str = Field(description="ID of device", examples="device1")
|
||||
hours: Optional[int] = Field(
|
||||
default=None,
|
||||
gt=0,
|
||||
description="Number of prediction hours. Defaults to global config prediction hours.",
|
||||
examples=[None],
|
||||
)
|
||||
|
||||
|
||||
class DeviceOptimizeResult(ParametersBaseModel):
|
||||
device_id: str = Field(description="ID of device", examples=["device1"])
|
||||
hours: int = Field(gt=0, description="Number of hours in the simulation.", examples=[24])
|
||||
|
||||
|
||||
class DeviceState(Enum):
|
||||
UNINITIALIZED = 0
|
||||
PREPARED = 1
|
||||
INITIALIZED = 2
|
||||
|
||||
|
||||
class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
"""A mixin to manage start, end datetimes for devices data.
|
||||
|
||||
@@ -28,16 +51,16 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def end_datetime(self) -> Optional[DateTime]:
|
||||
"""Compute the end datetime based on the `start_datetime` and `prediction_hours`.
|
||||
"""Compute the end datetime based on the `start_datetime` and `hours`.
|
||||
|
||||
Ajusts the calculated end time if DST transitions occur within the prediction window.
|
||||
|
||||
Returns:
|
||||
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
|
||||
"""
|
||||
if self.ems.start_datetime and self.config.prediction_hours:
|
||||
if self.ems.start_datetime and self.config.prediction.hours:
|
||||
end_datetime = self.ems.start_datetime + to_duration(
|
||||
f"{self.config.prediction_hours} hours"
|
||||
f"{self.config.prediction.hours} hours"
|
||||
)
|
||||
dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours
|
||||
logger.debug(
|
||||
@@ -68,33 +91,92 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
return int(duration.total_hours())
|
||||
|
||||
|
||||
class DeviceBase(DevicesStartEndMixin, PredictionMixin):
|
||||
class DeviceBase(DevicesStartEndMixin, PredictionMixin, DevicesMixin):
|
||||
"""Base class for device simulations.
|
||||
|
||||
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
|
||||
`prediction`).
|
||||
Enables access to EOS configuration data (attribute `config`), EOS prediction data (attribute
|
||||
`prediction`) and EOS device registry (attribute `devices`).
|
||||
|
||||
Note:
|
||||
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
|
||||
Behavior:
|
||||
- Several initialization phases (setup, post_setup):
|
||||
- setup: Initialize class attributes from DeviceParameters (pydantic input validation)
|
||||
- post_setup: Set connections between devices
|
||||
- NotImplemented:
|
||||
- hooks during optimization
|
||||
|
||||
Notes:
|
||||
- This class is base to concrete devices like battery, inverter, etc. that are used in optimization.
|
||||
- Not a pydantic model for a low footprint during optimization.
|
||||
"""
|
||||
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
def __init__(self, parameters: Optional[DeviceParameters] = None):
|
||||
self.device_id: str = "<invalid>"
|
||||
self.parameters: Optional[DeviceParameters] = None
|
||||
self.hours = -1
|
||||
if self.total_hours is not None:
|
||||
self.hours = self.total_hours
|
||||
|
||||
self.initialized = DeviceState.UNINITIALIZED
|
||||
|
||||
if parameters is not None:
|
||||
self.setup(parameters)
|
||||
|
||||
def setup(self, parameters: DeviceParameters) -> None:
|
||||
if self.initialized != DeviceState.UNINITIALIZED:
|
||||
return
|
||||
|
||||
self.parameters = parameters
|
||||
self.device_id = self.parameters.device_id
|
||||
|
||||
if self.parameters.hours is not None:
|
||||
self.hours = self.parameters.hours
|
||||
if self.hours < 0:
|
||||
raise ValueError("hours is unset")
|
||||
|
||||
self._setup()
|
||||
|
||||
self.initialized = DeviceState.PREPARED
|
||||
|
||||
def post_setup(self) -> None:
|
||||
if self.initialized.value >= DeviceState.INITIALIZED.value:
|
||||
return
|
||||
|
||||
self._post_setup()
|
||||
self.initialized = DeviceState.INITIALIZED
|
||||
|
||||
def _setup(self) -> None:
|
||||
"""Implement custom setup in derived device classes."""
|
||||
pass
|
||||
|
||||
def _post_setup(self) -> None:
|
||||
"""Implement custom setup in derived device classes that is run when all devices are initialized."""
|
||||
pass
|
||||
|
||||
|
||||
class DevicesBase(DevicesStartEndMixin, PredictionMixin, PydanticBaseModel):
|
||||
class DevicesBase(DevicesStartEndMixin, PredictionMixin):
|
||||
"""Base class for handling device data.
|
||||
|
||||
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
|
||||
`prediction`).
|
||||
|
||||
Note:
|
||||
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
|
||||
"""
|
||||
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.devices: dict[str, "DeviceBase"] = dict()
|
||||
|
||||
def get_device_by_id(self, device_id: str) -> Optional["DeviceBase"]:
|
||||
return self.devices.get(device_id)
|
||||
|
||||
def add_device(self, device: Optional["DeviceBase"]) -> None:
|
||||
if device is None:
|
||||
return
|
||||
assert device.device_id not in self.devices, f"{device.device_id} already registered"
|
||||
self.devices[device.device_id] = device
|
||||
|
||||
def remove_device(self, device: Type["DeviceBase"] | str) -> bool:
|
||||
if isinstance(device, DeviceBase):
|
||||
device = device.device_id
|
||||
return self.devices.pop(device, None) is not None # type: ignore[arg-type]
|
||||
|
||||
def reset(self) -> None:
|
||||
self.devices = dict()
|
||||
|
@@ -4,20 +4,24 @@ import numpy as np
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.devices.devicesabc import DeviceBase
|
||||
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class HomeApplianceParameters(ParametersBaseModel):
|
||||
class HomeApplianceParameters(DeviceParameters):
|
||||
"""Home Appliance Device Simulation Configuration."""
|
||||
|
||||
device_id: str = Field(description="ID of home appliance", examples=["dishwasher"])
|
||||
consumption_wh: int = Field(
|
||||
gt=0,
|
||||
description="An integer representing the energy consumption of a household device in watt-hours.",
|
||||
examples=[2000],
|
||||
)
|
||||
duration_h: int = Field(
|
||||
gt=0,
|
||||
description="An integer representing the usage duration of a household device in hours.",
|
||||
examples=[3],
|
||||
)
|
||||
|
||||
|
||||
@@ -25,46 +29,15 @@ class HomeAppliance(DeviceBase):
|
||||
def __init__(
|
||||
self,
|
||||
parameters: Optional[HomeApplianceParameters] = None,
|
||||
hours: Optional[int] = 24,
|
||||
provider_id: Optional[str] = None,
|
||||
):
|
||||
# Configuration initialisation
|
||||
self.provider_id = provider_id
|
||||
self.prefix = "<invalid>"
|
||||
if self.provider_id == "GenericDishWasher":
|
||||
self.prefix = "dishwasher"
|
||||
# Parameter initialisiation
|
||||
self.parameters = parameters
|
||||
if hours is None:
|
||||
self.hours = self.total_hours
|
||||
else:
|
||||
self.hours = hours
|
||||
self.parameters: Optional[HomeApplianceParameters] = None
|
||||
super().__init__(parameters)
|
||||
|
||||
self.initialised = False
|
||||
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
|
||||
if self.parameters is not None:
|
||||
self.setup()
|
||||
|
||||
def setup(self) -> None:
|
||||
if self.initialised:
|
||||
return
|
||||
if self.provider_id is not None:
|
||||
# Setup by configuration
|
||||
self.hours = self.total_hours
|
||||
self.consumption_wh = getattr(self.config, f"{self.prefix}_consumption")
|
||||
self.duration_h = getattr(self.config, f"{self.prefix}_duration")
|
||||
elif self.parameters is not None:
|
||||
# Setup by parameters
|
||||
self.consumption_wh = (
|
||||
self.parameters.consumption_wh
|
||||
) # Total energy consumption of the device in kWh
|
||||
self.duration_h = self.parameters.duration_h # Duration of use in hours
|
||||
else:
|
||||
error_msg = "Parameters and provider ID missing. Can't instantiate."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
def _setup(self) -> None:
|
||||
assert self.parameters is not None
|
||||
self.load_curve = np.zeros(self.hours) # Initialize the load curve with zeros
|
||||
self.initialised = True
|
||||
self.duration_h = self.parameters.duration_h
|
||||
self.consumption_wh = self.parameters.consumption_wh
|
||||
|
||||
def set_starting_time(self, start_hour: int, global_start_hour: int = 0) -> None:
|
||||
"""Sets the start time of the device and generates the corresponding load curve.
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from typing import List, Sequence
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
|
||||
|
||||
class Heatpump:
|
||||
MAX_HEAT_OUTPUT = 5000
|
||||
@@ -18,10 +19,10 @@ class Heatpump:
|
||||
COP_COEFFICIENT = 0.1
|
||||
"""COP increase per degree"""
|
||||
|
||||
def __init__(self, max_heat_output: int, prediction_hours: int):
|
||||
def __init__(self, max_heat_output: int, hours: int):
|
||||
self.max_heat_output = max_heat_output
|
||||
self.prediction_hours = prediction_hours
|
||||
self.log = logging.getLogger(__name__)
|
||||
self.hours = hours
|
||||
self.log = get_logger(__name__)
|
||||
|
||||
def __check_outside_temperature_range__(self, temp_celsius: float) -> bool:
|
||||
"""Check if temperature is in valid range between -100 and 100 degree Celsius.
|
||||
@@ -117,9 +118,9 @@ class Heatpump:
|
||||
"""Simulate power data for 24 hours based on provided temperatures."""
|
||||
power_data: List[float] = []
|
||||
|
||||
if len(temperatures) != self.prediction_hours:
|
||||
if len(temperatures) != self.hours:
|
||||
raise ValueError(
|
||||
f"The temperature array must contain exactly {self.prediction_hours} entries, "
|
||||
f"The temperature array must contain exactly {self.hours} entries, "
|
||||
"one for each hour of the day."
|
||||
)
|
||||
|
||||
|
@@ -1,64 +1,48 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
from scipy.interpolate import RegularGridInterpolator
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.devices.battery import Battery
|
||||
from akkudoktoreos.devices.devicesabc import DeviceBase
|
||||
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters
|
||||
from akkudoktoreos.prediction.interpolator import get_eos_load_interpolator
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class InverterParameters(ParametersBaseModel):
|
||||
max_power_wh: float = Field(gt=0)
|
||||
class InverterParameters(DeviceParameters):
|
||||
"""Inverter Device Simulation Configuration."""
|
||||
|
||||
device_id: str = Field(description="ID of inverter", examples=["inverter1"])
|
||||
max_power_wh: float = Field(gt=0, examples=[10000])
|
||||
battery_id: Optional[str] = Field(
|
||||
default=None, description="ID of battery", examples=[None, "battery1"]
|
||||
)
|
||||
|
||||
|
||||
class Inverter(DeviceBase):
|
||||
def __init__(
|
||||
self,
|
||||
self_consumption_predictor: RegularGridInterpolator,
|
||||
parameters: Optional[InverterParameters] = None,
|
||||
battery: Optional[Battery] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
):
|
||||
# Configuration initialisation
|
||||
self.provider_id = provider_id
|
||||
self.prefix = "<invalid>"
|
||||
if self.provider_id == "GenericInverter":
|
||||
self.prefix = "inverter"
|
||||
# Parameter initialisiation
|
||||
self.parameters = parameters
|
||||
if battery is None:
|
||||
self.parameters: Optional[InverterParameters] = None
|
||||
super().__init__(parameters)
|
||||
|
||||
def _setup(self) -> None:
|
||||
assert self.parameters is not None
|
||||
if self.parameters.battery_id is None:
|
||||
# For the moment raise exception
|
||||
# TODO: Make battery configurable by config
|
||||
error_msg = "Battery for PV inverter is mandatory."
|
||||
logger.error(error_msg)
|
||||
raise NotImplementedError(error_msg)
|
||||
self.battery = battery # Connection to a battery object
|
||||
self.self_consumption_predictor = self_consumption_predictor
|
||||
|
||||
self.initialised = False
|
||||
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
|
||||
if self.parameters is not None:
|
||||
self.setup()
|
||||
|
||||
def setup(self) -> None:
|
||||
if self.initialised:
|
||||
return
|
||||
if self.provider_id is not None:
|
||||
# Setup by configuration
|
||||
self.max_power_wh = getattr(self.config, f"{self.prefix}_power_max")
|
||||
elif self.parameters is not None:
|
||||
# Setup by parameters
|
||||
self.self_consumption_predictor = get_eos_load_interpolator()
|
||||
self.max_power_wh = (
|
||||
self.parameters.max_power_wh # Maximum power that the inverter can handle
|
||||
)
|
||||
else:
|
||||
error_msg = "Parameters and provider ID missing. Can't instantiate."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
self.parameters.max_power_wh
|
||||
) # Maximum power that the inverter can handle
|
||||
|
||||
def _post_setup(self) -> None:
|
||||
assert self.parameters is not None
|
||||
self.battery = self.devices.get_device_by_id(self.parameters.battery_id)
|
||||
|
||||
def process_energy(
|
||||
self, generation: float, consumption: float, hour: int
|
||||
|
27
src/akkudoktoreos/devices/settings.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.devices.battery import BaseBatteryParameters
|
||||
from akkudoktoreos.devices.generic import HomeApplianceParameters
|
||||
from akkudoktoreos.devices.inverter import InverterParameters
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DevicesCommonSettings(SettingsBaseModel):
|
||||
"""Base configuration for devices simulation settings."""
|
||||
|
||||
batteries: Optional[list[BaseBatteryParameters]] = Field(
|
||||
default=None,
|
||||
description="List of battery/ev devices",
|
||||
examples=[[{"device_id": "battery1", "capacity_wh": 8000}]],
|
||||
)
|
||||
inverters: Optional[list[InverterParameters]] = Field(
|
||||
default=None, description="List of inverters", examples=[[]]
|
||||
)
|
||||
home_appliances: Optional[list[HomeApplianceParameters]] = Field(
|
||||
default=None, description="List of home appliances", examples=[[]]
|
||||
)
|
@@ -23,20 +23,22 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
class MeasurementCommonSettings(SettingsBaseModel):
|
||||
measurement_load0_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load0 source (e.g. 'Household', 'Heat Pump')"
|
||||
"""Measurement Configuration."""
|
||||
|
||||
load0_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load0 source", examples=["Household", "Heat Pump"]
|
||||
)
|
||||
measurement_load1_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load1 source (e.g. 'Household', 'Heat Pump')"
|
||||
load1_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load1 source", examples=[None]
|
||||
)
|
||||
measurement_load2_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load2 source (e.g. 'Household', 'Heat Pump')"
|
||||
load2_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load2 source", examples=[None]
|
||||
)
|
||||
measurement_load3_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load3 source (e.g. 'Household', 'Heat Pump')"
|
||||
load3_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load3 source", examples=[None]
|
||||
)
|
||||
measurement_load4_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load4 source (e.g. 'Household', 'Heat Pump')"
|
||||
load4_name: Optional[str] = Field(
|
||||
default=None, description="Name of the load4 source", examples=[None]
|
||||
)
|
||||
|
||||
|
||||
@@ -48,42 +50,42 @@ class MeasurementDataRecord(DataRecord):
|
||||
"""
|
||||
|
||||
# Single loads, to be aggregated to total load
|
||||
measurement_load0_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load0 meter reading [kWh]"
|
||||
load0_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load0 meter reading [kWh]", examples=[40421]
|
||||
)
|
||||
measurement_load1_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load1 meter reading [kWh]"
|
||||
load1_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load1 meter reading [kWh]", examples=[None]
|
||||
)
|
||||
measurement_load2_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load2 meter reading [kWh]"
|
||||
load2_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load2 meter reading [kWh]", examples=[None]
|
||||
)
|
||||
measurement_load3_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load3 meter reading [kWh]"
|
||||
load3_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load3 meter reading [kWh]", examples=[None]
|
||||
)
|
||||
measurement_load4_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load4 meter reading [kWh]"
|
||||
load4_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Load4 meter reading [kWh]", examples=[None]
|
||||
)
|
||||
|
||||
measurement_max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
|
||||
max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
|
||||
|
||||
measurement_grid_export_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Export to grid meter reading [kWh]"
|
||||
grid_export_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Export to grid meter reading [kWh]", examples=[1000]
|
||||
)
|
||||
|
||||
measurement_grid_import_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Import from grid meter reading [kWh]"
|
||||
grid_import_mr: Optional[float] = Field(
|
||||
default=None, ge=0, description="Import from grid meter reading [kWh]", examples=[1000]
|
||||
)
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def measurement_loads(self) -> List[str]:
|
||||
def loads(self) -> List[str]:
|
||||
"""Compute a list of active loads."""
|
||||
active_loads = []
|
||||
|
||||
# Loop through measurement_loadx
|
||||
for i in range(self.measurement_max_loads):
|
||||
load_attr = f"measurement_load{i}_mr"
|
||||
# Loop through loadx
|
||||
for i in range(self.max_loads):
|
||||
load_attr = f"load{i}_mr"
|
||||
|
||||
# Check if either attribute is set and add to active loads
|
||||
if getattr(self, load_attr, None):
|
||||
@@ -103,9 +105,14 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
|
||||
)
|
||||
|
||||
topics: ClassVar[List[str]] = [
|
||||
"measurement_load",
|
||||
"load",
|
||||
]
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _interval_count(
|
||||
self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration
|
||||
) -> int:
|
||||
@@ -143,11 +150,16 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
|
||||
if topic not in self.topics:
|
||||
return None
|
||||
|
||||
topic_keys = [key for key in self.config.config_keys if key.startswith(topic)]
|
||||
topic_keys = [
|
||||
key for key in self.config.measurement.model_fields.keys() if key.startswith(topic)
|
||||
]
|
||||
key = None
|
||||
if topic == "measurement_load":
|
||||
if topic == "load":
|
||||
for config_key in topic_keys:
|
||||
if config_key.endswith("_name") and getattr(self.config, config_key) == name:
|
||||
if (
|
||||
config_key.endswith("_name")
|
||||
and getattr(self.config.measurement, config_key) == name
|
||||
):
|
||||
key = topic + config_key[len(topic) : len(topic) + 1] + "_mr"
|
||||
break
|
||||
|
||||
@@ -243,9 +255,9 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
|
||||
end_datetime = self[-1].date_time
|
||||
size = self._interval_count(start_datetime, end_datetime, interval)
|
||||
load_total_array = np.zeros(size)
|
||||
# Loop through measurement_load<x>_mr
|
||||
for i in range(self.record_class().measurement_max_loads):
|
||||
key = f"measurement_load{i}_mr"
|
||||
# Loop through load<x>_mr
|
||||
for i in range(self.record_class().max_loads):
|
||||
key = f"load{i}_mr"
|
||||
# Calculate load per interval
|
||||
load_array = self._energy_from_meter_readings(
|
||||
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import logging
|
||||
import random
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
@@ -14,7 +12,7 @@ from akkudoktoreos.core.coreabc import (
|
||||
DevicesMixin,
|
||||
EnergyManagementSystemMixin,
|
||||
)
|
||||
from akkudoktoreos.core.ems import EnergieManagementSystemParameters, SimulationResult
|
||||
from akkudoktoreos.core.ems import EnergyManagementParameters, SimulationResult
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.devices.battery import (
|
||||
@@ -25,14 +23,13 @@ from akkudoktoreos.devices.battery import (
|
||||
)
|
||||
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
|
||||
from akkudoktoreos.devices.inverter import Inverter, InverterParameters
|
||||
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class OptimizationParameters(ParametersBaseModel):
|
||||
ems: EnergieManagementSystemParameters
|
||||
ems: EnergyManagementParameters
|
||||
pv_akku: Optional[SolarPanelBatteryParameters]
|
||||
inverter: Optional[InverterParameters]
|
||||
eauto: Optional[ElectricVehicleParameters]
|
||||
@@ -112,8 +109,8 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
):
|
||||
"""Initialize the optimization problem with the required parameters."""
|
||||
self.opti_param: dict[str, Any] = {}
|
||||
self.fixed_eauto_hours = self.config.prediction_hours - self.config.optimization_hours
|
||||
self.possible_charge_values = self.config.optimization_ev_available_charge_rates_percent
|
||||
self.fixed_eauto_hours = self.config.prediction.hours - self.config.optimization.hours
|
||||
self.possible_charge_values = self.config.optimization.ev_available_charge_rates_percent
|
||||
self.verbose = verbose
|
||||
self.fix_seed = fixed_seed
|
||||
self.optimize_ev = True
|
||||
@@ -123,7 +120,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
# Set a fixed seed for random operations if provided or in debug mode
|
||||
if self.fix_seed is not None:
|
||||
random.seed(self.fix_seed)
|
||||
elif logger.level == logging.DEBUG:
|
||||
elif logger.level == "DEBUG":
|
||||
self.fix_seed = random.randint(1, 100000000000)
|
||||
random.seed(self.fix_seed)
|
||||
|
||||
@@ -180,23 +177,23 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
total_states = 3 * len_ac
|
||||
|
||||
# 1. Mutating the charge_discharge part
|
||||
charge_discharge_part = individual[: self.config.prediction_hours]
|
||||
charge_discharge_part = individual[: self.config.prediction.hours]
|
||||
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
|
||||
|
||||
# Instead of a fixed clamping to 0..8 or 0..6 dynamically:
|
||||
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1)
|
||||
individual[: self.config.prediction_hours] = charge_discharge_mutated
|
||||
individual[: self.config.prediction.hours] = charge_discharge_mutated
|
||||
|
||||
# 2. Mutating the EV charge part, if active
|
||||
if self.optimize_ev:
|
||||
ev_charge_part = individual[
|
||||
self.config.prediction_hours : self.config.prediction_hours * 2
|
||||
self.config.prediction.hours : self.config.prediction.hours * 2
|
||||
]
|
||||
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
|
||||
ev_charge_part_mutated[self.config.prediction_hours - self.fixed_eauto_hours :] = [
|
||||
ev_charge_part_mutated[self.config.prediction.hours - self.fixed_eauto_hours :] = [
|
||||
0
|
||||
] * self.fixed_eauto_hours
|
||||
individual[self.config.prediction_hours : self.config.prediction_hours * 2] = (
|
||||
individual[self.config.prediction.hours : self.config.prediction.hours * 2] = (
|
||||
ev_charge_part_mutated
|
||||
)
|
||||
|
||||
@@ -212,13 +209,13 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
def create_individual(self) -> list[int]:
|
||||
# Start with discharge states for the individual
|
||||
individual_components = [
|
||||
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction_hours)
|
||||
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction.hours)
|
||||
]
|
||||
|
||||
# Add EV charge index values if optimize_ev is True
|
||||
if self.optimize_ev:
|
||||
individual_components += [
|
||||
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction_hours)
|
||||
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction.hours)
|
||||
]
|
||||
|
||||
# Add the start time of the household appliance if it's being optimized
|
||||
@@ -251,7 +248,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
individual.extend(eautocharge_hours_index.tolist())
|
||||
elif self.optimize_ev:
|
||||
# Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu
|
||||
individual.extend([0] * self.config.prediction_hours)
|
||||
individual.extend([0] * self.config.prediction.hours)
|
||||
|
||||
# Add dishwasher start time if applicable
|
||||
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None:
|
||||
@@ -273,12 +270,13 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
3. Dishwasher start time (integer if applicable).
|
||||
"""
|
||||
# Discharge hours as a NumPy array of ints
|
||||
discharge_hours_bin = np.array(individual[: self.config.prediction_hours], dtype=int)
|
||||
discharge_hours_bin = np.array(individual[: self.config.prediction.hours], dtype=int)
|
||||
|
||||
# EV charge hours as a NumPy array of ints (if optimize_ev is True)
|
||||
eautocharge_hours_index = (
|
||||
# append ev charging states to individual
|
||||
np.array(
|
||||
individual[self.config.prediction_hours : self.config.prediction_hours * 2],
|
||||
individual[self.config.prediction.hours : self.config.prediction.hours * 2],
|
||||
dtype=int,
|
||||
)
|
||||
if self.optimize_ev
|
||||
@@ -390,7 +388,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
)
|
||||
self.ems.set_ev_charge_hours(eautocharge_hours_float)
|
||||
else:
|
||||
self.ems.set_ev_charge_hours(np.full(self.config.prediction_hours, 0))
|
||||
self.ems.set_ev_charge_hours(np.full(self.config.prediction.hours, 0))
|
||||
|
||||
return self.ems.simulate(self.ems.start_datetime.hour)
|
||||
|
||||
@@ -452,7 +450,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
# min_length = min(battery_soc_per_hour.size, discharge_hours_bin.size)
|
||||
# battery_soc_per_hour_tail = battery_soc_per_hour[-min_length:]
|
||||
# discharge_hours_bin_tail = discharge_hours_bin[-min_length:]
|
||||
# len_ac = len(self.config.optimization_ev_available_charge_rates_percent)
|
||||
# len_ac = len(self.config.optimization.ev_available_charge_rates_percent)
|
||||
|
||||
# # # Find hours where battery SoC is 0
|
||||
# # zero_soc_mask = battery_soc_per_hour_tail == 0
|
||||
@@ -501,7 +499,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
if parameters.eauto and self.ems.ev
|
||||
else 0
|
||||
)
|
||||
* self.config.optimization_penalty,
|
||||
* self.config.optimization.penalty,
|
||||
)
|
||||
|
||||
return (gesamtbilanz,)
|
||||
@@ -569,30 +567,26 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
start_hour = self.ems.start_datetime.hour
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(
|
||||
self.config.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
|
||||
self.config.prediction.hours, parameters.ems.einspeiseverguetung_euro_pro_wh
|
||||
)
|
||||
|
||||
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
|
||||
sc = SelfConsumptionProbabilityInterpolator(
|
||||
Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
|
||||
)
|
||||
# TODO: Refactor device setup phase out
|
||||
self.devices.reset()
|
||||
|
||||
# Initialize PV and EV batteries
|
||||
akku: Optional[Battery] = None
|
||||
if parameters.pv_akku:
|
||||
akku = Battery(
|
||||
parameters.pv_akku,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
akku.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
|
||||
akku = Battery(parameters.pv_akku)
|
||||
self.devices.add_device(akku)
|
||||
akku.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
|
||||
|
||||
eauto: Optional[Battery] = None
|
||||
if parameters.eauto:
|
||||
eauto = Battery(
|
||||
parameters.eauto,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
eauto.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
|
||||
self.devices.add_device(eauto)
|
||||
eauto.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
|
||||
self.optimize_ev = (
|
||||
parameters.eauto.min_soc_percentage - parameters.eauto.initial_soc_percentage >= 0
|
||||
)
|
||||
@@ -603,20 +597,22 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
dishwasher = (
|
||||
HomeAppliance(
|
||||
parameters=parameters.dishwasher,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
if parameters.dishwasher is not None
|
||||
else None
|
||||
)
|
||||
self.devices.add_device(dishwasher)
|
||||
|
||||
# Initialize the inverter and energy management system
|
||||
inverter: Optional[Inverter] = None
|
||||
if parameters.inverter:
|
||||
inverter = Inverter(
|
||||
sc,
|
||||
parameters.inverter,
|
||||
akku,
|
||||
)
|
||||
self.devices.add_device(inverter)
|
||||
|
||||
self.devices.post_setup()
|
||||
|
||||
self.ems.set_parameters(
|
||||
parameters.ems,
|
||||
inverter=inverter,
|
||||
|
@@ -9,21 +9,19 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
class OptimizationCommonSettings(SettingsBaseModel):
|
||||
"""Base configuration for optimization settings.
|
||||
"""General Optimization Configuration.
|
||||
|
||||
Attributes:
|
||||
optimization_hours (int): Number of hours for optimizations.
|
||||
hours (int): Number of hours for optimizations.
|
||||
"""
|
||||
|
||||
optimization_hours: Optional[int] = Field(
|
||||
default=24, ge=0, description="Number of hours into the future for optimizations."
|
||||
hours: Optional[int] = Field(
|
||||
default=48, ge=0, description="Number of hours into the future for optimizations."
|
||||
)
|
||||
|
||||
optimization_penalty: Optional[int] = Field(
|
||||
default=10, description="Penalty factor used in optimization."
|
||||
)
|
||||
penalty: Optional[int] = Field(default=10, description="Penalty factor used in optimization.")
|
||||
|
||||
optimization_ev_available_charge_rates_percent: Optional[List[float]] = Field(
|
||||
ev_available_charge_rates_percent: Optional[List[float]] = Field(
|
||||
default=[
|
||||
0.0,
|
||||
6.0 / 16.0,
|
||||
|
@@ -3,12 +3,21 @@ from typing import Optional
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
|
||||
|
||||
|
||||
class ElecPriceCommonSettings(SettingsBaseModel):
|
||||
elecprice_provider: Optional[str] = Field(
|
||||
default=None, description="Electricity price provider id of provider to be used."
|
||||
"""Electricity Price Prediction Configuration."""
|
||||
|
||||
provider: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Electricity price provider id of provider to be used.",
|
||||
examples=["ElecPriceAkkudoktor"],
|
||||
)
|
||||
elecprice_charges_kwh: Optional[float] = Field(
|
||||
default=None, ge=0, description="Electricity price charges (€/kWh)."
|
||||
charges_kwh: Optional[float] = Field(
|
||||
default=None, ge=0, description="Electricity price charges (€/kWh).", examples=[0.21]
|
||||
)
|
||||
|
||||
provider_settings: Optional[ElecPriceImportCommonSettings] = Field(
|
||||
default=None, description="Provider settings", examples=[None]
|
||||
)
|
||||
|
@@ -49,15 +49,15 @@ class ElecPriceProvider(PredictionProvider):
|
||||
electricity price_provider (str): Prediction provider for electricity price.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
|
||||
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
|
||||
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
|
||||
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
|
||||
calculated based on `start_datetime` and `prediction_hours`.
|
||||
calculated based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
|
||||
based on `start_datetime` and `prediction_historic_hours`.
|
||||
based on `start_datetime` and `historic_hours`.
|
||||
"""
|
||||
|
||||
# overload
|
||||
@@ -71,4 +71,4 @@ class ElecPriceProvider(PredictionProvider):
|
||||
return "ElecPriceProvider"
|
||||
|
||||
def enabled(self) -> bool:
|
||||
return self.provider_id() == self.config.elecprice_provider
|
||||
return self.provider_id() == self.config.elecprice.provider
|
||||
|
@@ -14,10 +14,10 @@ import requests
|
||||
from pydantic import ValidationError
|
||||
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
||||
|
||||
from akkudoktoreos.core.cache import cache_in_file
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -54,11 +54,11 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
of hours into the future and retains historical data.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): Number of hours in the future for the forecast.
|
||||
prediction_historic_hours (int, optional): Number of past hours for retaining data.
|
||||
hours (int, optional): Number of hours in the future for the forecast.
|
||||
historic_hours (int, optional): Number of past hours for retaining data.
|
||||
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
|
||||
|
||||
Methods:
|
||||
provider_id(): Returns a unique identifier for the provider.
|
||||
@@ -108,13 +108,13 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
# Try to take data from 5 weeks back for prediction
|
||||
date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD")
|
||||
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
|
||||
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.timezone}"
|
||||
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.general.timezone}"
|
||||
response = requests.get(url)
|
||||
logger.debug(f"Response from {url}: {response}")
|
||||
response.raise_for_status() # Raise an error for bad responses
|
||||
akkudoktor_data = self._validate_data(response.content)
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
|
||||
return akkudoktor_data
|
||||
|
||||
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
|
||||
@@ -125,18 +125,16 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
capped_data = data.clip(min=lower_bound, max=upper_bound)
|
||||
return capped_data
|
||||
|
||||
def _predict_ets(
|
||||
self, history: np.ndarray, seasonal_periods: int, prediction_hours: int
|
||||
) -> np.ndarray:
|
||||
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray:
|
||||
clean_history = self._cap_outliers(history)
|
||||
model = ExponentialSmoothing(
|
||||
clean_history, seasonal="add", seasonal_periods=seasonal_periods
|
||||
).fit()
|
||||
return model.forecast(prediction_hours)
|
||||
return model.forecast(hours)
|
||||
|
||||
def _predict_median(self, history: np.ndarray, prediction_hours: int) -> np.ndarray:
|
||||
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray:
|
||||
clean_history = self._cap_outliers(history)
|
||||
return np.full(prediction_hours, np.median(clean_history))
|
||||
return np.full(hours, np.median(clean_history))
|
||||
|
||||
def _update_data(
|
||||
self, force_update: Optional[bool] = False
|
||||
@@ -155,14 +153,14 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
# Assumption that all lists are the same length and are ordered chronologically
|
||||
# in ascending order and have the same timestamps.
|
||||
|
||||
# Get elecprice_charges_kwh in wh
|
||||
charges_wh = (self.config.elecprice_charges_kwh or 0) / 1000
|
||||
# Get charges_kwh in wh
|
||||
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000
|
||||
|
||||
highest_orig_datetime = None # newest datetime from the api after that we want to update.
|
||||
series_data = pd.Series(dtype=float) # Initialize an empty series
|
||||
|
||||
for value in akkudoktor_data.values:
|
||||
orig_datetime = to_datetime(value.start, in_timezone=self.config.timezone)
|
||||
orig_datetime = to_datetime(value.start, in_timezone=self.config.general.timezone)
|
||||
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
|
||||
highest_orig_datetime = orig_datetime
|
||||
|
||||
@@ -183,27 +181,23 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
assert highest_orig_datetime # mypy fix
|
||||
|
||||
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
|
||||
needed_prediction_hours = int(
|
||||
self.config.prediction_hours
|
||||
needed_hours = int(
|
||||
self.config.prediction.hours
|
||||
- ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
|
||||
)
|
||||
|
||||
if needed_prediction_hours <= 0:
|
||||
if needed_hours <= 0:
|
||||
logger.warning(
|
||||
f"No prediction needed. needed_prediction_hours={needed_prediction_hours}, prediction_hours={self.config.prediction_hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
|
||||
) # this might keep data longer than self.start_datetime + self.config.prediction_hours in the records
|
||||
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
|
||||
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records
|
||||
return
|
||||
|
||||
if amount_datasets > 800: # we do the full ets with seasons of 1 week
|
||||
prediction = self._predict_ets(
|
||||
history, seasonal_periods=168, prediction_hours=needed_prediction_hours
|
||||
)
|
||||
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours)
|
||||
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
|
||||
prediction = self._predict_ets(
|
||||
history, seasonal_periods=24, prediction_hours=needed_prediction_hours
|
||||
)
|
||||
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours)
|
||||
elif amount_datasets > 0: # not enough data for ets, do median
|
||||
prediction = self._predict_median(history, prediction_hours=needed_prediction_hours)
|
||||
prediction = self._predict_median(history, hours=needed_hours)
|
||||
else:
|
||||
logger.error("No data available for prediction")
|
||||
raise ValueError("No data available")
|
||||
|
@@ -22,21 +22,22 @@ logger = get_logger(__name__)
|
||||
class ElecPriceImportCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for elecprice data import from file or JSON String."""
|
||||
|
||||
elecpriceimport_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None, description="Path to the file to import elecprice data from."
|
||||
import_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None,
|
||||
description="Path to the file to import elecprice data from.",
|
||||
examples=[None, "/path/to/prices.json"],
|
||||
)
|
||||
|
||||
elecpriceimport_json: Optional[str] = Field(
|
||||
import_json: Optional[str] = Field(
|
||||
default=None,
|
||||
description="JSON string, dictionary of electricity price forecast value lists.",
|
||||
examples=['{"elecprice_marketprice_wh": [0.0003384, 0.0003318, 0.0003284]}'],
|
||||
)
|
||||
|
||||
# Validators
|
||||
@field_validator("elecpriceimport_file_path", mode="after")
|
||||
@field_validator("import_file_path", mode="after")
|
||||
@classmethod
|
||||
def validate_elecpriceimport_file_path(
|
||||
cls, value: Optional[Union[str, Path]]
|
||||
) -> Optional[Path]:
|
||||
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, str):
|
||||
@@ -62,7 +63,15 @@ class ElecPriceImport(ElecPriceProvider, PredictionImportProvider):
|
||||
return "ElecPriceImport"
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
if self.config.elecpriceimport_file_path is not None:
|
||||
self.import_from_file(self.config.elecpriceimport_file_path, key_prefix="elecprice")
|
||||
if self.config.elecpriceimport_json is not None:
|
||||
self.import_from_json(self.config.elecpriceimport_json, key_prefix="elecprice")
|
||||
if self.config.elecprice.provider_settings is None:
|
||||
logger.debug(f"{self.provider_id()} data update without provider settings.")
|
||||
return
|
||||
if self.config.elecprice.provider_settings.import_file_path:
|
||||
self.import_from_file(
|
||||
self.config.elecprice.provider_settings.import_file_path,
|
||||
key_prefix="elecprice",
|
||||
)
|
||||
if self.config.elecprice.provider_settings.import_json:
|
||||
self.import_from_json(
|
||||
self.config.elecprice.provider_settings.import_json, key_prefix="elecprice"
|
||||
)
|
||||
|
@@ -6,6 +6,8 @@ from pathlib import Path
|
||||
import numpy as np
|
||||
from scipy.interpolate import RegularGridInterpolator
|
||||
|
||||
from akkudoktoreos.core.coreabc import SingletonMixin
|
||||
|
||||
|
||||
class SelfConsumptionProbabilityInterpolator:
|
||||
def __init__(self, filepath: str | Path):
|
||||
@@ -67,5 +69,17 @@ class SelfConsumptionProbabilityInterpolator:
|
||||
# return self_consumption_rate
|
||||
|
||||
|
||||
# Test the function
|
||||
# print(calculate_self_consumption(1000, 1200))
|
||||
class EOSLoadInterpolator(SelfConsumptionProbabilityInterpolator, SingletonMixin):
|
||||
def __init__(self) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
filename = Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
|
||||
super().__init__(filename)
|
||||
|
||||
|
||||
# Initialize the Energy Management System, it is a singleton.
|
||||
eos_load_interpolator = EOSLoadInterpolator()
|
||||
|
||||
|
||||
def get_eos_load_interpolator() -> EOSLoadInterpolator:
|
||||
return eos_load_interpolator
|
||||
|
@@ -1,18 +1,26 @@
|
||||
"""Load forecast module for load predictions."""
|
||||
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
|
||||
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class LoadCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for loaod forecast providers."""
|
||||
"""Load Prediction Configuration."""
|
||||
|
||||
load_provider: Optional[str] = Field(
|
||||
default=None, description="Load provider id of provider to be used."
|
||||
provider: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Load provider id of provider to be used.",
|
||||
examples=["LoadAkkudoktor"],
|
||||
)
|
||||
|
||||
provider_settings: Optional[Union[LoadAkkudoktorCommonSettings, LoadImportCommonSettings]] = (
|
||||
Field(default=None, description="Provider settings", examples=[None])
|
||||
)
|
||||
|
@@ -33,18 +33,18 @@ class LoadProvider(PredictionProvider):
|
||||
LoadProvider is a thread-safe singleton, ensuring only one instance of this class is created.
|
||||
|
||||
Configuration variables:
|
||||
load_provider (str): Prediction provider for load.
|
||||
provider (str): Prediction provider for load.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
|
||||
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
|
||||
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
|
||||
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
|
||||
calculated based on `start_datetime` and `prediction_hours`.
|
||||
calculated based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
|
||||
based on `start_datetime` and `prediction_historic_hours`.
|
||||
based on `start_datetime` and `historic_hours`.
|
||||
"""
|
||||
|
||||
# overload
|
||||
@@ -58,4 +58,4 @@ class LoadProvider(PredictionProvider):
|
||||
return "LoadProvider"
|
||||
|
||||
def enabled(self) -> bool:
|
||||
return self.provider_id() == self.config.load_provider
|
||||
return self.provider_id() == self.config.load.provider
|
||||
|
@@ -17,7 +17,7 @@ class LoadAkkudoktorCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for load data import from file."""
|
||||
|
||||
loadakkudoktor_year_energy: Optional[float] = Field(
|
||||
default=None, description="Yearly energy consumption (kWh)."
|
||||
default=None, description="Yearly energy consumption (kWh).", examples=[40421]
|
||||
)
|
||||
|
||||
|
||||
@@ -91,7 +91,9 @@ class LoadAkkudoktor(LoadProvider):
|
||||
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
|
||||
)
|
||||
# Calculate values in W by relative profile data and yearly consumption given in kWh
|
||||
data_year_energy = profile_data * self.config.loadakkudoktor_year_energy * 1000
|
||||
data_year_energy = (
|
||||
profile_data * self.config.load.provider_settings.loadakkudoktor_year_energy * 1000
|
||||
)
|
||||
except FileNotFoundError:
|
||||
error_msg = f"Error: File {load_file} not found."
|
||||
logger.error(error_msg)
|
||||
@@ -109,7 +111,7 @@ class LoadAkkudoktor(LoadProvider):
|
||||
# We provide prediction starting at start of day, to be compatible to old system.
|
||||
# End date for prediction is prediction hours from now.
|
||||
date = self.start_datetime.start_of("day")
|
||||
end_date = self.start_datetime.add(hours=self.config.prediction_hours)
|
||||
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
|
||||
while compare_datetimes(date, end_date).lt:
|
||||
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
|
||||
# Day indexing starts at 0, -1 because of that
|
||||
@@ -127,4 +129,4 @@ class LoadAkkudoktor(LoadProvider):
|
||||
self.update_value(date, values)
|
||||
date += to_duration("1 hour")
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
|
||||
|
@@ -22,15 +22,19 @@ logger = get_logger(__name__)
|
||||
class LoadImportCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for load data import from file or JSON string."""
|
||||
|
||||
load_import_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None, description="Path to the file to import load data from."
|
||||
import_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None,
|
||||
description="Path to the file to import load data from.",
|
||||
examples=[None, "/path/to/yearly_load.json"],
|
||||
)
|
||||
load_import_json: Optional[str] = Field(
|
||||
default=None, description="JSON string, dictionary of load forecast value lists."
|
||||
import_json: Optional[str] = Field(
|
||||
default=None,
|
||||
description="JSON string, dictionary of load forecast value lists.",
|
||||
examples=['{"load0_mean": [676.71, 876.19, 527.13]}'],
|
||||
)
|
||||
|
||||
# Validators
|
||||
@field_validator("load_import_file_path", mode="after")
|
||||
@field_validator("import_file_path", mode="after")
|
||||
@classmethod
|
||||
def validate_loadimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
|
||||
if value is None:
|
||||
@@ -58,7 +62,10 @@ class LoadImport(LoadProvider, PredictionImportProvider):
|
||||
return "LoadImport"
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
if self.config.load_import_file_path is not None:
|
||||
self.import_from_file(self.config.load_import_file_path, key_prefix="load")
|
||||
if self.config.load_import_json is not None:
|
||||
self.import_from_json(self.config.load_import_json, key_prefix="load")
|
||||
if self.config.load.provider_settings is None:
|
||||
logger.debug(f"{self.provider_id()} data update without provider settings.")
|
||||
return
|
||||
if self.config.load.provider_settings.import_file_path:
|
||||
self.import_from_file(self.config.provider_settings.import_file_path, key_prefix="load")
|
||||
if self.config.load.provider_settings.import_json:
|
||||
self.import_from_json(self.config.load.provider_settings.import_json, key_prefix="load")
|
||||
|
@@ -28,7 +28,7 @@ Attributes:
|
||||
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from pydantic import Field, computed_field
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.prediction.elecpriceakkudoktor import ElecPriceAkkudoktor
|
||||
@@ -41,65 +41,34 @@ from akkudoktoreos.prediction.pvforecastimport import PVForecastImport
|
||||
from akkudoktoreos.prediction.weatherbrightsky import WeatherBrightSky
|
||||
from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside
|
||||
from akkudoktoreos.prediction.weatherimport import WeatherImport
|
||||
from akkudoktoreos.utils.datetimeutil import to_timezone
|
||||
|
||||
|
||||
class PredictionCommonSettings(SettingsBaseModel):
|
||||
"""Base configuration for prediction settings, including forecast duration, geographic location, and time zone.
|
||||
"""General Prediction Configuration.
|
||||
|
||||
This class provides configuration for prediction settings, allowing users to specify
|
||||
parameters such as the forecast duration (in hours) and location (latitude and longitude).
|
||||
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
|
||||
determines the time zone based on latitude and longitude.
|
||||
parameters such as the forecast duration (in hours).
|
||||
Validators ensure each parameter is within a specified range.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (Optional[int]): Number of hours into the future for predictions.
|
||||
hours (Optional[int]): Number of hours into the future for predictions.
|
||||
Must be non-negative.
|
||||
prediction_historic_hours (Optional[int]): Number of hours into the past for historical data.
|
||||
historic_hours (Optional[int]): Number of hours into the past for historical data.
|
||||
Must be non-negative.
|
||||
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
|
||||
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
|
||||
|
||||
Properties:
|
||||
timezone (Optional[str]): Computed time zone string based on the specified latitude
|
||||
and longitude.
|
||||
|
||||
Validators:
|
||||
validate_prediction_hours (int): Ensures `prediction_hours` is a non-negative integer.
|
||||
validate_prediction_historic_hours (int): Ensures `prediction_historic_hours` is a non-negative integer.
|
||||
validate_latitude (float): Ensures `latitude` is within the range -90 to 90.
|
||||
validate_longitude (float): Ensures `longitude` is within the range -180 to 180.
|
||||
validate_hours (int): Ensures `hours` is a non-negative integer.
|
||||
validate_historic_hours (int): Ensures `historic_hours` is a non-negative integer.
|
||||
"""
|
||||
|
||||
prediction_hours: Optional[int] = Field(
|
||||
hours: Optional[int] = Field(
|
||||
default=48, ge=0, description="Number of hours into the future for predictions"
|
||||
)
|
||||
prediction_historic_hours: Optional[int] = Field(
|
||||
historic_hours: Optional[int] = Field(
|
||||
default=48,
|
||||
ge=0,
|
||||
description="Number of hours into the past for historical predictions data",
|
||||
)
|
||||
latitude: Optional[float] = Field(
|
||||
default=None,
|
||||
ge=-90.0,
|
||||
le=90.0,
|
||||
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
|
||||
)
|
||||
longitude: Optional[float] = Field(
|
||||
default=None,
|
||||
ge=-180.0,
|
||||
le=180.0,
|
||||
description="Longitude in decimal degrees, within -180 to 180 (°)",
|
||||
)
|
||||
|
||||
# Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def timezone(self) -> Optional[str]:
|
||||
"""Compute timezone based on latitude and longitude."""
|
||||
if self.latitude and self.longitude:
|
||||
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
|
||||
return None
|
||||
|
||||
|
||||
class Prediction(PredictionContainer):
|
||||
|
@@ -114,16 +114,16 @@ class PredictionStartEndKeepMixin(PredictionBase):
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def end_datetime(self) -> Optional[DateTime]:
|
||||
"""Compute the end datetime based on the `start_datetime` and `prediction_hours`.
|
||||
"""Compute the end datetime based on the `start_datetime` and `hours`.
|
||||
|
||||
Ajusts the calculated end time if DST transitions occur within the prediction window.
|
||||
|
||||
Returns:
|
||||
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
|
||||
"""
|
||||
if self.start_datetime and self.config.prediction_hours:
|
||||
if self.start_datetime and self.config.prediction.hours:
|
||||
end_datetime = self.start_datetime + to_duration(
|
||||
f"{self.config.prediction_hours} hours"
|
||||
f"{self.config.prediction.hours} hours"
|
||||
)
|
||||
dst_change = end_datetime.offset_hours - self.start_datetime.offset_hours
|
||||
logger.debug(f"Pre: {self.start_datetime}..{end_datetime}: DST change: {dst_change}")
|
||||
@@ -147,10 +147,10 @@ class PredictionStartEndKeepMixin(PredictionBase):
|
||||
return None
|
||||
historic_hours = self.historic_hours_min()
|
||||
if (
|
||||
self.config.prediction_historic_hours
|
||||
and self.config.prediction_historic_hours > historic_hours
|
||||
self.config.prediction.historic_hours
|
||||
and self.config.prediction.historic_hours > historic_hours
|
||||
):
|
||||
historic_hours = int(self.config.prediction_historic_hours)
|
||||
historic_hours = int(self.config.prediction.historic_hours)
|
||||
return self.start_datetime - to_duration(f"{historic_hours} hours")
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@@ -206,9 +206,6 @@ class PredictionProvider(PredictionStartEndKeepMixin, DataProvider):
|
||||
force_enable (bool, optional): If True, forces the update even if the provider is disabled.
|
||||
force_update (bool, optional): If True, forces the provider to update the data even if still cached.
|
||||
"""
|
||||
# Update prediction configuration
|
||||
self.config.update()
|
||||
|
||||
# Check after configuration is updated.
|
||||
if not force_enable and not self.enabled():
|
||||
return
|
||||
|
@@ -1,397 +1,157 @@
|
||||
"""PV forecast module for PV power predictions."""
|
||||
|
||||
from typing import Any, ClassVar, List, Optional
|
||||
from typing import Any, ClassVar, List, Optional, Self
|
||||
|
||||
from pydantic import Field, computed_field
|
||||
from pydantic import Field, computed_field, field_validator, model_validator
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
|
||||
from akkudoktoreos.utils.docs import get_model_structure_from_examples
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PVForecastPlaneSetting(SettingsBaseModel):
|
||||
"""PV Forecast Plane Configuration."""
|
||||
|
||||
# latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
|
||||
surface_tilt: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Tilt angle from horizontal plane. Ignored for two-axis tracking.",
|
||||
examples=[10.0, 20.0],
|
||||
)
|
||||
surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
examples=[10.0, 20.0],
|
||||
)
|
||||
userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
examples=[[10.0, 20.0, 30.0], [5.0, 15.0, 25.0]],
|
||||
)
|
||||
peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW.", examples=[5.0, 3.5]
|
||||
)
|
||||
pvtechchoice: Optional[str] = Field(
|
||||
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
loss: Optional[float] = Field(default=14.0, description="Sum of PV system losses in percent")
|
||||
trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
ge=0,
|
||||
le=5,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
examples=[0, 1, 2, 3, 4, 5],
|
||||
)
|
||||
optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
examples=[False],
|
||||
)
|
||||
optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
examples=[False],
|
||||
)
|
||||
albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
examples=[None],
|
||||
)
|
||||
module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane.", examples=[None]
|
||||
)
|
||||
inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane.", examples=[None]
|
||||
)
|
||||
inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]", examples=[6000, 4000]
|
||||
)
|
||||
modules_per_string: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Number of the PV modules of the strings of this plane.",
|
||||
examples=[20],
|
||||
)
|
||||
strings_per_inverter: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Number of the strings of the inverter of this plane.",
|
||||
examples=[2],
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_list_length(self) -> Self:
|
||||
# Check if either attribute is set and add to active planes
|
||||
if self.trackingtype == 2:
|
||||
# Tilt angle from horizontal plane is ignored for two-axis tracking.
|
||||
if self.surface_azimuth is None:
|
||||
raise ValueError("If trackingtype is set, azimuth must be set as well.")
|
||||
elif self.surface_tilt is None or self.surface_azimuth is None:
|
||||
raise ValueError("surface_tilt and surface_azimuth must be set.")
|
||||
return self
|
||||
|
||||
@field_validator("mountingplace")
|
||||
def validate_mountingplace(cls, mountingplace: Optional[str]) -> Optional[str]:
|
||||
if mountingplace is not None and mountingplace not in ["free", "building"]:
|
||||
raise ValueError(f"Invalid mountingplace: {mountingplace}")
|
||||
return mountingplace
|
||||
|
||||
@field_validator("pvtechchoice")
|
||||
def validate_pvtechchoice(cls, pvtechchoice: Optional[str]) -> Optional[str]:
|
||||
if pvtechchoice is not None and pvtechchoice not in ["crystSi", "CIS", "CdTe", "Unknown"]:
|
||||
raise ValueError(f"Invalid pvtechchoice: {pvtechchoice}")
|
||||
return pvtechchoice
|
||||
|
||||
|
||||
class PVForecastCommonSettings(SettingsBaseModel):
|
||||
"""PV Forecast Configuration."""
|
||||
|
||||
# General plane parameters
|
||||
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html
|
||||
# Inverter Parameters
|
||||
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/inverter.html
|
||||
|
||||
pvforecast_provider: Optional[str] = Field(
|
||||
default=None, description="PVForecast provider id of provider to be used."
|
||||
)
|
||||
# pvforecast0_latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
|
||||
# Plane 0
|
||||
pvforecast0_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast0_surface_azimuth: Optional[float] = Field(
|
||||
provider: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast0_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast0_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast0_pvtechchoice: Optional[str] = Field(
|
||||
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast0_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast0_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast0_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast0_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast0_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast0_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast0_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast0_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast0_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast0_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast0_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
)
|
||||
# Plane 1
|
||||
pvforecast1_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast1_surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast1_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast1_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast1_pvtechchoice: Optional[str] = Field(
|
||||
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast1_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast1_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast1_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast1_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast1_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast1_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast1_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast1_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast1_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast1_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast1_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
)
|
||||
# Plane 2
|
||||
pvforecast2_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast2_surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast2_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast2_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast2_pvtechchoice: Optional[str] = Field(
|
||||
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast2_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast2_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast2_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast2_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast2_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast2_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast2_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast2_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast2_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast2_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast2_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
)
|
||||
# Plane 3
|
||||
pvforecast3_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast3_surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast3_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast3_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast3_pvtechchoice: Optional[str] = Field(
|
||||
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast3_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast3_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast3_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast3_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast3_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast3_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast3_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast3_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast3_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast3_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast3_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
)
|
||||
# Plane 4
|
||||
pvforecast4_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast4_surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast4_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast4_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast4_pvtechchoice: Optional[str] = Field(
|
||||
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast4_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast4_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast4_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast4_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast4_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast4_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast4_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast4_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast4_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast4_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast4_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
)
|
||||
# Plane 5
|
||||
pvforecast5_surface_tilt: Optional[float] = Field(
|
||||
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
|
||||
)
|
||||
pvforecast5_surface_azimuth: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
|
||||
)
|
||||
pvforecast5_userhorizon: Optional[List[float]] = Field(
|
||||
default=None,
|
||||
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
|
||||
)
|
||||
pvforecast5_peakpower: Optional[float] = Field(
|
||||
default=None, description="Nominal power of PV system in kW."
|
||||
)
|
||||
pvforecast5_pvtechchoice: Optional[str] = Field(
|
||||
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
|
||||
)
|
||||
pvforecast5_mountingplace: Optional[str] = Field(
|
||||
default="free",
|
||||
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
|
||||
)
|
||||
pvforecast5_loss: Optional[float] = Field(
|
||||
default=14.0, description="Sum of PV system losses in percent"
|
||||
)
|
||||
pvforecast5_trackingtype: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
|
||||
)
|
||||
pvforecast5_optimal_surface_tilt: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast5_optimalangles: Optional[bool] = Field(
|
||||
default=False,
|
||||
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
|
||||
)
|
||||
pvforecast5_albedo: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Proportion of the light hitting the ground that it reflects back.",
|
||||
)
|
||||
pvforecast5_module_model: Optional[str] = Field(
|
||||
default=None, description="Model of the PV modules of this plane."
|
||||
)
|
||||
pvforecast5_inverter_model: Optional[str] = Field(
|
||||
default=None, description="Model of the inverter of this plane."
|
||||
)
|
||||
pvforecast5_inverter_paco: Optional[int] = Field(
|
||||
default=None, description="AC power rating of the inverter. [W]"
|
||||
)
|
||||
pvforecast5_modules_per_string: Optional[int] = Field(
|
||||
default=None, description="Number of the PV modules of the strings of this plane."
|
||||
)
|
||||
pvforecast5_strings_per_inverter: Optional[int] = Field(
|
||||
default=None, description="Number of the strings of the inverter of this plane."
|
||||
description="PVForecast provider id of provider to be used.",
|
||||
examples=["PVForecastAkkudoktor"],
|
||||
)
|
||||
|
||||
pvforecast_max_planes: ClassVar[int] = 6 # Maximum number of planes that can be set
|
||||
planes: Optional[list[PVForecastPlaneSetting]] = Field(
|
||||
default=None,
|
||||
description="Plane configuration.",
|
||||
examples=[get_model_structure_from_examples(PVForecastPlaneSetting, True)],
|
||||
)
|
||||
|
||||
# Computed fields
|
||||
max_planes: ClassVar[int] = 6 # Maximum number of planes that can be set
|
||||
|
||||
@field_validator("planes")
|
||||
def validate_planes(
|
||||
cls, planes: Optional[list[PVForecastPlaneSetting]]
|
||||
) -> Optional[list[PVForecastPlaneSetting]]:
|
||||
if planes is not None and len(planes) > cls.max_planes:
|
||||
raise ValueError(f"Maximum number of supported planes: {cls.max_planes}.")
|
||||
return planes
|
||||
|
||||
provider_settings: Optional[PVForecastImportCommonSettings] = Field(
|
||||
default=None, description="Provider settings", examples=[None]
|
||||
)
|
||||
|
||||
## Computed fields
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes(self) -> List[str]:
|
||||
"""Compute a list of active planes."""
|
||||
active_planes = []
|
||||
|
||||
# Loop through pvforecast0 to pvforecast4
|
||||
for i in range(self.pvforecast_max_planes):
|
||||
plane = f"pvforecast{i}"
|
||||
tackingtype_attr = f"{plane}_trackingtype"
|
||||
tilt_attr = f"{plane}_surface_tilt"
|
||||
azimuth_attr = f"{plane}_surface_azimuth"
|
||||
|
||||
# Check if either attribute is set and add to active planes
|
||||
if getattr(self, tackingtype_attr, None) == 2:
|
||||
# Tilt angle from horizontal plane is gnored for two-axis tracking.
|
||||
if getattr(self, azimuth_attr, None) is not None:
|
||||
active_planes.append(f"pvforecast{i}")
|
||||
elif getattr(self, tilt_attr, None) and getattr(self, azimuth_attr, None):
|
||||
active_planes.append(f"pvforecast{i}")
|
||||
|
||||
return active_planes
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes_peakpower(self) -> List[float]:
|
||||
def planes_peakpower(self) -> List[float]:
|
||||
"""Compute a list of the peak power per active planes."""
|
||||
planes_peakpower = []
|
||||
|
||||
for plane in self.pvforecast_planes:
|
||||
peakpower_attr = f"{plane}_peakpower"
|
||||
peakpower = getattr(self, peakpower_attr, None)
|
||||
if self.planes:
|
||||
for plane in self.planes:
|
||||
peakpower = plane.peakpower
|
||||
if peakpower is None:
|
||||
# TODO calculate peak power from modules/strings
|
||||
planes_peakpower.append(float(5000))
|
||||
@@ -402,13 +162,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes_azimuth(self) -> List[float]:
|
||||
def planes_azimuth(self) -> List[float]:
|
||||
"""Compute a list of the azimuths per active planes."""
|
||||
planes_azimuth = []
|
||||
|
||||
for plane in self.pvforecast_planes:
|
||||
azimuth_attr = f"{plane}_surface_azimuth"
|
||||
azimuth = getattr(self, azimuth_attr, None)
|
||||
if self.planes:
|
||||
for plane in self.planes:
|
||||
azimuth = plane.surface_azimuth
|
||||
if azimuth is None:
|
||||
# TODO Use default
|
||||
planes_azimuth.append(float(180))
|
||||
@@ -419,13 +179,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes_tilt(self) -> List[float]:
|
||||
def planes_tilt(self) -> List[float]:
|
||||
"""Compute a list of the tilts per active planes."""
|
||||
planes_tilt = []
|
||||
|
||||
for plane in self.pvforecast_planes:
|
||||
tilt_attr = f"{plane}_surface_tilt"
|
||||
tilt = getattr(self, tilt_attr, None)
|
||||
if self.planes:
|
||||
for plane in self.planes:
|
||||
tilt = plane.surface_tilt
|
||||
if tilt is None:
|
||||
# TODO Use default
|
||||
planes_tilt.append(float(30))
|
||||
@@ -436,13 +196,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes_userhorizon(self) -> Any:
|
||||
def planes_userhorizon(self) -> Any:
|
||||
"""Compute a list of the user horizon per active planes."""
|
||||
planes_userhorizon = []
|
||||
|
||||
for plane in self.pvforecast_planes:
|
||||
userhorizon_attr = f"{plane}_userhorizon"
|
||||
userhorizon = getattr(self, userhorizon_attr, None)
|
||||
if self.planes:
|
||||
for plane in self.planes:
|
||||
userhorizon = plane.userhorizon
|
||||
if userhorizon is None:
|
||||
# TODO Use default
|
||||
planes_userhorizon.append([float(0), float(0)])
|
||||
@@ -453,13 +213,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def pvforecast_planes_inverter_paco(self) -> Any:
|
||||
def planes_inverter_paco(self) -> Any:
|
||||
"""Compute a list of the maximum power rating of the inverter per active planes."""
|
||||
planes_inverter_paco = []
|
||||
|
||||
for plane in self.pvforecast_planes:
|
||||
inverter_paco_attr = f"{plane}_inverter_paco"
|
||||
inverter_paco = getattr(self, inverter_paco_attr, None)
|
||||
if self.planes:
|
||||
for plane in self.planes:
|
||||
inverter_paco = plane.inverter_paco
|
||||
if inverter_paco is None:
|
||||
# TODO Use default - no clipping
|
||||
planes_inverter_paco.append(25000.0)
|
||||
|
@@ -28,18 +28,18 @@ class PVForecastProvider(PredictionProvider):
|
||||
PVForecastProvider is a thread-safe singleton, ensuring only one instance of this class is created.
|
||||
|
||||
Configuration variables:
|
||||
pvforecast_provider (str): Prediction provider for pvforecast.
|
||||
provider (str): Prediction provider for pvforecast.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
|
||||
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
|
||||
start_datetime (datetime, optional): The starting datetime for predictions (inlcusive), defaults to the current datetime if unspecified.
|
||||
end_datetime (datetime, computed): The datetime representing the end of the prediction range (exclusive),
|
||||
calculated based on `start_datetime` and `prediction_hours`.
|
||||
calculated based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The earliest datetime for retaining historical data (inclusive), calculated
|
||||
based on `start_datetime` and `prediction_historic_hours`.
|
||||
based on `start_datetime` and `historic_hours`.
|
||||
"""
|
||||
|
||||
# overload
|
||||
@@ -54,6 +54,6 @@ class PVForecastProvider(PredictionProvider):
|
||||
|
||||
def enabled(self) -> bool:
|
||||
logger.debug(
|
||||
f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast_provider}"
|
||||
f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast.provider}"
|
||||
)
|
||||
return self.provider_id() == self.config.pvforecast_provider
|
||||
return self.provider_id() == self.config.pvforecast.provider
|
||||
|
@@ -14,21 +14,33 @@ Classes:
|
||||
Example:
|
||||
# Set up the configuration with necessary fields for URL generation
|
||||
settings_data = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
"pvforecast_provider": "Akkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
"pvforecast": {
|
||||
"provider": "PVForecastAkkudoktor",
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [20, 27, 22, 20],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [30, 30, 30, 50],
|
||||
"inverter_paco": 10000,
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
# Create the config instance from the provided data
|
||||
@@ -47,12 +59,12 @@ Example:
|
||||
print(forecast.report_ac_power_and_measurement())
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int): Number of hours into the future to forecast. Default is 48.
|
||||
prediction_historic_hours (int): Number of past hours to retain for analysis. Default is 24.
|
||||
hours (int): Number of hours into the future to forecast. Default is 48.
|
||||
historic_hours (int): Number of past hours to retain for analysis. Default is 24.
|
||||
latitude (float): Latitude for the forecast location.
|
||||
longitude (float): Longitude for the forecast location.
|
||||
start_datetime (datetime): Start time for the forecast, defaulting to current datetime.
|
||||
end_datetime (datetime): Computed end datetime based on `start_datetime` and `prediction_hours`.
|
||||
end_datetime (datetime): Computed end datetime based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime): Computed threshold datetime for retaining historical data.
|
||||
|
||||
Methods:
|
||||
@@ -68,13 +80,13 @@ from typing import Any, List, Optional, Union
|
||||
import requests
|
||||
from pydantic import Field, ValidationError, computed_field
|
||||
|
||||
from akkudoktoreos.core.cache import cache_in_file
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.prediction.pvforecastabc import (
|
||||
PVForecastDataRecord,
|
||||
PVForecastProvider,
|
||||
)
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -159,13 +171,13 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
of hours into the future and retains historical data.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): Number of hours in the future for the forecast.
|
||||
prediction_historic_hours (int, optional): Number of past hours for retaining data.
|
||||
hours (int, optional): Number of hours in the future for the forecast.
|
||||
historic_hours (int, optional): Number of past hours for retaining data.
|
||||
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
|
||||
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
|
||||
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
|
||||
|
||||
Methods:
|
||||
provider_id(): Returns a unique identifier for the provider.
|
||||
@@ -203,19 +215,19 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
"""Build akkudoktor.net API request URL."""
|
||||
base_url = "https://api.akkudoktor.net/forecast"
|
||||
query_params = [
|
||||
f"lat={self.config.latitude}",
|
||||
f"lon={self.config.longitude}",
|
||||
f"lat={self.config.general.latitude}",
|
||||
f"lon={self.config.general.longitude}",
|
||||
]
|
||||
|
||||
for i in range(len(self.config.pvforecast_planes)):
|
||||
query_params.append(f"power={int(self.config.pvforecast_planes_peakpower[i] * 1000)}")
|
||||
query_params.append(f"azimuth={int(self.config.pvforecast_planes_azimuth[i])}")
|
||||
query_params.append(f"tilt={int(self.config.pvforecast_planes_tilt[i])}")
|
||||
for i in range(len(self.config.pvforecast.planes)):
|
||||
query_params.append(f"power={int(self.config.pvforecast.planes_peakpower[i] * 1000)}")
|
||||
query_params.append(f"azimuth={int(self.config.pvforecast.planes_azimuth[i])}")
|
||||
query_params.append(f"tilt={int(self.config.pvforecast.planes_tilt[i])}")
|
||||
query_params.append(
|
||||
f"powerInverter={int(self.config.pvforecast_planes_inverter_paco[i])}"
|
||||
f"powerInverter={int(self.config.pvforecast.planes_inverter_paco[i])}"
|
||||
)
|
||||
horizon_values = ",".join(
|
||||
str(int(h)) for h in self.config.pvforecast_planes_userhorizon[i]
|
||||
str(int(h)) for h in self.config.pvforecast.planes_userhorizon[i]
|
||||
)
|
||||
query_params.append(f"horizont={horizon_values}")
|
||||
|
||||
@@ -226,7 +238,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
"cellCoEff=-0.36",
|
||||
"inverterEfficiency=0.8",
|
||||
"albedo=0.25",
|
||||
f"timezone={self.config.timezone}",
|
||||
f"timezone={self.config.general.timezone}",
|
||||
"hourly=relativehumidity_2m%2Cwindspeed_10m",
|
||||
]
|
||||
)
|
||||
@@ -255,7 +267,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
logger.debug(f"Response from {self._url()}: {response}")
|
||||
akkudoktor_data = self._validate_data(response.content)
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
|
||||
return akkudoktor_data
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
@@ -265,7 +277,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
`PVForecastAkkudoktorDataRecord`.
|
||||
"""
|
||||
# Assure we have something to request PV power for.
|
||||
if not self.config.pvforecast_planes:
|
||||
if not self.config.pvforecast.planes:
|
||||
# No planes for PV
|
||||
error_msg = "Requested PV forecast, but no planes configured."
|
||||
logger.error(f"Configuration error: {error_msg}")
|
||||
@@ -275,17 +287,17 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
|
||||
|
||||
# Timezone of the PV system
|
||||
if self.config.timezone != akkudoktor_data.meta.timezone:
|
||||
error_msg = f"Configured timezone '{self.config.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'."
|
||||
if self.config.general.timezone != akkudoktor_data.meta.timezone:
|
||||
error_msg = f"Configured timezone '{self.config.general.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'."
|
||||
logger.error(f"Akkudoktor schema change: {error_msg}")
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Assumption that all lists are the same length and are ordered chronologically
|
||||
# in ascending order and have the same timestamps.
|
||||
if len(akkudoktor_data.values[0]) < self.config.prediction_hours:
|
||||
if len(akkudoktor_data.values[0]) < self.config.prediction.hours:
|
||||
# Expect one value set per prediction hour
|
||||
error_msg = (
|
||||
f"The forecast must cover at least {self.config.prediction_hours} hours, "
|
||||
f"The forecast must cover at least {self.config.prediction.hours} hours, "
|
||||
f"but only {len(akkudoktor_data.values[0])} data sets are given in forecast data."
|
||||
)
|
||||
logger.error(f"Akkudoktor schema change: {error_msg}")
|
||||
@@ -296,7 +308,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
# Iterate over forecast data points
|
||||
for forecast_values in zip(*akkudoktor_data.values):
|
||||
original_datetime = forecast_values[0].datetime
|
||||
dt = to_datetime(original_datetime, in_timezone=self.config.timezone)
|
||||
dt = to_datetime(original_datetime, in_timezone=self.config.general.timezone)
|
||||
|
||||
# Skip outdated forecast data
|
||||
if compare_datetimes(dt, self.start_datetime.start_of("day")).lt:
|
||||
@@ -314,9 +326,9 @@ class PVForecastAkkudoktor(PVForecastProvider):
|
||||
|
||||
self.update_value(dt, data)
|
||||
|
||||
if len(self) < self.config.prediction_hours:
|
||||
if len(self) < self.config.prediction.hours:
|
||||
raise ValueError(
|
||||
f"The forecast must cover at least {self.config.prediction_hours} hours, "
|
||||
f"The forecast must cover at least {self.config.prediction.hours} hours, "
|
||||
f"but only {len(self)} hours starting from {self.start_datetime} "
|
||||
f"were predicted."
|
||||
)
|
||||
@@ -365,31 +377,47 @@ if __name__ == "__main__":
|
||||
"""
|
||||
# Set up the configuration with necessary fields for URL generation
|
||||
settings_data = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"general": {
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
"pvforecast_provider": "PVForecastAkkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
"pvforecast2_peakpower": 1.4,
|
||||
"pvforecast2_surface_azimuth": -40,
|
||||
"pvforecast2_surface_tilt": 60,
|
||||
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
||||
"pvforecast2_inverter_paco": 2000,
|
||||
"pvforecast3_peakpower": 1.6,
|
||||
"pvforecast3_surface_azimuth": 5,
|
||||
"pvforecast3_surface_tilt": 45,
|
||||
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
||||
"pvforecast3_inverter_paco": 1400,
|
||||
},
|
||||
"prediction": {
|
||||
"hours": 48,
|
||||
"historic_hours": 24,
|
||||
},
|
||||
"pvforecast": {
|
||||
"provider": "PVForecastAkkudoktor",
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [20, 27, 22, 20],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [30, 30, 30, 50],
|
||||
"inverter_paco": 10000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.4,
|
||||
"surface_azimuth": -40,
|
||||
"surface_tilt": 60,
|
||||
"userhorizon": [60, 30, 0, 30],
|
||||
"inverter_paco": 2000,
|
||||
},
|
||||
{
|
||||
"peakpower": 1.6,
|
||||
"surface_azimuth": 5,
|
||||
"surface_tilt": 45,
|
||||
"userhorizon": [45, 25, 30, 60],
|
||||
"inverter_paco": 1400,
|
||||
},
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
# Initialize the forecast object with the generated configuration
|
||||
|
@@ -22,21 +22,22 @@ logger = get_logger(__name__)
|
||||
class PVForecastImportCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for pvforecast data import from file or JSON string."""
|
||||
|
||||
pvforecastimport_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None, description="Path to the file to import PV forecast data from."
|
||||
import_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None,
|
||||
description="Path to the file to import PV forecast data from.",
|
||||
examples=[None, "/path/to/pvforecast.json"],
|
||||
)
|
||||
|
||||
pvforecastimport_json: Optional[str] = Field(
|
||||
import_json: Optional[str] = Field(
|
||||
default=None,
|
||||
description="JSON string, dictionary of PV forecast value lists.",
|
||||
examples=['{"pvforecast_ac_power": [0, 8.05, 352.91]}'],
|
||||
)
|
||||
|
||||
# Validators
|
||||
@field_validator("pvforecastimport_file_path", mode="after")
|
||||
@field_validator("import_file_path", mode="after")
|
||||
@classmethod
|
||||
def validate_pvforecastimport_file_path(
|
||||
cls, value: Optional[Union[str, Path]]
|
||||
) -> Optional[Path]:
|
||||
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, str):
|
||||
@@ -62,7 +63,16 @@ class PVForecastImport(PVForecastProvider, PredictionImportProvider):
|
||||
return "PVForecastImport"
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
if self.config.pvforecastimport_file_path is not None:
|
||||
self.import_from_file(self.config.pvforecastimport_file_path, key_prefix="pvforecast")
|
||||
if self.config.pvforecastimport_json is not None:
|
||||
self.import_from_json(self.config.pvforecastimport_json, key_prefix="pvforecast")
|
||||
if self.config.pvforecast.provider_settings is None:
|
||||
logger.debug(f"{self.provider_id()} data update without provider settings.")
|
||||
return
|
||||
if self.config.pvforecast.provider_settings.import_file_path is not None:
|
||||
self.import_from_file(
|
||||
self.config.pvforecast.provider_settings.import_file_path,
|
||||
key_prefix="pvforecast",
|
||||
)
|
||||
if self.config.pvforecast.provider_settings.import_json is not None:
|
||||
self.import_from_json(
|
||||
self.config.pvforecast.provider_settings.import_json,
|
||||
key_prefix="pvforecast",
|
||||
)
|
||||
|
@@ -5,9 +5,18 @@ from typing import Optional
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
|
||||
|
||||
|
||||
class WeatherCommonSettings(SettingsBaseModel):
|
||||
weather_provider: Optional[str] = Field(
|
||||
default=None, description="Weather provider id of provider to be used."
|
||||
"""Weather Forecast Configuration."""
|
||||
|
||||
provider: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Weather provider id of provider to be used.",
|
||||
examples=["WeatherImport"],
|
||||
)
|
||||
|
||||
provider_settings: Optional[WeatherImportCommonSettings] = Field(
|
||||
default=None, description="Provider settings", examples=[None]
|
||||
)
|
||||
|
@@ -101,18 +101,18 @@ class WeatherProvider(PredictionProvider):
|
||||
WeatherProvider is a thread-safe singleton, ensuring only one instance of this class is created.
|
||||
|
||||
Configuration variables:
|
||||
weather_provider (str): Prediction provider for weather.
|
||||
provider (str): Prediction provider for weather.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
|
||||
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
|
||||
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
|
||||
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
|
||||
calculated based on `start_datetime` and `prediction_hours`.
|
||||
calculated based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
|
||||
based on `start_datetime` and `prediction_historic_hours`.
|
||||
based on `start_datetime` and `historic_hours`.
|
||||
"""
|
||||
|
||||
# overload
|
||||
@@ -126,7 +126,7 @@ class WeatherProvider(PredictionProvider):
|
||||
return "WeatherProvider"
|
||||
|
||||
def enabled(self) -> bool:
|
||||
return self.provider_id() == self.config.weather_provider
|
||||
return self.provider_id() == self.config.weather.provider
|
||||
|
||||
@classmethod
|
||||
def estimate_irradiance_from_cloud_cover(
|
||||
|
@@ -7,23 +7,23 @@ format, enabling consistent access to forecasted and historical weather attribut
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import pandas as pd
|
||||
import pvlib
|
||||
import requests
|
||||
|
||||
from akkudoktoreos.core.cache import cache_in_file
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
WheaterDataBrightSkyMapping: List[Tuple[str, Optional[str], Optional[float]]] = [
|
||||
WheaterDataBrightSkyMapping: List[Tuple[str, Optional[str], Optional[Union[str, float]]]] = [
|
||||
# brightsky_key, description, corr_factor
|
||||
("timestamp", "DateTime", None),
|
||||
("timestamp", "DateTime", "to datetime in timezone"),
|
||||
("precipitation", "Precipitation Amount (mm)", 1),
|
||||
("pressure_msl", "Pressure (mb)", 1),
|
||||
("sunshine", None, None),
|
||||
@@ -62,13 +62,13 @@ class WeatherBrightSky(WeatherProvider):
|
||||
of hours into the future and retains historical data.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): Number of hours in the future for the forecast.
|
||||
prediction_historic_hours (int, optional): Number of past hours for retaining data.
|
||||
hours (int, optional): Number of hours in the future for the forecast.
|
||||
historic_hours (int, optional): Number of past hours for retaining data.
|
||||
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
|
||||
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
|
||||
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
|
||||
|
||||
Methods:
|
||||
provider_id(): Returns a unique identifier for the provider.
|
||||
@@ -96,10 +96,10 @@ class WeatherBrightSky(WeatherProvider):
|
||||
ValueError: If the API response does not include expected `weather` data.
|
||||
"""
|
||||
source = "https://api.brightsky.dev"
|
||||
date = to_datetime(self.start_datetime, as_string="YYYY-MM-DD")
|
||||
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
|
||||
date = to_datetime(self.start_datetime, as_string=True)
|
||||
last_date = to_datetime(self.end_datetime, as_string=True)
|
||||
response = requests.get(
|
||||
f"{source}/weather?lat={self.config.latitude}&lon={self.config.longitude}&date={date}&last_date={last_date}&tz={self.config.timezone}"
|
||||
f"{source}/weather?lat={self.config.general.latitude}&lon={self.config.general.longitude}&date={date}&last_date={last_date}&tz={self.config.general.timezone}"
|
||||
)
|
||||
response.raise_for_status() # Raise an error for bad responses
|
||||
logger.debug(f"Response from {source}: {response}")
|
||||
@@ -109,7 +109,7 @@ class WeatherBrightSky(WeatherProvider):
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
|
||||
return brightsky_data
|
||||
|
||||
def _description_to_series(self, description: str) -> pd.Series:
|
||||
@@ -133,7 +133,8 @@ class WeatherBrightSky(WeatherProvider):
|
||||
error_msg = f"No WeatherDataRecord key for '{description}'"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
return self.key_to_series(key)
|
||||
series = self.key_to_series(key)
|
||||
return series
|
||||
|
||||
def _description_from_series(self, description: str, data: pd.Series) -> None:
|
||||
"""Update a weather data with a pandas Series based on its description.
|
||||
@@ -170,7 +171,7 @@ class WeatherBrightSky(WeatherProvider):
|
||||
brightsky_data = self._request_forecast(force_update=force_update) # type: ignore
|
||||
|
||||
# Get key mapping from description
|
||||
brightsky_key_mapping: Dict[str, Tuple[Optional[str], Optional[float]]] = {}
|
||||
brightsky_key_mapping: Dict[str, Tuple[Optional[str], Optional[Union[str, float]]]] = {}
|
||||
for brightsky_key, description, corr_factor in WheaterDataBrightSkyMapping:
|
||||
if description is None:
|
||||
brightsky_key_mapping[brightsky_key] = (None, None)
|
||||
@@ -192,6 +193,9 @@ class WeatherBrightSky(WeatherProvider):
|
||||
value = brightsky_record[brightsky_key]
|
||||
corr_factor = item[1]
|
||||
if value and corr_factor:
|
||||
if corr_factor == "to datetime in timezone":
|
||||
value = to_datetime(value, in_timezone=self.config.general.timezone)
|
||||
else:
|
||||
value = value * corr_factor
|
||||
setattr(weather_record, key, value)
|
||||
self.insert_by_datetime(weather_record)
|
||||
@@ -200,7 +204,7 @@ class WeatherBrightSky(WeatherProvider):
|
||||
description = "Total Clouds (% Sky Obscured)"
|
||||
cloud_cover = self._description_to_series(description)
|
||||
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
|
||||
self.config.latitude, self.config.longitude, cloud_cover
|
||||
self.config.general.latitude, self.config.general.longitude, cloud_cover
|
||||
)
|
||||
|
||||
description = "Global Horizontal Irradiance (W/m2)"
|
||||
@@ -216,14 +220,30 @@ class WeatherBrightSky(WeatherProvider):
|
||||
self._description_from_series(description, dhi)
|
||||
|
||||
# Add Preciptable Water (PWAT) with a PVLib method.
|
||||
description = "Temperature (°C)"
|
||||
temperature = self._description_to_series(description)
|
||||
|
||||
description = "Relative Humidity (%)"
|
||||
humidity = self._description_to_series(description)
|
||||
|
||||
key = WeatherDataRecord.key_from_description("Temperature (°C)")
|
||||
assert key
|
||||
temperature = self.key_to_array(
|
||||
key=key,
|
||||
start_datetime=self.start_datetime,
|
||||
end_datetime=self.end_datetime,
|
||||
interval=to_duration("1 hour"),
|
||||
)
|
||||
key = WeatherDataRecord.key_from_description("Relative Humidity (%)")
|
||||
assert key
|
||||
humidity = self.key_to_array(
|
||||
key=key,
|
||||
start_datetime=self.start_datetime,
|
||||
end_datetime=self.end_datetime,
|
||||
interval=to_duration("1 hour"),
|
||||
)
|
||||
data = pvlib.atmosphere.gueymard94_pw(temperature, humidity)
|
||||
pwat = pd.Series(
|
||||
data=pvlib.atmosphere.gueymard94_pw(temperature, humidity), index=temperature.index
|
||||
data=data,
|
||||
index=pd.DatetimeIndex(
|
||||
pd.date_range(
|
||||
start=self.start_datetime, end=self.end_datetime, freq="1h", inclusive="left"
|
||||
)
|
||||
),
|
||||
)
|
||||
description = "Preciptable Water (cm)"
|
||||
self._description_from_series(description, pwat)
|
||||
|
@@ -19,9 +19,9 @@ import pandas as pd
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
from akkudoktoreos.core.cache import cache_in_file
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration, to_timezone
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -68,15 +68,15 @@ class WeatherClearOutside(WeatherProvider):
|
||||
WeatherClearOutside is a thread-safe singleton, ensuring only one instance of this class is created.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
hours (int, optional): The number of hours into the future for which predictions are generated.
|
||||
historic_hours (int, optional): The number of past hours for which historical data is retained.
|
||||
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
|
||||
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
|
||||
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
|
||||
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
|
||||
calculated based on `start_datetime` and `prediction_hours`.
|
||||
calculated based on `start_datetime` and `hours`.
|
||||
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
|
||||
based on `start_datetime` and `prediction_historic_hours`.
|
||||
based on `start_datetime` and `historic_hours`.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@@ -91,13 +91,13 @@ class WeatherClearOutside(WeatherProvider):
|
||||
response: Weather forecast request reponse from ClearOutside.
|
||||
"""
|
||||
source = "https://clearoutside.com/forecast"
|
||||
latitude = round(self.config.latitude, 2)
|
||||
longitude = round(self.config.longitude, 2)
|
||||
latitude = round(self.config.general.latitude, 2)
|
||||
longitude = round(self.config.general.longitude, 2)
|
||||
response = requests.get(f"{source}/{latitude}/{longitude}?desktop=true")
|
||||
response.raise_for_status() # Raise an error for bad responses
|
||||
logger.debug(f"Response from {source}: {response}")
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
|
||||
return response
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = None) -> None:
|
||||
@@ -307,7 +307,7 @@ class WeatherClearOutside(WeatherProvider):
|
||||
data=clearout_data["Total Clouds (% Sky Obscured)"], index=clearout_data["DateTime"]
|
||||
)
|
||||
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
|
||||
self.config.latitude, self.config.longitude, cloud_cover
|
||||
self.config.general.latitude, self.config.general.longitude, cloud_cover
|
||||
)
|
||||
|
||||
# Add GHI, DNI, DHI to clearout data
|
||||
|
@@ -22,18 +22,22 @@ logger = get_logger(__name__)
|
||||
class WeatherImportCommonSettings(SettingsBaseModel):
|
||||
"""Common settings for weather data import from file or JSON string."""
|
||||
|
||||
weatherimport_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None, description="Path to the file to import weather data from."
|
||||
import_file_path: Optional[Union[str, Path]] = Field(
|
||||
default=None,
|
||||
description="Path to the file to import weather data from.",
|
||||
examples=[None, "/path/to/weather_data.json"],
|
||||
)
|
||||
|
||||
weatherimport_json: Optional[str] = Field(
|
||||
default=None, description="JSON string, dictionary of weather forecast value lists."
|
||||
import_json: Optional[str] = Field(
|
||||
default=None,
|
||||
description="JSON string, dictionary of weather forecast value lists.",
|
||||
examples=['{"weather_temp_air": [18.3, 17.8, 16.9]}'],
|
||||
)
|
||||
|
||||
# Validators
|
||||
@field_validator("weatherimport_file_path", mode="after")
|
||||
@field_validator("import_file_path", mode="after")
|
||||
@classmethod
|
||||
def validate_weatherimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
|
||||
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, str):
|
||||
@@ -59,7 +63,14 @@ class WeatherImport(WeatherProvider, PredictionImportProvider):
|
||||
return "WeatherImport"
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
if self.config.weatherimport_file_path is not None:
|
||||
self.import_from_file(self.config.weatherimport_file_path, key_prefix="weather")
|
||||
if self.config.weatherimport_json is not None:
|
||||
self.import_from_json(self.config.weatherimport_json, key_prefix="weather")
|
||||
if self.config.weather.provider_settings is None:
|
||||
logger.debug(f"{self.provider_id()} data update without provider settings.")
|
||||
return
|
||||
if self.config.weather.provider_settings.import_file_path:
|
||||
self.import_from_file(
|
||||
self.config.weather.provider_settings.import_file_path, key_prefix="weather"
|
||||
)
|
||||
if self.config.weather.provider_settings.import_json:
|
||||
self.import_from_json(
|
||||
self.config.weather.provider_settings.import_json, key_prefix="weather"
|
||||
)
|
||||
|
0
src/akkudoktoreos/server/dash/__init__.py
Normal file
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 112 KiB |
After Width: | Height: | Size: 20 KiB |
BIN
src/akkudoktoreos/server/dash/assets/favicon/favicon-16x16.png
Normal file
After Width: | Height: | Size: 724 B |
BIN
src/akkudoktoreos/server/dash/assets/favicon/favicon-32x32.png
Normal file
After Width: | Height: | Size: 1.6 KiB |
BIN
src/akkudoktoreos/server/dash/assets/favicon/favicon.ico
Normal file
After Width: | Height: | Size: 15 KiB |
@@ -0,0 +1 @@
|
||||
{"name":"","short_name":"","icons":[{"src":"/android-chrome-192x192.png","sizes":"192x192","type":"image/png"},{"src":"/android-chrome-512x512.png","sizes":"512x512","type":"image/png"}],"theme_color":"#ffffff","background_color":"#ffffff","display":"standalone"}
|
BIN
src/akkudoktoreos/server/dash/assets/icon.png
Normal file
After Width: | Height: | Size: 7.5 KiB |
BIN
src/akkudoktoreos/server/dash/assets/logo.png
Normal file
After Width: | Height: | Size: 12 KiB |
38
src/akkudoktoreos/server/dash/bokeh.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# Module taken from https://github.com/koaning/fh-altair
|
||||
# MIT license
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from bokeh.embed import components
|
||||
from bokeh.models import Plot
|
||||
from monsterui.franken import H4, Card, NotStr, Script
|
||||
|
||||
BokehJS = [
|
||||
Script(src="https://cdn.bokeh.org/bokeh/release/bokeh-3.6.3.min.js", crossorigin="anonymous"),
|
||||
Script(
|
||||
src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.3.min.js",
|
||||
crossorigin="anonymous",
|
||||
),
|
||||
Script(
|
||||
src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.3.min.js", crossorigin="anonymous"
|
||||
),
|
||||
Script(
|
||||
src="https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.3.min.js", crossorigin="anonymous"
|
||||
),
|
||||
Script(
|
||||
src="https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.6.3.min.js",
|
||||
crossorigin="anonymous",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def Bokeh(plot: Plot, header: Optional[str] = None) -> Card:
|
||||
"""Converts an Bokeh plot to a FastHTML FT component."""
|
||||
script, div = components(plot)
|
||||
if header:
|
||||
header = H4(header, cls="mt-2")
|
||||
return Card(
|
||||
NotStr(div),
|
||||
NotStr(script),
|
||||
header=header,
|
||||
)
|
224
src/akkudoktoreos/server/dash/components.py
Normal file
@@ -0,0 +1,224 @@
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from fasthtml.common import H1, Div, Li
|
||||
|
||||
# from mdit_py_plugins import plugin1, plugin2
|
||||
from monsterui.foundations import stringify
|
||||
from monsterui.franken import (
|
||||
Button,
|
||||
ButtonT,
|
||||
Card,
|
||||
Container,
|
||||
ContainerT,
|
||||
Details,
|
||||
DivLAligned,
|
||||
DivRAligned,
|
||||
Grid,
|
||||
Input,
|
||||
P,
|
||||
Summary,
|
||||
TabContainer,
|
||||
UkIcon,
|
||||
)
|
||||
|
||||
scrollbar_viewport_styles = (
|
||||
"scrollbar-width: none; -ms-overflow-style: none; -webkit-overflow-scrolling: touch;"
|
||||
)
|
||||
|
||||
scrollbar_cls = "flex touch-none select-none transition-colors p-[1px]"
|
||||
|
||||
|
||||
def ScrollArea(
|
||||
*c: Any, cls: Optional[Union[str, tuple]] = None, orientation: str = "vertical", **kwargs: Any
|
||||
) -> Div:
|
||||
"""Creates a styled scroll area.
|
||||
|
||||
Args:
|
||||
orientation (str): The orientation of the scroll area. Defaults to vertical.
|
||||
"""
|
||||
new_cls = "relative overflow-hidden"
|
||||
if cls:
|
||||
new_cls += f" {stringify(cls)}"
|
||||
kwargs["cls"] = new_cls
|
||||
|
||||
content = Div(
|
||||
Div(*c, style="min-width:100%;display:table;"),
|
||||
style=f"overflow: {'hidden scroll' if orientation == 'vertical' else 'scroll'}; {scrollbar_viewport_styles}",
|
||||
cls="w-full h-full rounded-[inherit]",
|
||||
data_ref="viewport",
|
||||
)
|
||||
|
||||
scrollbar = Div(
|
||||
Div(cls="bg-border rounded-full hidden relative flex-1", data_ref="thumb"),
|
||||
cls=f"{scrollbar_cls} flex-col h-2.5 w-full border-t border-t-transparent"
|
||||
if orientation == "horizontal"
|
||||
else f"{scrollbar_cls} w-2.5 h-full border-l border-l-transparent",
|
||||
data_ref="scrollbar",
|
||||
style=f"position: absolute;{'right:0; top:0;' if orientation == 'vertical' else 'bottom:0; left:0;'}",
|
||||
)
|
||||
|
||||
return Div(
|
||||
content,
|
||||
scrollbar,
|
||||
role="region",
|
||||
tabindex="0",
|
||||
data_orientation=orientation,
|
||||
data_ref_scrollarea=True,
|
||||
aria_label="Scrollable content",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def ConfigCard(
|
||||
config_name: str, config_type: str, read_only: str, value: str, default: str, description: str
|
||||
) -> Card:
|
||||
return Card(
|
||||
Details(
|
||||
Summary(
|
||||
Grid(
|
||||
Grid(
|
||||
DivLAligned(
|
||||
UkIcon(icon="play"),
|
||||
P(config_name),
|
||||
),
|
||||
DivRAligned(
|
||||
P(read_only),
|
||||
),
|
||||
),
|
||||
Input(value=value) if read_only == "rw" else P(value),
|
||||
),
|
||||
# cls="flex cursor-pointer list-none items-center gap-4",
|
||||
cls="list-none",
|
||||
),
|
||||
Grid(
|
||||
P(description),
|
||||
P(config_type),
|
||||
),
|
||||
Grid(
|
||||
DivRAligned(
|
||||
P("default") if read_only == "rw" else P(""),
|
||||
),
|
||||
P(default) if read_only == "rw" else P(""),
|
||||
)
|
||||
if read_only == "rw"
|
||||
else None,
|
||||
cls="space-y-4 gap-4",
|
||||
),
|
||||
cls="w-full",
|
||||
)
|
||||
|
||||
|
||||
def DashboardHeader(title: Optional[str]) -> Div:
|
||||
"""Creates a styled header with a title.
|
||||
|
||||
Args:
|
||||
title (Optional[str]): The title text for the header.
|
||||
|
||||
Returns:
|
||||
Div: A styled `Div` element containing the header.
|
||||
"""
|
||||
if title is None:
|
||||
return Div("", cls="header")
|
||||
return Div(H1(title, cls="text-2xl font-bold mb-4"), cls="header")
|
||||
|
||||
|
||||
def DashboardFooter(*c: Any, path: str) -> Card:
|
||||
"""Creates a styled footer with the provided information.
|
||||
|
||||
The footer content is reloaded every 5 seconds from path.
|
||||
|
||||
Args:
|
||||
path (str): Path to reload footer content from
|
||||
|
||||
Returns:
|
||||
Card: A styled `Card` element containing the footer.
|
||||
"""
|
||||
return Card(
|
||||
Container(*c, id="footer-content"),
|
||||
hx_get=f"{path}",
|
||||
hx_trigger="every 5s",
|
||||
hx_target="#footer-content",
|
||||
hx_swap="innerHTML",
|
||||
)
|
||||
|
||||
|
||||
def DashboardTrigger(*c: Any, cls: Optional[Union[str, tuple]] = None, **kwargs: Any) -> Button:
|
||||
"""Creates a styled button for the dashboard trigger.
|
||||
|
||||
Args:
|
||||
*c: Positional arguments to pass to the button.
|
||||
cls (Optional[str]): Additional CSS classes for styling. Defaults to None.
|
||||
**kwargs: Additional keyword arguments for the button.
|
||||
|
||||
Returns:
|
||||
Button: A styled `Button` component.
|
||||
"""
|
||||
new_cls = f"{ButtonT.primary}"
|
||||
if cls:
|
||||
new_cls += f" {stringify(cls)}"
|
||||
kwargs["cls"] = new_cls
|
||||
return Button(*c, submit=False, **kwargs)
|
||||
|
||||
|
||||
def DashboardTabs(dashboard_items: dict[str, str]) -> Card:
|
||||
"""Creates a dashboard tab with dynamic dashboard items.
|
||||
|
||||
Args:
|
||||
dashboard_items (dict[str, str]): A dictionary of dashboard items where keys are item names
|
||||
and values are paths for navigation.
|
||||
|
||||
Returns:
|
||||
Card: A styled `Card` component containing the dashboard tabs.
|
||||
"""
|
||||
dash_items = [
|
||||
Li(
|
||||
DashboardTrigger(
|
||||
menu,
|
||||
hx_get=f"{path}",
|
||||
hx_target="#page-content",
|
||||
hx_swap="innerHTML",
|
||||
),
|
||||
)
|
||||
for menu, path in dashboard_items.items()
|
||||
]
|
||||
return Card(TabContainer(*dash_items, cls="gap-4"), alt=True)
|
||||
|
||||
|
||||
def DashboardContent(content: Any) -> Card:
|
||||
"""Creates a content section within a styled card.
|
||||
|
||||
Args:
|
||||
content (Any): The content to display.
|
||||
|
||||
Returns:
|
||||
Card: A styled `Card` element containing the content.
|
||||
"""
|
||||
return Card(ScrollArea(Container(content, id="page-content"), cls="h-[75vh] w-full rounded-md"))
|
||||
|
||||
|
||||
def Page(
|
||||
title: Optional[str],
|
||||
dashboard_items: dict[str, str],
|
||||
content: Any,
|
||||
footer_content: Any,
|
||||
footer_path: str,
|
||||
) -> Div:
|
||||
"""Generates a full-page layout with a header, dashboard items, content, and footer.
|
||||
|
||||
Args:
|
||||
title (Optional[str]): The page title.
|
||||
dashboard_items (dict[str, str]): A dictionary of dashboard items.
|
||||
content (Any): The main content for the page.
|
||||
footer_content (Any): Footer content.
|
||||
footer_path (Any): Path to reload footer content from.
|
||||
|
||||
Returns:
|
||||
Div: A `Div` element representing the entire page layout.
|
||||
"""
|
||||
return Container(
|
||||
DashboardHeader(title),
|
||||
DashboardTabs(dashboard_items),
|
||||
DashboardContent(content),
|
||||
DashboardFooter(footer_content, path=footer_path),
|
||||
cls=("bg-background text-foreground w-screen p-4 space-y-4", ContainerT.xl),
|
||||
)
|
275
src/akkudoktoreos/server/dash/configuration.py
Normal file
@@ -0,0 +1,275 @@
|
||||
from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union
|
||||
|
||||
import requests
|
||||
from monsterui.franken import Div, DividerLine, P, Table, Tbody, Td, Th, Thead, Tr
|
||||
from pydantic.fields import ComputedFieldInfo, FieldInfo
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from akkudoktoreos.config.config import get_config
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.server.dash.components import ConfigCard
|
||||
|
||||
logger = get_logger(__name__)
|
||||
config_eos = get_config()
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def get_nested_value(
|
||||
dictionary: Union[Dict[str, Any], List[Any]],
|
||||
keys: Sequence[Union[str, int]],
|
||||
default: Optional[T] = None,
|
||||
) -> Union[Any, T]:
|
||||
"""Retrieve a nested value from a dictionary or list using a sequence of keys.
|
||||
|
||||
Args:
|
||||
dictionary (Union[Dict[str, Any], List[Any]]): The nested dictionary or list to search.
|
||||
keys (Sequence[Union[str, int]]): A sequence of keys or indices representing the path to the desired value.
|
||||
default (Optional[T]): A value to return if the path is not found.
|
||||
|
||||
Returns:
|
||||
Union[Any, T]: The value at the specified nested path, or the default value if not found.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a dictionary or list, or if keys are not a sequence.
|
||||
KeyError: If a key is not found in a dictionary.
|
||||
IndexError: If an index is out of range in a list.
|
||||
"""
|
||||
if not isinstance(dictionary, (dict, list)):
|
||||
raise TypeError("The first argument must be a dictionary or list")
|
||||
if not isinstance(keys, Sequence):
|
||||
raise TypeError("Keys must be provided as a sequence (e.g., list, tuple)")
|
||||
|
||||
if not keys:
|
||||
return dictionary
|
||||
|
||||
try:
|
||||
# Traverse the structure
|
||||
current = dictionary
|
||||
for key in keys:
|
||||
if isinstance(current, dict) and isinstance(key, str):
|
||||
current = current[key]
|
||||
elif isinstance(current, list) and isinstance(key, int):
|
||||
current = current[key]
|
||||
else:
|
||||
raise KeyError(f"Invalid key or index: {key}")
|
||||
return current
|
||||
except (KeyError, IndexError, TypeError):
|
||||
return default
|
||||
|
||||
|
||||
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
|
||||
"""Retrieve the default value of a field.
|
||||
|
||||
Args:
|
||||
field_info (Union[FieldInfo, ComputedFieldInfo]): The field metadata from Pydantic.
|
||||
regular_field (bool): Indicates if the field is a regular field.
|
||||
|
||||
Returns:
|
||||
Any: The default value of the field or "N/A" if not a regular field.
|
||||
"""
|
||||
default_value = ""
|
||||
if regular_field:
|
||||
if (val := field_info.default) is not PydanticUndefined:
|
||||
default_value = val
|
||||
else:
|
||||
default_value = "N/A"
|
||||
return default_value
|
||||
|
||||
|
||||
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
|
||||
"""Resolve nested types within a field and return their structure.
|
||||
|
||||
Args:
|
||||
field_type (Any): The type of the field to resolve.
|
||||
parent_types (List[str]): A list of parent type names.
|
||||
|
||||
Returns:
|
||||
List[tuple[Any, List[str]]]: A list of tuples containing resolved types and their parent hierarchy.
|
||||
"""
|
||||
resolved_types: list[tuple[Any, list[str]]] = []
|
||||
|
||||
origin = getattr(field_type, "__origin__", field_type)
|
||||
if origin is Union:
|
||||
for arg in getattr(field_type, "__args__", []):
|
||||
if arg is not type(None):
|
||||
resolved_types.extend(resolve_nested_types(arg, parent_types))
|
||||
else:
|
||||
resolved_types.append((field_type, parent_types))
|
||||
|
||||
return resolved_types
|
||||
|
||||
|
||||
def configuration(values: dict) -> list[dict]:
|
||||
"""Generate configuration details based on provided values and model metadata.
|
||||
|
||||
Args:
|
||||
values (dict): A dictionary containing the current configuration values.
|
||||
|
||||
Returns:
|
||||
List[dict]: A sorted list of configuration details, each represented as a dictionary.
|
||||
"""
|
||||
configs = []
|
||||
inner_types: set[type[PydanticBaseModel]] = set()
|
||||
|
||||
for field_name, field_info in list(config_eos.model_fields.items()) + list(
|
||||
config_eos.model_computed_fields.items()
|
||||
):
|
||||
|
||||
def extract_nested_models(
|
||||
subfield_info: Union[ComputedFieldInfo, FieldInfo], parent_types: list[str]
|
||||
) -> None:
|
||||
regular_field = isinstance(subfield_info, FieldInfo)
|
||||
subtype = subfield_info.annotation if regular_field else subfield_info.return_type
|
||||
|
||||
if subtype in inner_types:
|
||||
return
|
||||
|
||||
nested_types = resolve_nested_types(subtype, [])
|
||||
found_basic = False
|
||||
for nested_type, nested_parent_types in nested_types:
|
||||
if not isinstance(nested_type, type) or not issubclass(
|
||||
nested_type, PydanticBaseModel
|
||||
):
|
||||
if found_basic:
|
||||
continue
|
||||
|
||||
config = {}
|
||||
config["name"] = ".".join(parent_types)
|
||||
config["value"] = str(get_nested_value(values, parent_types, "<unknown>"))
|
||||
config["default"] = str(get_default_value(subfield_info, regular_field))
|
||||
config["description"] = (
|
||||
subfield_info.description if subfield_info.description else ""
|
||||
)
|
||||
if isinstance(subfield_info, ComputedFieldInfo):
|
||||
config["read-only"] = "ro"
|
||||
type_description = str(subfield_info.return_type)
|
||||
else:
|
||||
config["read-only"] = "rw"
|
||||
type_description = str(subfield_info.annotation)
|
||||
config["type"] = (
|
||||
type_description.replace("typing.", "")
|
||||
.replace("pathlib.", "")
|
||||
.replace("[", "[ ")
|
||||
.replace("NoneType", "None")
|
||||
)
|
||||
configs.append(config)
|
||||
found_basic = True
|
||||
else:
|
||||
new_parent_types = parent_types + nested_parent_types
|
||||
inner_types.add(nested_type)
|
||||
for nested_field_name, nested_field_info in list(
|
||||
nested_type.model_fields.items()
|
||||
) + list(nested_type.model_computed_fields.items()):
|
||||
extract_nested_models(
|
||||
nested_field_info,
|
||||
new_parent_types + [nested_field_name],
|
||||
)
|
||||
|
||||
extract_nested_models(field_info, [field_name])
|
||||
return sorted(configs, key=lambda x: x["name"])
|
||||
|
||||
|
||||
def get_configuration(eos_host: Optional[str], eos_port: Optional[Union[str, int]]) -> list[dict]:
|
||||
"""Fetch and process configuration data from the specified EOS server.
|
||||
|
||||
Args:
|
||||
eos_host (Optional[str]): The hostname of the server.
|
||||
eos_port (Optional[Union[str, int]]): The port of the server.
|
||||
|
||||
Returns:
|
||||
List[dict]: A list of processed configuration entries.
|
||||
"""
|
||||
if eos_host is None:
|
||||
eos_host = config_eos.server.host
|
||||
if eos_port is None:
|
||||
eos_port = config_eos.server.port
|
||||
server = f"http://{eos_host}:{eos_port}"
|
||||
|
||||
# Get current configuration from server
|
||||
try:
|
||||
result = requests.get(f"{server}/v1/config")
|
||||
result.raise_for_status()
|
||||
except requests.exceptions.HTTPError as e:
|
||||
detail = result.json()["detail"]
|
||||
warning_msg = f"Can not retrieve configuration from {server}: {e}, {detail}"
|
||||
logger.warning(warning_msg)
|
||||
return configuration({})
|
||||
config = result.json()
|
||||
|
||||
return configuration(config)
|
||||
|
||||
|
||||
def Configuration(eos_host: Optional[str], eos_port: Optional[Union[str, int]]) -> Div:
|
||||
"""Create a visual representation of the configuration.
|
||||
|
||||
Args:
|
||||
eos_host (Optional[str]): The hostname of the EOS server.
|
||||
eos_port (Optional[Union[str, int]]): The port of the EOS server.
|
||||
|
||||
Returns:
|
||||
Table: A `monsterui.franken.Table` component displaying configuration details.
|
||||
"""
|
||||
flds = "Name", "Type", "RO/RW", "Value", "Default", "Description"
|
||||
rows = []
|
||||
last_category = ""
|
||||
for config in get_configuration(eos_host, eos_port):
|
||||
category = config["name"].split(".")[0]
|
||||
if category != last_category:
|
||||
rows.append(P(category))
|
||||
rows.append(DividerLine())
|
||||
last_category = category
|
||||
rows.append(
|
||||
ConfigCard(
|
||||
config["name"],
|
||||
config["type"],
|
||||
config["read-only"],
|
||||
config["value"],
|
||||
config["default"],
|
||||
config["description"],
|
||||
)
|
||||
)
|
||||
return Div(*rows, cls="space-y-4")
|
||||
|
||||
|
||||
def ConfigurationOrg(eos_host: Optional[str], eos_port: Optional[Union[str, int]]) -> Table:
|
||||
"""Create a visual representation of the configuration.
|
||||
|
||||
Args:
|
||||
eos_host (Optional[str]): The hostname of the EOS server.
|
||||
eos_port (Optional[Union[str, int]]): The port of the EOS server.
|
||||
|
||||
Returns:
|
||||
Table: A `monsterui.franken.Table` component displaying configuration details.
|
||||
"""
|
||||
flds = "Name", "Type", "RO/RW", "Value", "Default", "Description"
|
||||
rows = [
|
||||
Tr(
|
||||
Td(
|
||||
config["name"],
|
||||
cls="max-w-64 text-wrap break-all",
|
||||
),
|
||||
Td(
|
||||
config["type"],
|
||||
cls="max-w-48 text-wrap break-all",
|
||||
),
|
||||
Td(
|
||||
config["read-only"],
|
||||
cls="max-w-24 text-wrap break-all",
|
||||
),
|
||||
Td(
|
||||
config["value"],
|
||||
cls="max-w-md text-wrap break-all",
|
||||
),
|
||||
Td(config["default"], cls="max-w-48 text-wrap break-all"),
|
||||
Td(
|
||||
config["description"],
|
||||
cls="max-w-prose text-wrap",
|
||||
),
|
||||
cls="",
|
||||
)
|
||||
for config in get_configuration(eos_host, eos_port)
|
||||
]
|
||||
head = Thead(*map(Th, flds), cls="text-left")
|
||||
return Table(head, Tbody(*rows), cls="w-full uk-table uk-table-divider uk-table-striped")
|
86
src/akkudoktoreos/server/dash/data/democonfig.json
Normal file
@@ -0,0 +1,86 @@
|
||||
{
|
||||
"elecprice": {
|
||||
"charges_kwh": 0.21,
|
||||
"provider": "ElecPriceAkkudoktor"
|
||||
},
|
||||
"general": {
|
||||
"latitude": 52.5,
|
||||
"longitude": 13.4
|
||||
},
|
||||
"prediction": {
|
||||
"historic_hours": 48,
|
||||
"hours": 48
|
||||
},
|
||||
"load": {
|
||||
"provider": "LoadAkkudoktor",
|
||||
"provider_settings": {
|
||||
"loadakkudoktor_year_energy": 20000
|
||||
}
|
||||
},
|
||||
"optimization": {
|
||||
"hours": 48
|
||||
},
|
||||
"pvforecast": {
|
||||
"planes": [
|
||||
{
|
||||
"peakpower": 5.0,
|
||||
"surface_azimuth": -10,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [
|
||||
20,
|
||||
27,
|
||||
22,
|
||||
20
|
||||
],
|
||||
"inverter_paco": 10000
|
||||
},
|
||||
{
|
||||
"peakpower": 4.8,
|
||||
"surface_azimuth": -90,
|
||||
"surface_tilt": 7,
|
||||
"userhorizon": [
|
||||
30,
|
||||
30,
|
||||
30,
|
||||
50
|
||||
],
|
||||
"inverter_paco": 10000
|
||||
},
|
||||
{
|
||||
"peakpower": 1.4,
|
||||
"surface_azimuth": -40,
|
||||
"surface_tilt": 60,
|
||||
"userhorizon": [
|
||||
60,
|
||||
30,
|
||||
0,
|
||||
30
|
||||
],
|
||||
"inverter_paco": 2000
|
||||
},
|
||||
{
|
||||
"peakpower": 1.6,
|
||||
"surface_azimuth": 5,
|
||||
"surface_tilt": 45,
|
||||
"userhorizon": [
|
||||
45,
|
||||
25,
|
||||
30,
|
||||
60
|
||||
],
|
||||
"inverter_paco": 1400
|
||||
}
|
||||
],
|
||||
"provider": "PVForecastAkkudoktor"
|
||||
},
|
||||
"server": {
|
||||
"startup_eosdash": true,
|
||||
"host": "0.0.0.0",
|
||||
"port": 8503,
|
||||
"eosdash_host": "0.0.0.0",
|
||||
"eosdash_port": 8504
|
||||
},
|
||||
"weather": {
|
||||
"provider": "BrightSky"
|
||||
}
|
||||
}
|
267
src/akkudoktoreos/server/dash/demo.py
Normal file
@@ -0,0 +1,267 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import pandas as pd
|
||||
import requests
|
||||
from bokeh.models import ColumnDataSource, LinearAxis, Range1d
|
||||
from bokeh.plotting import figure
|
||||
from monsterui.franken import FT, Grid, P
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
|
||||
from akkudoktoreos.server.dash.bokeh import Bokeh
|
||||
|
||||
DIR_DEMODATA = Path(__file__).absolute().parent.joinpath("data")
|
||||
FILE_DEMOCONFIG = DIR_DEMODATA.joinpath("democonfig.json")
|
||||
if not FILE_DEMOCONFIG.exists():
|
||||
raise ValueError(f"File does not exist: {FILE_DEMOCONFIG}")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
# bar width for 1 hour bars (time given in millseconds)
|
||||
BAR_WIDTH_1HOUR = 1000 * 60 * 60
|
||||
|
||||
|
||||
def DemoPVForecast(predictions: pd.DataFrame, config: dict) -> FT:
|
||||
source = ColumnDataSource(predictions)
|
||||
provider = config["pvforecast"]["provider"]
|
||||
|
||||
plot = figure(
|
||||
x_axis_type="datetime",
|
||||
title=f"PV Power Prediction ({provider})",
|
||||
x_axis_label="Datetime",
|
||||
y_axis_label="Power [W]",
|
||||
sizing_mode="stretch_width",
|
||||
height=400,
|
||||
)
|
||||
|
||||
plot.vbar(
|
||||
x="date_time",
|
||||
top="pvforecast_ac_power",
|
||||
source=source,
|
||||
width=BAR_WIDTH_1HOUR * 0.8,
|
||||
legend_label="AC Power",
|
||||
color="lightblue",
|
||||
)
|
||||
|
||||
return Bokeh(plot)
|
||||
|
||||
|
||||
def DemoElectricityPriceForecast(predictions: pd.DataFrame, config: dict) -> FT:
|
||||
source = ColumnDataSource(predictions)
|
||||
provider = config["elecprice"]["provider"]
|
||||
|
||||
plot = figure(
|
||||
x_axis_type="datetime",
|
||||
y_range=Range1d(
|
||||
predictions["elecprice_marketprice_kwh"].min() - 0.1,
|
||||
predictions["elecprice_marketprice_kwh"].max() + 0.1,
|
||||
),
|
||||
title=f"Electricity Price Prediction ({provider})",
|
||||
x_axis_label="Datetime",
|
||||
y_axis_label="Price [€/kWh]",
|
||||
sizing_mode="stretch_width",
|
||||
height=400,
|
||||
)
|
||||
plot.vbar(
|
||||
x="date_time",
|
||||
top="elecprice_marketprice_kwh",
|
||||
source=source,
|
||||
width=BAR_WIDTH_1HOUR * 0.8,
|
||||
legend_label="Market Price",
|
||||
color="lightblue",
|
||||
)
|
||||
|
||||
return Bokeh(plot)
|
||||
|
||||
|
||||
def DemoWeatherTempAir(predictions: pd.DataFrame, config: dict) -> FT:
|
||||
source = ColumnDataSource(predictions)
|
||||
provider = config["weather"]["provider"]
|
||||
|
||||
plot = figure(
|
||||
x_axis_type="datetime",
|
||||
y_range=Range1d(
|
||||
predictions["weather_temp_air"].min() - 1.0, predictions["weather_temp_air"].max() + 1.0
|
||||
),
|
||||
title=f"Air Temperature Prediction ({provider})",
|
||||
x_axis_label="Datetime",
|
||||
y_axis_label="Temperature [°C]",
|
||||
sizing_mode="stretch_width",
|
||||
height=400,
|
||||
)
|
||||
plot.line(
|
||||
"date_time", "weather_temp_air", source=source, legend_label="Air Temperature", color="blue"
|
||||
)
|
||||
|
||||
return Bokeh(plot)
|
||||
|
||||
|
||||
def DemoWeatherIrradiance(predictions: pd.DataFrame, config: dict) -> FT:
|
||||
source = ColumnDataSource(predictions)
|
||||
provider = config["weather"]["provider"]
|
||||
|
||||
plot = figure(
|
||||
x_axis_type="datetime",
|
||||
title=f"Irradiance Prediction ({provider})",
|
||||
x_axis_label="Datetime",
|
||||
y_axis_label="Irradiance [W/m2]",
|
||||
sizing_mode="stretch_width",
|
||||
height=400,
|
||||
)
|
||||
plot.line(
|
||||
"date_time",
|
||||
"weather_ghi",
|
||||
source=source,
|
||||
legend_label="Global Horizontal Irradiance",
|
||||
color="red",
|
||||
)
|
||||
plot.line(
|
||||
"date_time",
|
||||
"weather_dni",
|
||||
source=source,
|
||||
legend_label="Direct Normal Irradiance",
|
||||
color="green",
|
||||
)
|
||||
plot.line(
|
||||
"date_time",
|
||||
"weather_dhi",
|
||||
source=source,
|
||||
legend_label="Diffuse Horizontal Irradiance",
|
||||
color="blue",
|
||||
)
|
||||
|
||||
return Bokeh(plot)
|
||||
|
||||
|
||||
def DemoLoad(predictions: pd.DataFrame, config: dict) -> FT:
|
||||
source = ColumnDataSource(predictions)
|
||||
provider = config["load"]["provider"]
|
||||
if provider == "LoadAkkudoktor":
|
||||
year_energy = config["load"]["provider_settings"]["loadakkudoktor_year_energy"]
|
||||
provider = f"{provider}, {year_energy} kWh"
|
||||
|
||||
plot = figure(
|
||||
x_axis_type="datetime",
|
||||
title=f"Load Prediction ({provider})",
|
||||
x_axis_label="Datetime",
|
||||
y_axis_label="Load [W]",
|
||||
sizing_mode="stretch_width",
|
||||
height=400,
|
||||
)
|
||||
plot.extra_y_ranges["stddev"] = Range1d(0, 1000)
|
||||
y2_axis = LinearAxis(y_range_name="stddev", axis_label="Load Standard Deviation [W]")
|
||||
y2_axis.axis_label_text_color = "green"
|
||||
plot.add_layout(y2_axis, "left")
|
||||
|
||||
plot.line(
|
||||
"date_time",
|
||||
"load_mean",
|
||||
source=source,
|
||||
legend_label="Load mean value",
|
||||
color="red",
|
||||
)
|
||||
plot.line(
|
||||
"date_time",
|
||||
"load_mean_adjusted",
|
||||
source=source,
|
||||
legend_label="Load adjusted by measurement",
|
||||
color="blue",
|
||||
)
|
||||
plot.line(
|
||||
"date_time",
|
||||
"load_std",
|
||||
source=source,
|
||||
legend_label="Load standard deviation",
|
||||
color="green",
|
||||
y_range_name="stddev",
|
||||
)
|
||||
|
||||
return Bokeh(plot)
|
||||
|
||||
|
||||
def Demo(eos_host: str, eos_port: Union[str, int]) -> str:
|
||||
server = f"http://{eos_host}:{eos_port}"
|
||||
|
||||
# Get current configuration from server
|
||||
try:
|
||||
result = requests.get(f"{server}/v1/config")
|
||||
result.raise_for_status()
|
||||
except requests.exceptions.HTTPError as err:
|
||||
detail = result.json()["detail"]
|
||||
return P(
|
||||
f"Can not retrieve configuration from {server}: {err}, {detail}",
|
||||
cls="text-center",
|
||||
)
|
||||
config = result.json()
|
||||
|
||||
# Set demo configuration
|
||||
with FILE_DEMOCONFIG.open("r", encoding="utf-8") as fd:
|
||||
democonfig = json.load(fd)
|
||||
try:
|
||||
result = requests.put(f"{server}/v1/config", json=democonfig)
|
||||
result.raise_for_status()
|
||||
except requests.exceptions.HTTPError as err:
|
||||
detail = result.json()["detail"]
|
||||
# Try to reset to original config
|
||||
requests.put(f"{server}/v1/config", json=config)
|
||||
return P(
|
||||
f"Can not set demo configuration on {server}: {err}, {detail}",
|
||||
cls="text-center",
|
||||
)
|
||||
|
||||
# Update all predictions
|
||||
try:
|
||||
result = requests.post(f"{server}/v1/prediction/update")
|
||||
result.raise_for_status()
|
||||
except requests.exceptions.HTTPError as err:
|
||||
detail = result.json()["detail"]
|
||||
# Try to reset to original config
|
||||
requests.put(f"{server}/v1/config", json=config)
|
||||
return P(
|
||||
f"Can not update predictions on {server}: {err}, {detail}",
|
||||
cls="text-center",
|
||||
)
|
||||
|
||||
# Get Forecasts
|
||||
try:
|
||||
params = {
|
||||
"keys": [
|
||||
"pvforecast_ac_power",
|
||||
"elecprice_marketprice_kwh",
|
||||
"weather_temp_air",
|
||||
"weather_ghi",
|
||||
"weather_dni",
|
||||
"weather_dhi",
|
||||
"load_mean",
|
||||
"load_std",
|
||||
"load_mean_adjusted",
|
||||
],
|
||||
}
|
||||
result = requests.get(f"{server}/v1/prediction/dataframe", params=params)
|
||||
result.raise_for_status()
|
||||
predictions = PydanticDateTimeDataFrame(**result.json()).to_dataframe()
|
||||
except requests.exceptions.HTTPError as err:
|
||||
detail = result.json()["detail"]
|
||||
return P(
|
||||
f"Can not retrieve predictions from {server}: {err}, {detail}",
|
||||
cls="text-center",
|
||||
)
|
||||
except Exception as err:
|
||||
return P(
|
||||
f"Can not retrieve predictions from {server}: {err}",
|
||||
cls="text-center",
|
||||
)
|
||||
|
||||
# Reset to original config
|
||||
requests.put(f"{server}/v1/config", json=config)
|
||||
|
||||
return Grid(
|
||||
DemoPVForecast(predictions, democonfig),
|
||||
DemoElectricityPriceForecast(predictions, democonfig),
|
||||
DemoWeatherTempAir(predictions, democonfig),
|
||||
DemoWeatherIrradiance(predictions, democonfig),
|
||||
DemoLoad(predictions, democonfig),
|
||||
cols_max=2,
|
||||
)
|
92
src/akkudoktoreos/server/dash/footer.py
Normal file
@@ -0,0 +1,92 @@
|
||||
from typing import Optional, Union
|
||||
|
||||
import requests
|
||||
from monsterui.daisy import Loading, LoadingT
|
||||
from monsterui.franken import A, ButtonT, DivFullySpaced, P
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
from akkudoktoreos.config.config import get_config
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
config_eos = get_config()
|
||||
|
||||
|
||||
def get_alive(eos_host: str, eos_port: Union[str, int]) -> str:
|
||||
"""Fetch alive information from the specified EOS server.
|
||||
|
||||
Args:
|
||||
eos_host (str): The hostname of the server.
|
||||
eos_port (Union[str, int]): The port of the server.
|
||||
|
||||
Returns:
|
||||
str: Alive data.
|
||||
"""
|
||||
result = requests.Response()
|
||||
try:
|
||||
result = requests.get(f"http://{eos_host}:{eos_port}/v1/health")
|
||||
if result.status_code == 200:
|
||||
alive = result.json()["status"]
|
||||
else:
|
||||
alive = f"Server responded with status code: {result.status_code}"
|
||||
except RequestException as e:
|
||||
warning_msg = f"{e}"
|
||||
logger.warning(warning_msg)
|
||||
alive = warning_msg
|
||||
|
||||
return alive
|
||||
|
||||
|
||||
def Footer(eos_host: Optional[str], eos_port: Optional[Union[str, int]]) -> str:
|
||||
if eos_host is None:
|
||||
eos_host = config_eos.server.host
|
||||
if eos_port is None:
|
||||
eos_port = config_eos.server.port
|
||||
alive_icon = None
|
||||
if eos_host is None or eos_port is None:
|
||||
alive = "EOS server not given: {eos_host}:{eos_port}"
|
||||
else:
|
||||
alive = get_alive(eos_host, eos_port)
|
||||
if alive == "alive":
|
||||
alive_icon = Loading(
|
||||
cls=(
|
||||
LoadingT.ring,
|
||||
LoadingT.sm,
|
||||
),
|
||||
)
|
||||
alive = f"EOS {eos_host}:{eos_port}"
|
||||
if alive_icon:
|
||||
alive_cls = f"{ButtonT.primary} uk-link rounded-md"
|
||||
else:
|
||||
alive_cls = f"{ButtonT.secondary} uk-link rounded-md"
|
||||
return DivFullySpaced(
|
||||
P(
|
||||
alive_icon,
|
||||
A(alive, href=f"http://{eos_host}:{eos_port}/docs", target="_blank", cls=alive_cls),
|
||||
),
|
||||
P(
|
||||
A(
|
||||
"Documentation",
|
||||
href="https://akkudoktor-eos.readthedocs.io/en/latest/",
|
||||
target="_blank",
|
||||
cls="uk-link",
|
||||
),
|
||||
),
|
||||
P(
|
||||
A(
|
||||
"Issues",
|
||||
href="https://github.com/Akkudoktor-EOS/EOS/issues",
|
||||
target="_blank",
|
||||
cls="uk-link",
|
||||
),
|
||||
),
|
||||
P(
|
||||
A(
|
||||
"GitHub",
|
||||
href="https://github.com/Akkudoktor-EOS/EOS/",
|
||||
target="_blank",
|
||||
cls="uk-link",
|
||||
),
|
||||
),
|
||||
cls="uk-padding-remove-top uk-padding-remove-botton",
|
||||
)
|
24
src/akkudoktoreos/server/dash/hello.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from typing import Any
|
||||
|
||||
from fasthtml.common import Div
|
||||
|
||||
from akkudoktoreos.server.dash.markdown import Markdown
|
||||
|
||||
hello_md = """
|
||||
|
||||
# Akkudoktor EOSdash
|
||||
|
||||
The dashboard for Akkudoktor EOS.
|
||||
|
||||
EOS provides a comprehensive solution for simulating and optimizing an energy system based
|
||||
on renewable energy sources. With a focus on photovoltaic (PV) systems, battery storage (batteries),
|
||||
load management (consumer requirements), heat pumps, electric vehicles, and consideration of
|
||||
electricity price data, this system enables forecasting and optimization of energy flow and costs
|
||||
over a specified period.
|
||||
|
||||
Documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedocs.io/en/latest/).
|
||||
"""
|
||||
|
||||
|
||||
def Hello(**kwargs: Any) -> Div:
|
||||
return Markdown(hello_md, **kwargs)
|
136
src/akkudoktoreos/server/dash/markdown.py
Normal file
@@ -0,0 +1,136 @@
|
||||
"""Markdown rendering with MonsterUI HTML classes."""
|
||||
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from fasthtml.common import FT, Div, NotStr
|
||||
from markdown_it import MarkdownIt
|
||||
from markdown_it.renderer import RendererHTML
|
||||
from markdown_it.token import Token
|
||||
from monsterui.foundations import stringify
|
||||
|
||||
|
||||
def render_heading(
|
||||
self: RendererHTML, tokens: List[Token], idx: int, options: dict, env: dict
|
||||
) -> str:
|
||||
"""Custom renderer for Markdown headings.
|
||||
|
||||
Adds specific CSS classes based on the heading level.
|
||||
|
||||
Parameters:
|
||||
self: The renderer instance.
|
||||
tokens: List of tokens to be rendered.
|
||||
idx: Index of the current token.
|
||||
options: Rendering options.
|
||||
env: Environment sandbox for plugins.
|
||||
|
||||
Returns:
|
||||
The rendered token as a string.
|
||||
"""
|
||||
if tokens[idx].markup == "#":
|
||||
tokens[idx].attrSet("class", "uk-heading-divider uk-h1 uk-margin")
|
||||
elif tokens[idx].markup == "##":
|
||||
tokens[idx].attrSet("class", "uk-heading-divider uk-h2 uk-margin")
|
||||
elif tokens[idx].markup == "###":
|
||||
tokens[idx].attrSet("class", "uk-heading-divider uk-h3 uk-margin")
|
||||
elif tokens[idx].markup == "####":
|
||||
tokens[idx].attrSet("class", "uk-heading-divider uk-h4 uk-margin")
|
||||
|
||||
# pass token to default renderer.
|
||||
return self.renderToken(tokens, idx, options, env)
|
||||
|
||||
|
||||
def render_paragraph(
|
||||
self: RendererHTML, tokens: List[Token], idx: int, options: dict, env: dict
|
||||
) -> str:
|
||||
"""Custom renderer for Markdown paragraphs.
|
||||
|
||||
Adds specific CSS classes.
|
||||
|
||||
Parameters:
|
||||
self: The renderer instance.
|
||||
tokens: List of tokens to be rendered.
|
||||
idx: Index of the current token.
|
||||
options: Rendering options.
|
||||
env: Environment sandbox for plugins.
|
||||
|
||||
Returns:
|
||||
The rendered token as a string.
|
||||
"""
|
||||
tokens[idx].attrSet("class", "uk-paragraph")
|
||||
|
||||
# pass token to default renderer.
|
||||
return self.renderToken(tokens, idx, options, env)
|
||||
|
||||
|
||||
def render_blockquote(
|
||||
self: RendererHTML, tokens: List[Token], idx: int, options: dict, env: dict
|
||||
) -> str:
|
||||
"""Custom renderer for Markdown blockquotes.
|
||||
|
||||
Adds specific CSS classes.
|
||||
|
||||
Parameters:
|
||||
self: The renderer instance.
|
||||
tokens: List of tokens to be rendered.
|
||||
idx: Index of the current token.
|
||||
options: Rendering options.
|
||||
env: Environment sandbox for plugins.
|
||||
|
||||
Returns:
|
||||
The rendered token as a string.
|
||||
"""
|
||||
tokens[idx].attrSet("class", "uk-blockquote")
|
||||
|
||||
# pass token to default renderer.
|
||||
return self.renderToken(tokens, idx, options, env)
|
||||
|
||||
|
||||
def render_link(self: RendererHTML, tokens: List[Token], idx: int, options: dict, env: dict) -> str:
|
||||
"""Custom renderer for Markdown links.
|
||||
|
||||
Adds the target attribute to open links in a new tab.
|
||||
|
||||
Parameters:
|
||||
self: The renderer instance.
|
||||
tokens: List of tokens to be rendered.
|
||||
idx: Index of the current token.
|
||||
options: Rendering options.
|
||||
env: Environment sandbox for plugins.
|
||||
|
||||
Returns:
|
||||
The rendered token as a string.
|
||||
"""
|
||||
tokens[idx].attrSet("class", "uk-link")
|
||||
tokens[idx].attrSet("target", "_blank")
|
||||
|
||||
# pass token to default renderer.
|
||||
return self.renderToken(tokens, idx, options, env)
|
||||
|
||||
|
||||
markdown = MarkdownIt("gfm-like")
|
||||
markdown.add_render_rule("heading_open", render_heading)
|
||||
markdown.add_render_rule("paragraph_open", render_paragraph)
|
||||
markdown.add_render_rule("blockquote_open", render_blockquote)
|
||||
markdown.add_render_rule("link_open", render_link)
|
||||
|
||||
|
||||
markdown_cls = "bg-background text-lg ring-offset-background placeholder:text-muted-foreground focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2 disabled:cursor-not-allowed disabled:opacity-50"
|
||||
|
||||
|
||||
def Markdown(*c: Any, cls: Optional[Union[str, tuple]] = None, **kwargs: Any) -> FT:
|
||||
"""Component to render Markdown content with custom styling.
|
||||
|
||||
Parameters:
|
||||
c: Markdown content to be rendered.
|
||||
cls: Optional additional CSS classes to be added.
|
||||
kwargs: Additional keyword arguments for the Div component.
|
||||
|
||||
Returns:
|
||||
An FT object representing the rendered HTML content wrapped in a Div component.
|
||||
"""
|
||||
new_cls = markdown_cls
|
||||
if cls:
|
||||
new_cls += f" {stringify(cls)}"
|
||||
kwargs["cls"] = new_cls
|
||||
md_html = markdown.render(*c)
|
||||
return Div(NotStr(md_html), **kwargs)
|
@@ -1,55 +1,165 @@
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import psutil
|
||||
import uvicorn
|
||||
from fasthtml.common import H1, FastHTML, Table, Td, Th, Thead, Titled, Tr
|
||||
from fasthtml.common import FileResponse, JSONResponse
|
||||
from monsterui.core import FastHTML, Theme
|
||||
|
||||
from akkudoktoreos.config.config import get_config
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.server.dash.bokeh import BokehJS
|
||||
from akkudoktoreos.server.dash.components import Page
|
||||
|
||||
# Pages
|
||||
from akkudoktoreos.server.dash.configuration import Configuration
|
||||
from akkudoktoreos.server.dash.demo import Demo
|
||||
from akkudoktoreos.server.dash.footer import Footer
|
||||
from akkudoktoreos.server.dash.hello import Hello
|
||||
from akkudoktoreos.server.server import get_default_host, wait_for_port_free
|
||||
|
||||
# from akkudoktoreos.server.dash.altair import AltairJS
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
config_eos = get_config()
|
||||
|
||||
# The favicon for EOSdash
|
||||
favicon_filepath = Path(__file__).parent.joinpath("dash/assets/favicon/favicon.ico")
|
||||
if not favicon_filepath.exists():
|
||||
raise ValueError(f"Does not exist {favicon_filepath}")
|
||||
|
||||
# Command line arguments
|
||||
args = None
|
||||
|
||||
configs = []
|
||||
for field_name in config_eos.model_fields:
|
||||
config = {}
|
||||
config["name"] = field_name
|
||||
config["value"] = getattr(config_eos, field_name)
|
||||
config["default"] = config_eos.model_fields[field_name].default
|
||||
config["description"] = config_eos.model_fields[field_name].description
|
||||
configs.append(config)
|
||||
args: Optional[argparse.Namespace] = None
|
||||
|
||||
|
||||
app = FastHTML(secret_key=os.getenv("EOS_SERVER__EOSDASH_SESSKEY"))
|
||||
rt = app.route
|
||||
|
||||
|
||||
def config_table() -> Table:
|
||||
rows = [
|
||||
Tr(
|
||||
Td(config["name"]),
|
||||
Td(config["value"]),
|
||||
Td(config["default"]),
|
||||
Td(config["description"]),
|
||||
cls="even:bg-purple/5",
|
||||
# Get frankenui and tailwind headers via CDN using Theme.green.headers()
|
||||
# Add altair headers
|
||||
# hdrs=(Theme.green.headers(highlightjs=True), AltairJS,)
|
||||
hdrs = (
|
||||
Theme.green.headers(highlightjs=True),
|
||||
BokehJS,
|
||||
)
|
||||
|
||||
# The EOSdash application
|
||||
app: FastHTML = FastHTML(
|
||||
title="EOSdash",
|
||||
hdrs=hdrs,
|
||||
secret_key=os.getenv("EOS_SERVER__EOSDASH_SESSKEY"),
|
||||
)
|
||||
for config in configs
|
||||
]
|
||||
flds = "Name", "Value", "Default", "Description"
|
||||
head = Thead(*map(Th, flds), cls="bg-purple/10")
|
||||
return Table(head, *rows, cls="w-full")
|
||||
|
||||
|
||||
@rt("/")
|
||||
def get(): # type: ignore
|
||||
return Titled("EOS Dashboard", H1("Configuration"), config_table())
|
||||
def eos_server() -> tuple[str, int]:
|
||||
"""Retrieves the EOS server host and port configuration.
|
||||
|
||||
If `args` is provided, it uses the `eos_host` and `eos_port` from `args`.
|
||||
Otherwise, it falls back to the values from `config_eos.server`.
|
||||
|
||||
Returns:
|
||||
tuple[str, int]: A tuple containing:
|
||||
- `eos_host` (str): The EOS server hostname or IP.
|
||||
- `eos_port` (int): The EOS server port.
|
||||
"""
|
||||
if args is None:
|
||||
eos_host = str(config_eos.server.host)
|
||||
eos_port = config_eos.server.port
|
||||
else:
|
||||
eos_host = args.eos_host
|
||||
eos_port = args.eos_port
|
||||
eos_host = eos_host if eos_host else get_default_host()
|
||||
eos_port = eos_port if eos_port else 8503
|
||||
|
||||
return eos_host, eos_port
|
||||
|
||||
|
||||
def run_eosdash(host: str, port: int, log_level: str, access_log: bool, reload: bool) -> None:
|
||||
@app.get("/favicon.ico")
|
||||
def get_eosdash_favicon(): # type: ignore
|
||||
"""Get favicon."""
|
||||
return FileResponse(path=favicon_filepath)
|
||||
|
||||
|
||||
@app.get("/")
|
||||
def get_eosdash(): # type: ignore
|
||||
"""Serves the main EOSdash page.
|
||||
|
||||
Returns:
|
||||
Page: The main dashboard page with navigation links and footer.
|
||||
"""
|
||||
return Page(
|
||||
None,
|
||||
{
|
||||
"EOSdash": "/eosdash/hello",
|
||||
"Config": "/eosdash/configuration",
|
||||
"Demo": "/eosdash/demo",
|
||||
},
|
||||
Hello(),
|
||||
Footer(*eos_server()),
|
||||
"/eosdash/footer",
|
||||
)
|
||||
|
||||
|
||||
@app.get("/eosdash/footer")
|
||||
def get_eosdash_footer(): # type: ignore
|
||||
"""Serves the EOSdash Foooter information.
|
||||
|
||||
Returns:
|
||||
Footer: The Footer component.
|
||||
"""
|
||||
return Footer(*eos_server())
|
||||
|
||||
|
||||
@app.get("/eosdash/hello")
|
||||
def get_eosdash_hello(): # type: ignore
|
||||
"""Serves the EOSdash Hello page.
|
||||
|
||||
Returns:
|
||||
Hello: The Hello page component.
|
||||
"""
|
||||
return Hello()
|
||||
|
||||
|
||||
@app.get("/eosdash/configuration")
|
||||
def get_eosdash_configuration(): # type: ignore
|
||||
"""Serves the EOSdash Configuration page.
|
||||
|
||||
Returns:
|
||||
Configuration: The Configuration page component.
|
||||
"""
|
||||
return Configuration(*eos_server())
|
||||
|
||||
|
||||
@app.get("/eosdash/demo")
|
||||
def get_eosdash_demo(): # type: ignore
|
||||
"""Serves the EOSdash Demo page.
|
||||
|
||||
Returns:
|
||||
Demo: The Demo page component.
|
||||
"""
|
||||
return Demo(*eos_server())
|
||||
|
||||
|
||||
@app.get("/eosdash/health")
|
||||
def get_eosdash_health(): # type: ignore
|
||||
"""Health check endpoint to verify that the EOSdash server is alive."""
|
||||
return JSONResponse(
|
||||
{
|
||||
"status": "alive",
|
||||
"pid": psutil.Process().pid,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@app.get("/eosdash/assets/{fname:path}.{ext:static}")
|
||||
def get_eosdash_assets(fname: str, ext: str): # type: ignore
|
||||
"""Get assets."""
|
||||
asset_filepath = Path(__file__).parent.joinpath(f"dash/assets/{fname}.{ext}")
|
||||
return FileResponse(path=asset_filepath)
|
||||
|
||||
|
||||
def run_eosdash() -> None:
|
||||
"""Run the EOSdash server with the specified configurations.
|
||||
|
||||
This function starts the EOSdash server using the Uvicorn ASGI server. It accepts
|
||||
@@ -59,31 +169,77 @@ def run_eosdash(host: str, port: int, log_level: str, access_log: bool, reload:
|
||||
server to the specified host and port, an error message is logged and the
|
||||
application exits.
|
||||
|
||||
Parameters:
|
||||
host (str): The hostname to bind the server to.
|
||||
port (int): The port number to bind the server to.
|
||||
log_level (str): The log level for the server. Options include "critical", "error",
|
||||
"warning", "info", "debug", and "trace".
|
||||
access_log (bool): Whether to enable or disable the access log. Set to True to enable.
|
||||
reload (bool): Whether to enable or disable auto-reload. Set to True for development.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Setup parameters from args, config_eos and default
|
||||
# Remember parameters that are also in config
|
||||
# - EOS host
|
||||
if args and args.eos_host:
|
||||
eos_host = args.eos_host
|
||||
elif config_eos.server.host:
|
||||
eos_host = config_eos.server.host
|
||||
else:
|
||||
eos_host = get_default_host()
|
||||
config_eos.server.host = eos_host
|
||||
# - EOS port
|
||||
if args and args.eos_port:
|
||||
eos_port = args.eos_port
|
||||
elif config_eos.server.port:
|
||||
eos_port = config_eos.server.port
|
||||
else:
|
||||
eos_port = 8503
|
||||
config_eos.server.port = eos_port
|
||||
# - EOSdash host
|
||||
if args and args.host:
|
||||
eosdash_host = args.host
|
||||
elif config_eos.server.eosdash.host:
|
||||
eosdash_host = config_eos.server.eosdash_host
|
||||
else:
|
||||
eosdash_host = get_default_host()
|
||||
config_eos.server.eosdash_host = eosdash_host
|
||||
# - EOS port
|
||||
if args and args.port:
|
||||
eosdash_port = args.port
|
||||
elif config_eos.server.eosdash_port:
|
||||
eosdash_port = config_eos.server.eosdash_port
|
||||
else:
|
||||
eosdash_port = 8504
|
||||
config_eos.server.eosdash_port = eosdash_port
|
||||
# - log level
|
||||
if args and args.log_level:
|
||||
log_level = args.log_level
|
||||
else:
|
||||
log_level = "info"
|
||||
# - access log
|
||||
if args and args.access_log:
|
||||
access_log = args.access_log
|
||||
else:
|
||||
access_log = False
|
||||
# - reload
|
||||
if args and args.reload:
|
||||
reload = args.reload
|
||||
else:
|
||||
reload = False
|
||||
|
||||
# Make hostname Windows friendly
|
||||
if host == "0.0.0.0" and os.name == "nt":
|
||||
host = "localhost"
|
||||
if eosdash_host == "0.0.0.0" and os.name == "nt":
|
||||
eosdash_host = "localhost"
|
||||
|
||||
# Wait for EOSdash port to be free - e.g. in case of restart
|
||||
wait_for_port_free(eosdash_port, timeout=120, waiting_app_name="EOSdash")
|
||||
|
||||
try:
|
||||
uvicorn.run(
|
||||
"akkudoktoreos.server.eosdash:app",
|
||||
host=host,
|
||||
port=port,
|
||||
log_level=log_level.lower(), # Convert log_level to lowercase
|
||||
host=eosdash_host,
|
||||
port=eosdash_port,
|
||||
log_level=log_level.lower(),
|
||||
access_log=access_log,
|
||||
reload=reload,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not bind to host {host}:{port}. Error: {e}")
|
||||
logger.error(f"Could not bind to host {eosdash_host}:{eosdash_port}. Error: {e}")
|
||||
raise e
|
||||
|
||||
|
||||
@@ -92,49 +248,44 @@ def main() -> None:
|
||||
|
||||
This function sets up the argument parser to accept command-line arguments for
|
||||
host, port, log_level, access_log, and reload. It uses default values from the
|
||||
config_eos module if arguments are not provided. After parsing the arguments,
|
||||
config module if arguments are not provided. After parsing the arguments,
|
||||
it starts the EOSdash server with the specified configurations.
|
||||
|
||||
Command-line Arguments:
|
||||
--host (str): Host for the EOSdash server (default: value from config_eos).
|
||||
--port (int): Port for the EOSdash server (default: value from config_eos).
|
||||
--eos-host (str): Host for the EOS server (default: value from config_eos).
|
||||
--eos-port (int): Port for the EOS server (default: value from config_eos).
|
||||
--host (str): Host for the EOSdash server (default: value from config).
|
||||
--port (int): Port for the EOSdash server (default: value from config).
|
||||
--eos-host (str): Host for the EOS server (default: value from config).
|
||||
--eos-port (int): Port for the EOS server (default: value from config).
|
||||
--log_level (str): Log level for the server. Options: "critical", "error", "warning", "info", "debug", "trace" (default: "info").
|
||||
--access_log (bool): Enable or disable access log. Options: True or False (default: False).
|
||||
--reload (bool): Enable or disable auto-reload. Useful for development. Options: True or False (default: False).
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="Start EOSdash server.")
|
||||
|
||||
# Host and port arguments with defaults from config_eos
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default=str(config_eos.server_eosdash_host),
|
||||
help="Host for the EOSdash server (default: value from config_eos)",
|
||||
default=str(config_eos.server.eosdash_host),
|
||||
help="Host for the EOSdash server (default: value from config)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=config_eos.server_eosdash_port,
|
||||
help="Port for the EOSdash server (default: value from config_eos)",
|
||||
default=config_eos.server.eosdash_port,
|
||||
help="Port for the EOSdash server (default: value from config)",
|
||||
)
|
||||
|
||||
# EOS Host and port arguments with defaults from config_eos
|
||||
parser.add_argument(
|
||||
"--eos-host",
|
||||
type=str,
|
||||
default=str(config_eos.server_eos_host),
|
||||
help="Host for the EOS server (default: value from config_eos)",
|
||||
default=str(config_eos.server.host),
|
||||
help="Host of the EOS server (default: value from config)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eos-port",
|
||||
type=int,
|
||||
default=config_eos.server_eos_port,
|
||||
help="Port for the EOS server (default: value from config_eos)",
|
||||
default=config_eos.server.port,
|
||||
help="Port of the EOS server (default: value from config)",
|
||||
)
|
||||
|
||||
# Optional arguments for log_level, access_log, and reload
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=str,
|
||||
@@ -145,7 +296,7 @@ def main() -> None:
|
||||
"--access_log",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Enable or disable access log. Options: True or False (default: True)",
|
||||
help="Enable or disable access log. Options: True or False (default: False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--reload",
|
||||
@@ -154,12 +305,16 @@ def main() -> None:
|
||||
help="Enable or disable auto-reload. Useful for development. Options: True or False (default: False)",
|
||||
)
|
||||
|
||||
global args
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
run_eosdash(args.host, args.port, args.log_level, args.access_log, args.reload)
|
||||
except:
|
||||
exit(1)
|
||||
run_eosdash()
|
||||
except Exception as ex:
|
||||
error_msg = f"Failed to run EOSdash: {ex}"
|
||||
logger.error(error_msg)
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
0
src/akkudoktoreos/server/rest/__init__.py
Normal file
91
src/akkudoktoreos/server/rest/error.py
Normal file
@@ -0,0 +1,91 @@
|
||||
ERROR_PAGE_TEMPLATE = """
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Energy Optimization System (EOS) Error</title>
|
||||
<style>
|
||||
body {
|
||||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, sans-serif;
|
||||
background-color: #f5f5f5;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
height: 100vh;
|
||||
margin: 0;
|
||||
padding: 20px;
|
||||
box-sizing: border-box;
|
||||
}
|
||||
.error-container {
|
||||
background: white;
|
||||
padding: 2rem;
|
||||
border-radius: 8px;
|
||||
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
||||
max-width: 500px;
|
||||
width: 100%;
|
||||
text-align: center;
|
||||
}
|
||||
.error-code {
|
||||
font-size: 4rem;
|
||||
font-weight: bold;
|
||||
color: #e53e3e;
|
||||
margin: 0;
|
||||
}
|
||||
.error-title {
|
||||
font-size: 1.5rem;
|
||||
color: #2d3748;
|
||||
margin: 1rem 0;
|
||||
}
|
||||
.error-message {
|
||||
color: #4a5568;
|
||||
margin-bottom: 1.5rem;
|
||||
}
|
||||
.error-details {
|
||||
background: #f7fafc;
|
||||
padding: 1rem;
|
||||
border-radius: 4px;
|
||||
margin-bottom: 1.5rem;
|
||||
text-align: center;
|
||||
font-family: monospace;
|
||||
white-space: pre-wrap;
|
||||
word-break: break-word;
|
||||
}
|
||||
.back-button {
|
||||
background: #3182ce;
|
||||
color: white;
|
||||
border: none;
|
||||
padding: 0.75rem 1.5rem;
|
||||
border-radius: 4px;
|
||||
text-decoration: none;
|
||||
display: inline-block;
|
||||
transition: background-color 0.2s;
|
||||
}
|
||||
.back-button:hover {
|
||||
background: #2c5282;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="error-container">
|
||||
<h1 class="error-code">STATUS_CODE</h1>
|
||||
<h2 class="error-title">ERROR_TITLE</h2>
|
||||
<p class="error-message">ERROR_MESSAGE</p>
|
||||
<div class="error-details">ERROR_DETAILS</div>
|
||||
<a href="/docs" class="back-button">Back to Home</a>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
|
||||
def create_error_page(
|
||||
status_code: str, error_title: str, error_message: str, error_details: str
|
||||
) -> str:
|
||||
"""Create an error page by replacing placeholders in the template."""
|
||||
return (
|
||||
ERROR_PAGE_TEMPLATE.replace("STATUS_CODE", status_code)
|
||||
.replace("ERROR_TITLE", error_title)
|
||||
.replace("ERROR_MESSAGE", error_message)
|
||||
.replace("ERROR_DETAILS", error_details)
|
||||
)
|
92
src/akkudoktoreos/server/rest/tasks.py
Normal file
@@ -0,0 +1,92 @@
|
||||
"""Task handling taken from fastapi-utils/fastapi_utils/tasks.py."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from functools import wraps
|
||||
from typing import Any, Callable, Coroutine, Union
|
||||
|
||||
from starlette.concurrency import run_in_threadpool
|
||||
|
||||
NoArgsNoReturnFuncT = Callable[[], None]
|
||||
NoArgsNoReturnAsyncFuncT = Callable[[], Coroutine[Any, Any, None]]
|
||||
ExcArgNoReturnFuncT = Callable[[Exception], None]
|
||||
ExcArgNoReturnAsyncFuncT = Callable[[Exception], Coroutine[Any, Any, None]]
|
||||
NoArgsNoReturnAnyFuncT = Union[NoArgsNoReturnFuncT, NoArgsNoReturnAsyncFuncT]
|
||||
ExcArgNoReturnAnyFuncT = Union[ExcArgNoReturnFuncT, ExcArgNoReturnAsyncFuncT]
|
||||
NoArgsNoReturnDecorator = Callable[[NoArgsNoReturnAnyFuncT], NoArgsNoReturnAsyncFuncT]
|
||||
|
||||
|
||||
async def _handle_func(func: NoArgsNoReturnAnyFuncT) -> None:
|
||||
if asyncio.iscoroutinefunction(func):
|
||||
await func()
|
||||
else:
|
||||
await run_in_threadpool(func)
|
||||
|
||||
|
||||
async def _handle_exc(exc: Exception, on_exception: ExcArgNoReturnAnyFuncT | None) -> None:
|
||||
if on_exception:
|
||||
if asyncio.iscoroutinefunction(on_exception):
|
||||
await on_exception(exc)
|
||||
else:
|
||||
await run_in_threadpool(on_exception, exc)
|
||||
|
||||
|
||||
def repeat_every(
|
||||
*,
|
||||
seconds: float,
|
||||
wait_first: float | None = None,
|
||||
logger: logging.Logger | None = None,
|
||||
raise_exceptions: bool = False,
|
||||
max_repetitions: int | None = None,
|
||||
on_complete: NoArgsNoReturnAnyFuncT | None = None,
|
||||
on_exception: ExcArgNoReturnAnyFuncT | None = None,
|
||||
) -> NoArgsNoReturnDecorator:
|
||||
"""A decorator that modifies a function so it is periodically re-executed after its first call.
|
||||
|
||||
The function it decorates should accept no arguments and return nothing. If necessary, this can be accomplished
|
||||
by using `functools.partial` or otherwise wrapping the target function prior to decoration.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
seconds: float
|
||||
The number of seconds to wait between repeated calls
|
||||
wait_first: float (default None)
|
||||
If not None, the function will wait for the given duration before the first call
|
||||
max_repetitions: Optional[int] (default None)
|
||||
The maximum number of times to call the repeated function. If `None`, the function is repeated forever.
|
||||
on_complete: Optional[Callable[[], None]] (default None)
|
||||
A function to call after the final repetition of the decorated function.
|
||||
on_exception: Optional[Callable[[Exception], None]] (default None)
|
||||
A function to call when an exception is raised by the decorated function.
|
||||
"""
|
||||
|
||||
def decorator(func: NoArgsNoReturnAnyFuncT) -> NoArgsNoReturnAsyncFuncT:
|
||||
"""Converts the decorated function into a repeated, periodically-called version."""
|
||||
|
||||
@wraps(func)
|
||||
async def wrapped() -> None:
|
||||
async def loop() -> None:
|
||||
if wait_first is not None:
|
||||
await asyncio.sleep(wait_first)
|
||||
|
||||
repetitions = 0
|
||||
while max_repetitions is None or repetitions < max_repetitions:
|
||||
try:
|
||||
await _handle_func(func)
|
||||
|
||||
except Exception as exc:
|
||||
await _handle_exc(exc, on_exception)
|
||||
|
||||
repetitions += 1
|
||||
await asyncio.sleep(seconds)
|
||||
|
||||
if on_complete:
|
||||
await _handle_func(on_complete)
|
||||
|
||||
asyncio.ensure_future(loop())
|
||||
|
||||
return wrapped
|
||||
|
||||
return decorator
|