2 Commits

Author SHA1 Message Date
Normann
be2ff5ea3d Update pyproject.toml 2025-03-23 22:04:20 +01:00
Normann
54f78fbc49 Python req. to 3.11 for sphinx update 2025-03-23 22:03:38 +01:00
157 changed files with 21414 additions and 20152 deletions

View File

@@ -1,8 +1,8 @@
.git/ .git/
.github/ .github/
**/__pycache__/ eos-data/
**/*.pyc mariadb-data/
**/*.egg-info/ test_data/
.dockerignore .dockerignore
.env .env
.gitignore .gitignore
@@ -12,4 +12,4 @@ LICENSE
Makefile Makefile
NOTICE NOTICE
README.md README.md
.venv/ .venv

4
.env
View File

@@ -1,5 +1,5 @@
EOS_VERSION=main EOS_VERSION=main
EOS_SERVER__PORT=8503 EOS_PORT=8503
EOS_SERVER__EOSDASH_PORT=8504 EOSDASH_PORT=8504
PYTHON_VERSION=3.12.6 PYTHON_VERSION=3.12.6

View File

@@ -7,11 +7,13 @@ on:
push: push:
branches: branches:
- 'main' - 'main'
- 'feature/config-overhaul'
tags: tags:
- 'v*' - 'v*'
pull_request: pull_request:
branches: branches:
- '**' - 'main'
- 'feature/config-overhaul'
env: env:
DOCKERHUB_REPO: akkudoktor/eos DOCKERHUB_REPO: akkudoktor/eos
@@ -195,7 +197,6 @@ jobs:
type=ref,event=pr type=ref,event=pr
type=semver,pattern={{version}} type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}} type=semver,pattern={{major}}.{{minor}}
type=raw,value=latest,enable={{is_default_branch}}
labels: | labels: |
org.opencontainers.image.licenses=${{ env.EOS_LICENSE }} org.opencontainers.image.licenses=${{ env.EOS_LICENSE }}
annotations: | annotations: |

View File

@@ -1,35 +0,0 @@
name: "Close stale pull requests/issues"
on:
schedule:
- cron: "16 00 * * *"
permissions:
contents: read
jobs:
stale:
name: Find Stale issues and PRs
runs-on: ubuntu-22.04
if: github.repository == 'Akkudoktor-EOS/EOS'
permissions:
pull-requests: write # to comment on stale pull requests
issues: write # to comment on stale issues
steps:
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
with:
stale-pr-message: 'This pull request has been marked as stale because it has been open (more
than) 90 days with no activity. Remove the stale label or add a comment saying that you
would like to have the label removed otherwise this pull request will automatically be
closed in 30 days. Note, that you can always re-open a closed pull request at any time.'
stale-issue-message: 'This issue has been marked as stale because it has been open (more
than) 90 days with no activity. Remove the stale label or add a comment saying that you
would like to have the label removed otherwise this issue will automatically be closed in
30 days. Note, that you can always re-open a closed issue at any time.'
days-before-stale: 90
days-before-close: 30
stale-issue-label: 'stale'
stale-pr-label: 'stale'
exempt-pr-labels: 'in progress'
exempt-issue-labels: 'feature request, enhancement'
operations-per-run: 400

5
.gitignore vendored
View File

@@ -179,7 +179,7 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear # and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/ #.idea/
# General # General
.DS_Store .DS_Store
@@ -260,6 +260,3 @@ tests/testdata/new_optimize_result*
tests/testdata/openapi-new.json tests/testdata/openapi-new.json
tests/testdata/openapi-new.md tests/testdata/openapi-new.md
tests/testdata/config-new.md tests/testdata/config-new.md
# FastHTML session key
.sesskey

View File

@@ -1,35 +0,0 @@
[general]
# verbosity should be a value between 1 and 3, the commandline -v flags take precedence over this
verbosity = 3
regex-style-search=true
# Ignore rules, reference them by id or name (comma-separated)
ignore=title-trailing-punctuation, T3
# Enable specific community contributed rules
contrib=contrib-title-conventional-commits,CC1
# Set the extra-path where gitlint will search for user defined rules
extra-path=scripts/gitlint
[title-max-length]
line-length=80
[title-min-length]
min-length=5
[ignore-by-title]
# Match commit titles starting with "Release"
regex=^Release(.*)
ignore=title-max-length,body-min-length
[ignore-by-body]
# Match commits message bodies that have a line that contains 'release'
regex=(.*)release(.*)
ignore=all
[ignore-by-author-name]
# Match commits by author name (e.g. ignore dependabot commits)
regex=dependabot
ignore=all

View File

@@ -12,12 +12,12 @@ repos:
- id: check-merge-conflict - id: check-merge-conflict
exclude: '\.rst$' # Exclude .rst files exclude: '\.rst$' # Exclude .rst files
- repo: https://github.com/PyCQA/isort - repo: https://github.com/PyCQA/isort
rev: 6.0.0 rev: 5.13.2
hooks: hooks:
- id: isort - id: isort
name: isort name: isort
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.6 rev: v0.6.8
hooks: hooks:
# Run the linter and fix simple issues automatically # Run the linter and fix simple issues automatically
- id: ruff - id: ruff
@@ -25,7 +25,7 @@ repos:
# Run the formatter. # Run the formatter.
- id: ruff-format - id: ruff-format
- repo: https://github.com/pre-commit/mirrors-mypy - repo: https://github.com/pre-commit/mirrors-mypy
rev: 'v1.15.0' rev: 'v1.13.0'
hooks: hooks:
- id: mypy - id: mypy
additional_dependencies: additional_dependencies:
@@ -34,7 +34,7 @@ repos:
- "numpy==2.1.3" - "numpy==2.1.3"
pass_filenames: false pass_filenames: false
- repo: https://github.com/jackdewinter/pymarkdown - repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.29 rev: main
hooks: hooks:
- id: pymarkdown - id: pymarkdown
files: ^docs/ files: ^docs/
@@ -42,7 +42,3 @@ repos:
args: args:
- --config=docs/pymarkdown.json - --config=docs/pymarkdown.json
- scan - scan
- repo: https://github.com/jorisroovers/gitlint
rev: v0.19.1
hooks:
- id: gitlint

View File

@@ -21,8 +21,8 @@ There are just too many possibilities and the project would drown in tickets oth
## Code Contributions ## Code Contributions
We welcome code contributions and bug fixes via [Pull Requests](https://github.com/Akkudoktor-EOS/EOS/pulls). We welcome code contributions and bug fixes via [Pull Requests](https://github.com/Akkudoktor-EOS/EOS/pulls).
To make collaboration easier, we require pull requests to pass code style, unit tests, and commit To make collaboration easier, we require pull requests to pass code style and unit tests.
message style checks.
### Setup development environment ### Setup development environment
@@ -60,7 +60,6 @@ To run formatting automatically before every commit:
```bash ```bash
pre-commit install pre-commit install
pre-commit install --hook-type commit-msg
``` ```
Or run them manually: Or run them manually:
@@ -76,8 +75,3 @@ Use `pytest` to run tests locally:
```bash ```bash
python -m pytest -vs --cov src --cov-report term-missing tests/ python -m pytest -vs --cov src --cov-report term-missing tests/
``` ```
### Commit message style
Our commit message checks use [`gitlint`](https://github.com/jorisroovers/gitlint). The checks
enforce the [`Conventional Commits`](https://www.conventionalcommits.org) commit message style.

View File

@@ -1,9 +1,10 @@
# syntax=docker/dockerfile:1.7
ARG PYTHON_VERSION=3.12.7 ARG PYTHON_VERSION=3.12.7
FROM python:${PYTHON_VERSION}-slim FROM python:${PYTHON_VERSION}-slim
LABEL source="https://github.com/Akkudoktor-EOS/EOS" LABEL source="https://github.com/Akkudoktor-EOS/EOS"
ENV VIRTUAL_ENV="/opt/venv"
ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
ENV MPLCONFIGDIR="/tmp/mplconfigdir" ENV MPLCONFIGDIR="/tmp/mplconfigdir"
ENV EOS_DIR="/opt/eos" ENV EOS_DIR="/opt/eos"
ENV EOS_CACHE_DIR="${EOS_DIR}/cache" ENV EOS_CACHE_DIR="${EOS_DIR}/cache"
@@ -35,25 +36,13 @@ RUN mkdir -p src && pip install -e .
COPY src src COPY src src
# Create minimal default configuration for Docker to fix EOSDash accessibility (#629)
# This ensures EOSDash binds to 0.0.0.0 instead of 127.0.0.1 in containers
RUN echo '{\n\
"server": {\n\
"host": "0.0.0.0",\n\
"port": 8503,\n\
"startup_eosdash": true,\n\
"eosdash_host": "0.0.0.0",\n\
"eosdash_port": 8504\n\
}\n\
}' > "${EOS_CONFIG_DIR}/EOS.config.json" \
&& chown eos:eos "${EOS_CONFIG_DIR}/EOS.config.json"
USER eos USER eos
ENTRYPOINT [] ENTRYPOINT []
EXPOSE 8503 EXPOSE 8503
EXPOSE 8504 EXPOSE 8504
ENV server_eosdash_host=0.0.0.0
CMD ["python", "src/akkudoktoreos/server/eos.py", "--host", "0.0.0.0"] CMD ["python", "src/akkudoktoreos/server/eos.py", "--host", "0.0.0.0"]
VOLUME ["${MPLCONFIGDIR}", "${EOS_CACHE_DIR}", "${EOS_OUTPUT_DIR}", "${EOS_CONFIG_DIR}"] VOLUME ["${MPLCONFIGDIR}", "${EOS_CACHE_DIR}", "${EOS_OUTPUT_DIR}", "${EOS_CONFIG_DIR}"]

View File

@@ -1,5 +1,5 @@
# Define the targets # Define the targets
.PHONY: help venv pip install dist test test-full docker-run docker-build docs read-docs clean format gitlint mypy run run-dev .PHONY: help venv pip install dist test test-full docker-run docker-build docs read-docs clean format mypy run run-dev
# Default target # Default target
all: help all: help
@@ -11,7 +11,6 @@ help:
@echo " pip - Install dependencies from requirements.txt." @echo " pip - Install dependencies from requirements.txt."
@echo " pip-dev - Install dependencies from requirements-dev.txt." @echo " pip-dev - Install dependencies from requirements-dev.txt."
@echo " format - Format source code." @echo " format - Format source code."
@echo " gitlint - Lint last commit message."
@echo " mypy - Run mypy." @echo " mypy - Run mypy."
@echo " install - Install EOS in editable form (development mode) into virtual environment." @echo " install - Install EOS in editable form (development mode) into virtual environment."
@echo " docker-run - Run entire setup on docker" @echo " docker-run - Run entire setup on docker"
@@ -20,13 +19,8 @@ help:
@echo " read-docs - Read HTML documentation in your browser." @echo " read-docs - Read HTML documentation in your browser."
@echo " gen-docs - Generate openapi.json and docs/_generated/*." @echo " gen-docs - Generate openapi.json and docs/_generated/*."
@echo " clean-docs - Remove generated documentation." @echo " clean-docs - Remove generated documentation."
@echo " run - Run EOS production server in virtual environment." @echo " run - Run EOS production server in the virtual environment."
@echo " run-dev - Run EOS development server in virtual environment (automatically reloads)." @echo " run-dev - Run EOS development server in the virtual environment (automatically reloads)."
@echo " run-dash - Run EOSdash production server in virtual environment."
@echo " run-dash-dev - Run EOSdash development server in virtual environment (automatically reloads)."
@echo " test - Run tests."
@echo " test-full - Run tests with full optimization."
@echo " test-ci - Run tests as CI does. No user config file allowed."
@echo " dist - Create distribution (in dist/)." @echo " dist - Create distribution (in dist/)."
@echo " clean - Remove generated documentation, distribution and virtual environment." @echo " clean - Remove generated documentation, distribution and virtual environment."
@@ -76,11 +70,6 @@ read-docs: docs
@echo "Read the documentation in your browser" @echo "Read the documentation in your browser"
.venv/bin/python -m webbrowser build/docs/html/index.html .venv/bin/python -m webbrowser build/docs/html/index.html
# Clean Python bytecode
clean-bytecode:
find . -type d -name "__pycache__" -exec rm -r {} +
find . -type f -name "*.pyc" -delete
# Clean target to remove generated documentation and documentation artefacts # Clean target to remove generated documentation and documentation artefacts
clean-docs: clean-docs:
@echo "Searching and deleting all '_autosum' directories in docs..." @echo "Searching and deleting all '_autosum' directories in docs..."
@@ -96,19 +85,11 @@ clean: clean-docs
run: run:
@echo "Starting EOS production server, please wait..." @echo "Starting EOS production server, please wait..."
.venv/bin/python -m akkudoktoreos.server.eos .venv/bin/python src/akkudoktoreos/server/eos.py
run-dev: run-dev:
@echo "Starting EOS development server, please wait..." @echo "Starting EOS development server, please wait..."
.venv/bin/python -m akkudoktoreos.server.eos --host localhost --port 8503 --reload true .venv/bin/python src/akkudoktoreos/server/eos.py --host localhost --port 8503 --reload true
run-dash:
@echo "Starting EOSdash production server, please wait..."
.venv/bin/python -m akkudoktoreos.server.eosdash
run-dash-dev:
@echo "Starting EOSdash development server, please wait..."
.venv/bin/python -m akkudoktoreos.server.eosdash --host localhost --port 8504 --reload true
# Target to setup tests. # Target to setup tests.
test-setup: pip-dev test-setup: pip-dev
@@ -119,11 +100,6 @@ test:
@echo "Running tests..." @echo "Running tests..."
.venv/bin/pytest -vs --cov src --cov-report term-missing .venv/bin/pytest -vs --cov src --cov-report term-missing
# Target to run tests as done by CI on Github.
test-ci:
@echo "Running tests as CI..."
.venv/bin/pytest --full-run --check-config-side-effect -vs --cov src --cov-report term-missing
# Target to run all tests. # Target to run all tests.
test-full: test-full:
@echo "Running all tests..." @echo "Running all tests..."
@@ -133,10 +109,6 @@ test-full:
format: format:
.venv/bin/pre-commit run --all-files .venv/bin/pre-commit run --all-files
# Target to trigger gitlint using pre-commit for the last commit message
gitlint:
.venv/bin/pre-commit run gitlint --hook-stage commit-msg --commit-msg-filename .git/COMMIT_EDITMSG
# Target to format code. # Target to format code.
mypy: mypy:
.venv/bin/mypy .venv/bin/mypy

View File

@@ -20,7 +20,7 @@ Other architectures (e.g. armv6, armv7) are unsupported for now, because a multi
## Installation ## Installation
The project requires Python 3.11 or newer. Docker images (amd64/aarch64) can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos). Docker images (amd64/aarch64) can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos).
Following sections describe how to locally start the EOS server on `http://localhost:8503`. Following sections describe how to locally start the EOS server on `http://localhost:8503`.
@@ -40,9 +40,8 @@ Windows:
```cmd ```cmd
python -m venv .venv python -m venv .venv
.venv\Scripts\Activate .venv\Scripts\pip install -r requirements.txt
.venv\Scripts\pip install -r requirements.txt .venv\Scripts\pip install -e .
.venv\Scripts\pip install -e .
``` ```
Finally, start the EOS server to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`): Finally, start the EOS server to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`):
@@ -67,8 +66,6 @@ Start EOS with following command to access it at `http://localhost:8503` (API do
docker compose up docker compose up
``` ```
If you are running the EOS container on a system hosting multiple services, such as a Synology NAS, and want to allow external network access to EOS, please ensure that the default exported ports (8503, 8504) are available on the host. On Synology systems, these ports might already be in use (refer to [this guide](https://kb.synology.com/en-me/DSM/tutorial/What_network_ports_are_used_by_Synology_services)). If the ports are occupied, you will need to reconfigure the exported ports accordingly.
## Configuration ## Configuration
This project uses the `EOS.config.json` file to manage configuration settings. This project uses the `EOS.config.json` file to manage configuration settings.

View File

@@ -11,35 +11,14 @@ services:
dockerfile: "Dockerfile" dockerfile: "Dockerfile"
args: args:
PYTHON_VERSION: "${PYTHON_VERSION}" PYTHON_VERSION: "${PYTHON_VERSION}"
env_file:
- .env
environment: environment:
- EOS_CONFIG_DIR=config - EOS_CONFIG_DIR=config
- latitude=52.2
- longitude=13.4
- elecprice_provider=ElecPriceAkkudoktor
- elecprice_charges_kwh=0.21
- EOS_SERVER__EOSDASH_SESSKEY=s3cr3t - EOS_SERVER__EOSDASH_SESSKEY=s3cr3t
- EOS_PREDICTION__LATITUDE=52.2
- EOS_PREDICTION__LONGITUDE=13.4
- EOS_ELECPRICE__PROVIDER=ElecPriceAkkudoktor
- EOS_ELECPRICE__CHARGES_KWH=0.21
ports: ports:
# Configure what ports to expose on host # Configure what ports to expose on host
- "${EOS_SERVER__PORT}:8503" - "${EOS_PORT}:8503"
- "${EOS_SERVER__EOSDASH_PORT}:8504" - "${EOSDASH_PORT}:8504"
# Volume mount configuration (optional)
# IMPORTANT: When mounting local directories, the default config won't be available.
# You must create an EOS.config.json file in your local config directory with:
# {
# "server": {
# "host": "0.0.0.0", # Required for Docker container accessibility
# "port": 8503,
# "startup_eosdash": true,
# "eosdash_host": "0.0.0.0", # Required for Docker container accessibility
# "eosdash_port": 8504
# }
# }
#
# Example volume mounts (uncomment to use):
# volumes:
# - ./config:/opt/eos/config # Mount local config directory
# - ./cache:/opt/eos/cache # Mount local cache directory
# - ./output:/opt/eos/output # Mount local output directory

File diff suppressed because it is too large Load Diff

View File

@@ -63,7 +63,7 @@ Args:
year_energy (float): Yearly energy consumption in Wh. year_energy (float): Yearly energy consumption in Wh.
Note: Note:
Set LoadAkkudoktor as provider, then update data with Set LoadAkkudoktor as load_provider, then update data with
'/v1/prediction/update' '/v1/prediction/update'
and then request data with and then request data with
'/v1/prediction/list?key=load_mean' instead. '/v1/prediction/list?key=load_mean' instead.
@@ -91,8 +91,6 @@ Fastapi Optimize
- `start_hour` (query, optional): Defaults to current hour of the day. - `start_hour` (query, optional): Defaults to current hour of the day.
- `ngen` (query, optional): No description provided.
**Request Body**: **Request Body**:
- `application/json`: { - `application/json`: {
@@ -123,7 +121,7 @@ If no forecast values are available the missing ones at the start of the series
filled with the first available forecast value. filled with the first available forecast value.
Note: Note:
Set PVForecastAkkudoktor as provider, then update data with Set PVForecastAkkudoktor as pvforecast_provider, then update data with
'/v1/prediction/update' '/v1/prediction/update'
and then request data with and then request data with
'/v1/prediction/list?key=pvforecast_ac_power' and '/v1/prediction/list?key=pvforecast_ac_power' and
@@ -153,7 +151,7 @@ Note:
Electricity price charges are added. Electricity price charges are added.
Note: Note:
Set ElecPriceAkkudoktor as provider, then update data with Set ElecPriceAkkudoktor as elecprice_provider, then update data with
'/v1/prediction/update' '/v1/prediction/update'
and then request data with and then request data with
'/v1/prediction/list?key=elecprice_marketprice_wh' or '/v1/prediction/list?key=elecprice_marketprice_wh' or
@@ -166,127 +164,6 @@ Note:
--- ---
## GET /v1/admin/cache
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_get_v1_admin_cache_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_get_v1_admin_cache_get)
Fastapi Admin Cache Get
```
Current cache management data.
Returns:
data (dict): The management data.
```
**Responses**:
- **200**: Successful Response
---
## POST /v1/admin/cache/clear
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_clear_post_v1_admin_cache_clear_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_clear_post_v1_admin_cache_clear_post)
Fastapi Admin Cache Clear Post
```
Clear the cache from expired data.
Deletes expired cache files.
Args:
clear_all (Optional[bool]): Delete all cached files. Default is False.
Returns:
data (dict): The management data after cleanup.
```
**Parameters**:
- `clear_all` (query, optional): No description provided.
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## POST /v1/admin/cache/load
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_load_post_v1_admin_cache_load_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_load_post_v1_admin_cache_load_post)
Fastapi Admin Cache Load Post
```
Load cache management data.
Returns:
data (dict): The management data that was loaded.
```
**Responses**:
- **200**: Successful Response
---
## POST /v1/admin/cache/save
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_cache_save_post_v1_admin_cache_save_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_cache_save_post_v1_admin_cache_save_post)
Fastapi Admin Cache Save Post
```
Save the current cache management data.
Returns:
data (dict): The management data that was saved.
```
**Responses**:
- **200**: Successful Response
---
## POST /v1/admin/server/restart
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_server_restart_post_v1_admin_server_restart_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_server_restart_post_v1_admin_server_restart_post)
Fastapi Admin Server Restart Post
```
Restart the server.
Restart EOS properly by starting a new instance before exiting the old one.
```
**Responses**:
- **200**: Successful Response
---
## POST /v1/admin/server/shutdown
**Links**: [local](http://localhost:8503/docs#/default/fastapi_admin_server_shutdown_post_v1_admin_server_shutdown_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_admin_server_shutdown_post_v1_admin_server_shutdown_post)
Fastapi Admin Server Shutdown Post
```
Shutdown the server.
```
**Responses**:
- **200**: Successful Response
---
## GET /v1/config ## GET /v1/config
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_get_v1_config_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_get_v1_config_get) **Links**: [local](http://localhost:8503/docs#/default/fastapi_config_get_v1_config_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_get_v1_config_get)
@@ -313,11 +190,11 @@ Returns:
Fastapi Config Put Fastapi Config Put
``` ```
Update the current config with the provided settings. Write the provided settings into the current settings.
Note that for any setting value that is None or unset, the configuration will fall back to The existing settings are completely overwritten. Note that for any setting
values from other sources such as environment variables, the EOS configuration file, or default value that is None, the configuration will fall back to values from other sources such as
values. environment variables, the EOS configuration file, or default values.
Args: Args:
settings (SettingsEOS): The settings to write into the current settings. settings (SettingsEOS): The settings to write into the current settings.
@@ -326,11 +203,311 @@ Returns:
configuration (ConfigEOS): The current configuration after the write. configuration (ConfigEOS): The current configuration after the write.
``` ```
**Request Body**: **Parameters**:
- `application/json`: { - `server_eos_host` (query, optional): EOS server IP address.
"$ref": "#/components/schemas/SettingsEOS"
} - `server_eos_port` (query, optional): EOS server IP port number.
- `server_eos_verbose` (query, optional): Enable debug output
- `server_eos_startup_eosdash` (query, optional): EOS server to start EOSdash server.
- `server_eosdash_host` (query, optional): EOSdash server IP address.
- `server_eosdash_port` (query, optional): EOSdash server IP port number.
- `weatherimport_file_path` (query, optional): Path to the file to import weather data from.
- `weatherimport_json` (query, optional): JSON string, dictionary of weather forecast value lists.
- `weather_provider` (query, optional): Weather provider id of provider to be used.
- `pvforecastimport_file_path` (query, optional): Path to the file to import PV forecast data from.
- `pvforecastimport_json` (query, optional): JSON string, dictionary of PV forecast value lists.
- `pvforecast_provider` (query, optional): PVForecast provider id of provider to be used.
- `pvforecast0_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast0_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast0_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast0_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast0_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast0_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast0_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast0_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast0_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast0_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast0_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast0_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast0_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast0_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast0_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast0_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast1_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast1_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast1_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast1_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast1_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast1_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast1_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast1_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast1_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast1_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast1_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast1_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast1_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast1_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast1_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast1_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast2_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast2_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast2_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast2_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast2_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast2_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast2_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast2_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast2_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast2_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast2_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast2_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast2_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast2_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast2_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast2_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast3_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast3_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast3_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast3_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast3_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast3_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast3_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast3_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast3_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast3_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast3_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast3_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast3_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast3_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast3_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast3_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast4_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast4_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast4_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast4_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast4_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast4_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast4_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast4_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast4_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast4_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast4_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast4_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast4_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast4_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast4_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast4_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast5_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast5_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast5_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast5_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast5_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast5_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast5_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast5_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast5_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast5_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast5_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast5_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast5_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast5_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast5_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast5_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `load_import_file_path` (query, optional): Path to the file to import load data from.
- `load_import_json` (query, optional): JSON string, dictionary of load forecast value lists.
- `loadakkudoktor_year_energy` (query, optional): Yearly energy consumption (kWh).
- `load_provider` (query, optional): Load provider id of provider to be used.
- `elecpriceimport_file_path` (query, optional): Path to the file to import elecprice data from.
- `elecpriceimport_json` (query, optional): JSON string, dictionary of electricity price forecast value lists.
- `elecprice_provider` (query, optional): Electricity price provider id of provider to be used.
- `elecprice_charges_kwh` (query, optional): Electricity price charges (€/kWh).
- `prediction_hours` (query, optional): Number of hours into the future for predictions
- `prediction_historic_hours` (query, optional): Number of hours into the past for historical predictions data
- `latitude` (query, optional): Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)
- `longitude` (query, optional): Longitude in decimal degrees, within -180 to 180 (°)
- `optimization_hours` (query, optional): Number of hours into the future for optimizations.
- `optimization_penalty` (query, optional): Penalty factor used in optimization.
- `optimization_ev_available_charge_rates_percent` (query, optional): Charge rates available for the EV in percent of maximum charge.
- `measurement_load0_name` (query, optional): Name of the load0 source (e.g. 'Household', 'Heat Pump')
- `measurement_load1_name` (query, optional): Name of the load1 source (e.g. 'Household', 'Heat Pump')
- `measurement_load2_name` (query, optional): Name of the load2 source (e.g. 'Household', 'Heat Pump')
- `measurement_load3_name` (query, optional): Name of the load3 source (e.g. 'Household', 'Heat Pump')
- `measurement_load4_name` (query, optional): Name of the load4 source (e.g. 'Household', 'Heat Pump')
- `battery_provider` (query, optional): Id of Battery simulation provider.
- `battery_capacity` (query, optional): Battery capacity [Wh].
- `battery_initial_soc` (query, optional): Battery initial state of charge [%].
- `battery_soc_min` (query, optional): Battery minimum state of charge [%].
- `battery_soc_max` (query, optional): Battery maximum state of charge [%].
- `battery_charging_efficiency` (query, optional): Battery charging efficiency [%].
- `battery_discharging_efficiency` (query, optional): Battery discharging efficiency [%].
- `battery_max_charging_power` (query, optional): Battery maximum charge power [W].
- `bev_provider` (query, optional): Id of Battery Electric Vehicle simulation provider.
- `bev_capacity` (query, optional): Battery Electric Vehicle capacity [Wh].
- `bev_initial_soc` (query, optional): Battery Electric Vehicle initial state of charge [%].
- `bev_soc_max` (query, optional): Battery Electric Vehicle maximum state of charge [%].
- `bev_charging_efficiency` (query, optional): Battery Electric Vehicle charging efficiency [%].
- `bev_discharging_efficiency` (query, optional): Battery Electric Vehicle discharging efficiency [%].
- `bev_max_charging_power` (query, optional): Battery Electric Vehicle maximum charge power [W].
- `dishwasher_provider` (query, optional): Id of Dish Washer simulation provider.
- `dishwasher_consumption` (query, optional): Dish Washer energy consumption [Wh].
- `dishwasher_duration` (query, optional): Dish Washer usage duration [h].
- `inverter_provider` (query, optional): Id of PV Inverter simulation provider.
- `inverter_power_max` (query, optional): Inverter maximum power [W].
- `logging_level_default` (query, optional): EOS default logging level.
- `data_folder_path` (query, optional): Path to EOS data directory.
- `data_output_subpath` (query, optional): Sub-path for the EOS output data directory.
- `data_cache_subpath` (query, optional): Sub-path for the EOS cache data directory.
**Responses**: **Responses**:
@@ -340,6 +517,25 @@ Returns:
--- ---
## GET /v1/config/file
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_get_v1_config_file_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_get_v1_config_file_get)
Fastapi Config File Get
```
Get the settings as defined by the EOS configuration file.
Returns:
settings (SettingsEOS): The settings defined by the EOS configuration file.
```
**Responses**:
- **200**: Successful Response
---
## PUT /v1/config/file ## PUT /v1/config/file
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_put_v1_config_file_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_put_v1_config_file_put) **Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_put_v1_config_file_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_put_v1_config_file_put)
@@ -359,14 +555,14 @@ Returns:
--- ---
## POST /v1/config/reset ## POST /v1/config/update
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_reset_post_v1_config_reset_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_reset_post_v1_config_reset_post) **Links**: [local](http://localhost:8503/docs#/default/fastapi_config_update_post_v1_config_update_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_update_post_v1_config_update_post)
Fastapi Config Reset Post Fastapi Config Update Post
``` ```
Reset the configuration to the EOS configuration file. Update the configuration from the EOS configuration file.
Returns: Returns:
configuration (ConfigEOS): The current configuration after update. configuration (ConfigEOS): The current configuration after update.
@@ -378,132 +574,28 @@ Returns:
--- ---
## GET /v1/config/{path} ## PUT /v1/config/value
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_get_key_v1_config__path__get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_get_key_v1_config__path__get) **Links**: [local](http://localhost:8503/docs#/default/fastapi_config_value_put_v1_config_value_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_value_put_v1_config_value_put)
Fastapi Config Get Key Fastapi Config Value Put
``` ```
Get the value of a nested key or index in the config model. Set the configuration option in the settings.
Args: Args:
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0"). key (str): configuration key
value (Any): configuration value
Returns: Returns:
value (Any): The value of the selected nested key. configuration (ConfigEOS): The current configuration after the write.
``` ```
**Parameters**: **Parameters**:
- `path` (path, required): The nested path to the configuration key (e.g., general/latitude). - `key` (query, required): configuration key
**Responses**: - `value` (query, required): configuration value
- **200**: Successful Response
- **422**: Validation Error
---
## PUT /v1/config/{path}
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_put_key_v1_config__path__put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_put_key_v1_config__path__put)
Fastapi Config Put Key
```
Update a nested key or index in the config model.
Args:
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0").
value (Any): The new value to assign to the key or index at path.
Returns:
configuration (ConfigEOS): The current configuration after the update.
```
**Parameters**:
- `path` (path, required): The nested path to the configuration key (e.g., general/latitude).
**Request Body**:
- `application/json`: {
"anyOf": [
{},
{
"type": "null"
}
],
"description": "The value to assign to the specified configuration path (can be None).",
"title": "Value"
}
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## GET /v1/health
**Links**: [local](http://localhost:8503/docs#/default/fastapi_health_get_v1_health_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_health_get_v1_health_get)
Fastapi Health Get
```
Health check endpoint to verify that the EOS server is alive.
```
**Responses**:
- **200**: Successful Response
---
## GET /v1/logging/log
**Links**: [local](http://localhost:8503/docs#/default/fastapi_logging_get_log_v1_logging_log_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_logging_get_log_v1_logging_log_get)
Fastapi Logging Get Log
```
Get structured log entries from the EOS log file.
Filters and returns log entries based on the specified query parameters. The log
file is expected to contain newline-delimited JSON entries.
Args:
limit (int): Maximum number of entries to return.
level (Optional[str]): Filter logs by severity level (e.g., DEBUG, INFO).
contains (Optional[str]): Return only logs that include this string in the message.
regex (Optional[str]): Return logs that match this regular expression in the message.
from_time (Optional[str]): ISO 8601 timestamp to filter logs not older than this.
to_time (Optional[str]): ISO 8601 timestamp to filter logs not newer than this.
tail (bool): If True, fetch the most recent log entries (like `tail`).
Returns:
JSONResponse: A JSON list of log entries.
```
**Parameters**:
- `limit` (query, optional): Maximum number of log entries to return.
- `level` (query, optional): Filter by log level (e.g., INFO, ERROR).
- `contains` (query, optional): Filter logs containing this substring.
- `regex` (query, optional): Filter logs by matching regex in message.
- `from_time` (query, optional): Start time (ISO format) for filtering logs.
- `to_time` (query, optional): End time (ISO format) for filtering logs.
- `tail` (query, optional): If True, returns the most recent lines (tail mode).
**Responses**: **Responses**:
@@ -729,93 +821,6 @@ Merge the measurement of given key and value into EOS measurements at given date
--- ---
## GET /v1/prediction/dataframe
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_dataframe_get_v1_prediction_dataframe_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_dataframe_get_v1_prediction_dataframe_get)
Fastapi Prediction Dataframe Get
```
Get prediction for given key within given date range as series.
Args:
key (str): Prediction key
start_datetime (Optional[str]): Starting datetime (inclusive).
Defaults to start datetime of latest prediction.
end_datetime (Optional[str]: Ending datetime (exclusive).
Defaults to end datetime of latest prediction.
```
**Parameters**:
- `keys` (query, required): Prediction keys.
- `start_datetime` (query, optional): Starting datetime (inclusive).
- `end_datetime` (query, optional): Ending datetime (exclusive).
- `interval` (query, optional): Time duration for each interval. Defaults to 1 hour.
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## PUT /v1/prediction/import/{provider_id}
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_import_provider_v1_prediction_import__provider_id__put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_import_provider_v1_prediction_import__provider_id__put)
Fastapi Prediction Import Provider
```
Import prediction for given provider ID.
Args:
provider_id: ID of provider to update.
data: Prediction data.
force_enable: Update data even if provider is disabled.
Defaults to False.
```
**Parameters**:
- `provider_id` (path, required): Provider ID.
- `force_enable` (query, optional): No description provided.
**Request Body**:
- `application/json`: {
"anyOf": [
{
"$ref": "#/components/schemas/PydanticDateTimeDataFrame"
},
{
"$ref": "#/components/schemas/PydanticDateTimeData"
},
{
"type": "object",
"additionalProperties": true
},
{
"type": "null"
}
],
"title": "Data"
}
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## GET /v1/prediction/keys ## GET /v1/prediction/keys
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_keys_get_v1_prediction_keys_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_keys_get_v1_prediction_keys_get) **Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_keys_get_v1_prediction_keys_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_keys_get_v1_prediction_keys_get)
@@ -859,32 +864,7 @@ Args:
- `end_datetime` (query, optional): Ending datetime (exclusive). - `end_datetime` (query, optional): Ending datetime (exclusive).
- `interval` (query, optional): Time duration for each interval. Defaults to 1 hour. - `interval` (query, optional): Time duration for each interval.
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## GET /v1/prediction/providers
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_providers_get_v1_prediction_providers_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_providers_get_v1_prediction_providers_get)
Fastapi Prediction Providers Get
```
Get a list of available prediction providers.
Args:
enabled (bool): Return enabled/disabled providers. If unset, return all providers.
```
**Parameters**:
- `enabled` (query, optional): No description provided.
**Responses**: **Responses**:

View File

@@ -1,3 +0,0 @@
.wy-nav-content {
max-width: 90% !important;
}

View File

@@ -28,7 +28,7 @@ management.
Energy management is the overall process to provide planning data for scheduling the different Energy management is the overall process to provide planning data for scheduling the different
devices in your system in an optimal way. Energy management cares for the update of predictions and devices in your system in an optimal way. Energy management cares for the update of predictions and
the optimization of the planning based on the simulated behavior of the devices. The planning is on the optimization of the planning based on the simulated behavior of the devices. The planning is on
the hour. the hour. Sub-hour energy management is left
### Optimization ### Optimization

View File

@@ -7,9 +7,10 @@ management.
## Storing Configuration ## Storing Configuration
EOS stores configuration data in a `nested structure`. Note that configuration changes inside EOS EOS stores configuration data in a **key-value store**, where a `configuration key` refers to the
are updated in memory, meaning all changes will be lost upon restarting the EOS REST server if not unique identifier used to store and retrieve specific configuration data. Note that the key-value
saved to the `EOS configuration file`. store is memory-based, meaning all stored data will be lost upon restarting the EOS REST server if
not saved to the `EOS configuration file`.
Some `configuration keys` are read-only and cannot be altered. These keys are either set up by other Some `configuration keys` are read-only and cannot be altered. These keys are either set up by other
means, such as environment variables, or determined from other information. means, such as environment variables, or determined from other information.
@@ -24,8 +25,7 @@ Use endpoint `PUT /v1/config/file` to save the current configuration to the
### Load Configuration File ### Load Configuration File
Use endpoint `POST /v1/config/reset` to reset the configuration to the values in the Use endpoint `POST /v1/config/update` to update the configuration from the `EOS configuration file`.
`EOS configuration file`.
## Configuration Sources and Priorities ## Configuration Sources and Priorities
@@ -36,25 +36,26 @@ The configuration sources and their priorities are as follows:
3. `EOS Configuration File`: Read at startup of the REST server and on request 3. `EOS Configuration File`: Read at startup of the REST server and on request
4. `Default Values` 4. `Default Values`
### Runtime Config Updates ### Settings
The EOS configuration can be updated at runtime. Note that those updates are not persistent Settings are sets of configuration data that take precedence over all other configuration data from
automatically. However it is possible to save the configuration to the `EOS configuration file`. different sources. Note that settings are not persistent. To make the current configuration with the
current settings persistent, save the configuration to the `EOS configuration file`.
Use the following endpoints to change the current runtime configuration: Use the following endpoints to change the current configuration settings:
- `PUT /v1/config`: Update the entire or parts of the configuration. - `PUT /v1/config`: Replaces the entire configuration settings.
- `PUT /v1/config/value`: Sets a specific configuration option.
### Environment Variables ### Environment Variables
All `configuration keys` can be set by environment variables prefixed with `EOS_` and separated by All `configuration keys` can be set by environment variables with the same name. EOS recognizes the
`__` for nested structures. Environment variables are case insensitive. following special environment variables:
EOS recognizes the following special environment variables (case sensitive):
- `EOS_CONFIG_DIR`: The directory to search for an EOS configuration file. - `EOS_CONFIG_DIR`: The directory to search for an EOS configuration file.
- `EOS_DIR`: The directory used by EOS for data, which will also be searched for an EOS - `EOS_DIR`: The directory used by EOS for data, which will also be searched for an EOS
configuration file. configuration file.
- `EOS_LOGGING_LEVEL`: The logging level to use in EOS.
### EOS Configuration File ### EOS Configuration File
@@ -65,7 +66,7 @@ If you do not have a configuration file, it will be automatically created on the
the REST server in a system-dependent location. the REST server in a system-dependent location.
To determine the location of the configuration file used by EOS, ask the REST server. The endpoint To determine the location of the configuration file used by EOS, ask the REST server. The endpoint
`GET /v1/config` provides the `general.config_file_path` configuration key. `GET /v1/config` provides the `config_file_path` configuration key.
EOS searches for the configuration file in the following order: EOS searches for the configuration file in the following order:
@@ -74,15 +75,9 @@ EOS searches for the configuration file in the following order:
3. A platform-specific default directory for EOS 3. A platform-specific default directory for EOS
4. The current working directory 4. The current working directory
The first configuration file available in these directories is loaded. If no configuration file is The first available configuration file found in these directories is loaded. If no configuration
found, a default configuration file is created, and the default settings are written to it. The file is found, a default configuration file is created in the platform-specific default directory,
location of the created configuration file follows the same order in which EOS searches for and default settings are loaded into it.
configuration files, and it depends on whether the relevant environment variables are set.
Use the following endpoints to interact with the configuration file:
- `PUT /v1/config/file`: Save the current configuration to the configuration file.
- `PUT /v1/config/reset`: Reload the configuration file, all unsaved runtime configuration is reset.
### Default Values ### Default Values

View File

@@ -20,8 +20,8 @@ Andreas Schmitz uses [Node-RED](https://nodered.org/) as part of his home automa
### Node-Red Resources ### Node-Red Resources
- [Installation Guide (German)](https://www.youtube.com/playlist?list=PL8_vk9A-s7zLD865Oou6y3EeQLlNtu-Hn) - [Installation Guide (German)](https://meintechblog.de/2024/09/05/andreas-schmitz-joerg-installiert-mein-energieoptimierungssystem/)
\— A detailed guide on integrating EOS with `Node-RED`. \— A detailed guide on integrating an early version of EOS with `Node-RED`.
## Home Assistant ## Home Assistant
@@ -34,8 +34,3 @@ emphasizes local control and user privacy.
- Duetting's [EOS Home Assistant Addon](https://github.com/Duetting/ha_eos_addon) — Additional - Duetting's [EOS Home Assistant Addon](https://github.com/Duetting/ha_eos_addon) — Additional
details can be found in this [discussion thread](https://github.com/Akkudoktor-EOS/EOS/discussions/294). details can be found in this [discussion thread](https://github.com/Akkudoktor-EOS/EOS/discussions/294).
## EOS Connect
[EOS connect](https://github.com/ohAnd/EOS_connect) uses `EOS` for energy management and optimization,
and connects to smart home platforms to monitor, forecast, and control energy flows.

View File

@@ -139,7 +139,7 @@ of components.
![Integration](../_static/introduction/integration.png) ![Integration](../_static/introduction/integration.png)
However, the components are not integrated by the EOS itself, but must be integrated by However, the components are not integrated by the EOS itself, but must be intergrated by
the user using an integration solution and currently requires some effort and technical the user using an integration solution and currently requires some effort and technical
know-how. know-how.
@@ -153,7 +153,7 @@ Node-RED offers a large number of types of nodes that allow access via the proto
commonly used in this area, such as Modbus or MQTT. Access to any existing databases, commonly used in this area, such as Modbus or MQTT. Access to any existing databases,
such as InfluxDB or PostgreSQL, is also possible via nodes provided by Node-RED. such as InfluxDB or PostgreSQL, is also possible via nodes provided by Node-RED.
It becomes easier if a smart home solution like Home Assistant, openHAB or ioBroker or It becomes easier if a smart home solution like Homa Assistant, openHAB or ioBroker or
solutions such as evcc or openWB are already in use. In this case, these smart home solutions such as evcc or openWB are already in use. In this case, these smart home
solutions already take over the technical integration and communication with the components solutions already take over the technical integration and communication with the components
at a technical level and Node-RED offers nodes for accessing these solutions, so that the at a technical level and Node-RED offers nodes for accessing these solutions, so that the
@@ -161,7 +161,7 @@ corresponding sources can be easily integrated into a flow.
In Home Assistant you could use an automation to prepare the input payload for EOS and In Home Assistant you could use an automation to prepare the input payload for EOS and
then use the RESTful integration to call EOS. Based on this concept there is already a then use the RESTful integration to call EOS. Based on this concept there is already a
Home Assistant add-on created by [Duetting](#duetting-solution). home assistand add-on created by [Duetting](#duetting-solution).
The plan created by EOS must also be executed via the chosen integration solution, The plan created by EOS must also be executed via the chosen integration solution,
with the respective devices receiving their instructions according to the plan. with the respective devices receiving their instructions according to the plan.
@@ -174,7 +174,7 @@ but usually find good local optima very quickly in a large solution space.
## Links ## Links
- [German Videos explaining the basic concept and installation process of EOS (YouTube)](https://www.youtube.com/playlist?list=PL8_vk9A-s7zLD865Oou6y3EeQLlNtu-Hn) - [German Video explaining the basic concept and installation process for the early version of EOS (YouTube)](https://www.youtube.com/live/ftQULW4-1ts?si=oDdBBifCpUmiCXaY)
- [German Forum of Akkudoktor EOS](https://akkudoktor.net/c/der-akkudoktor/eos) - [German Forum of Akkudoktor EOS](https://akkudoktor.net/c/der-akkudoktor/eos)
- [Akkudoktor-EOS GitHub Repository](https://github.com/Akkudoktor-EOS/EOS) - [Akkudoktor-EOS GitHub Repository](https://github.com/Akkudoktor-EOS/EOS)
- [Latest EOS Documentation](https://akkudoktor-eos.readthedocs.io/en/latest/) - [Latest EOS Documentation](https://akkudoktor-eos.readthedocs.io/en/latest/)

View File

@@ -1,75 +0,0 @@
% SPDX-License-Identifier: Apache-2.0
(logging-page)=
# Logging
EOS automatically records important events and messages to help you understand whats happening and
to troubleshoot problems.
## How Logging Works
- By default, logs are shown in your terminal (console).
- You can also save logs to a file for later review.
- Log files are rotated automatically to avoid becoming too large.
## Controlling Log Details
### 1. Command-Line Option
Set the amount of log detail shown on the console by using `--log-level` when starting EOS.
Example:
```{eval-rst}
.. tabs::
.. tab:: Windows
.. code-block:: powershell
.venv\Scripts\python src/akkudoktoreos/server/eos.py --log-level DEBUG
.. tab:: Linux
.. code-block:: bash
.venv/bin/python src/akkudoktoreos/server/eos.py --log-level DEBUG
```
Common levels:
- DEBUG (most detail)
- INFO (default)
- WARNING
- ERROR
- CRITICAL (least detail)
### 2. Configuration File
You can also set logging options in your EOS configuration file (EOS.config.json).
```Json
{
"logging": {
"console_level": "INFO",
"file_level": "DEBUG"
}
}
```
### 3. Environment Variable
You can also control the log level by setting the `EOS_LOGGING__CONSOLE_LEVEL` and the
`EOS_LOGGING__FILE_LEVEL` environment variables.
```bash
EOS_LOGGING__CONSOLE_LEVEL="INFO"
EOS_LOGGING__FILE_LEVEL="DEBUG"
```
## File Logging
If the `file_level` configuration is set, log records are written to a rotating log file. The log
file is in the data output directory and named `eos.log`. You may directly read the file or use
the `/v1/logging/log` endpoint to access the file log.

View File

@@ -56,21 +56,21 @@ A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html)
The EOS measurement store provides for storing meter readings of loads. There are currently five loads The EOS measurement store provides for storing meter readings of loads. There are currently five loads
foreseen. The associated `measurement key`s are: foreseen. The associated `measurement key`s are:
- `load0_mr`: Load0 meter reading [kWh] - `measurement_load0_mr`: Load0 meter reading [kWh]
- `load1_mr`: Load1 meter reading [kWh] - `measurement_load1_mr`: Load1 meter reading [kWh]
- `load2_mr`: Load2 meter reading [kWh] - `measurement_load2_mr`: Load2 meter reading [kWh]
- `load3_mr`: Load3 meter reading [kWh] - `measurement_load3_mr`: Load3 meter reading [kWh]
- `load4_mr`: Load4 meter reading [kWh] - `measurement_load4_mr`: Load4 meter reading [kWh]
For ease of use, you can assign descriptive names to the `measurement key`s to represent your For ease of use, you can assign descriptive names to the `measurement key`s to represent your
system's load sources. Use the following `configuration options` to set these names system's load sources. Use the following `configuration options` to set these names
(e.g., 'Dish Washer', 'Heat Pump'): (e.g., 'Dish Washer', 'Heat Pump'):
- `load0_name`: Name of the load0 source - `measurement_load0_name`: Name of the load0 source
- `load1_name`: Name of the load1 source - `measurement_load1_name`: Name of the load1 source
- `load2_name`: Name of the load2 source - `measurement_load2_name`: Name of the load2 source
- `load3_name`: Name of the load3 source - `measurement_load3_name`: Name of the load3 source
- `load4_name`: Name of the load4 source - `measurement_load4_name`: Name of the load4 source
Load measurements can be stored for any datetime. The values between different meter readings are Load measurements can be stored for any datetime. The values between different meter readings are
linearly approximated. Since optimization occurs on the hour, storing values between hours is linearly approximated. Since optimization occurs on the hour, storing values between hours is
@@ -84,8 +84,8 @@ for specified intervals, usually one hour. This aggregated data can be used for
The EOS measurement store also allows for the storage of meter readings for grid import and export. The EOS measurement store also allows for the storage of meter readings for grid import and export.
The associated `measurement key`s are: The associated `measurement key`s are:
- `grid_export_mr`: Export to grid meter reading [kWh] - `measurement_grid_export_mr`: Export to grid meter reading [kWh]
- `grid_import_mr`: Import from grid meter reading [kWh] - `measurement_grid_import_mr`: Import from grid meter reading [kWh]
:::{admonition} Todo :::{admonition} Todo
:class: note :class: note

View File

@@ -21,7 +21,6 @@ including electricity prices, battery storage capacity, PV forecast, and tempera
"strompreis_euro_pro_wh": [0.0003784, 0.0003868, ..., 0.00034102, 0.00033709] "strompreis_euro_pro_wh": [0.0003784, 0.0003868, ..., 0.00034102, 0.00033709]
}, },
"pv_akku": { "pv_akku": {
"device_id": "battery1",
"capacity_wh": 12000, "capacity_wh": 12000,
"charging_efficiency": 0.92, "charging_efficiency": 0.92,
"discharging_efficiency": 0.92, "discharging_efficiency": 0.92,
@@ -31,12 +30,9 @@ including electricity prices, battery storage capacity, PV forecast, and tempera
"max_soc_percentage": 100 "max_soc_percentage": 100
}, },
"inverter": { "inverter": {
"device_id": "inverter1",
"max_power_wh": 15500 "max_power_wh": 15500
"battery_id": "battery1",
}, },
"eauto": { "eauto": {
"device_id": "auto1",
"capacity_wh": 64000, "capacity_wh": 64000,
"charging_efficiency": 0.88, "charging_efficiency": 0.88,
"discharging_efficiency": 0.88, "discharging_efficiency": 0.88,
@@ -99,7 +95,6 @@ Verify prices against your local tariffs.
#### Configuration #### Configuration
- `device_id`: ID of battery
- `capacity_wh`: Total battery capacity in Wh - `capacity_wh`: Total battery capacity in Wh
- `charging_efficiency`: Charging efficiency (0-1) - `charging_efficiency`: Charging efficiency (0-1)
- `discharging_efficiency`: Discharging efficiency (0-1) - `discharging_efficiency`: Discharging efficiency (0-1)
@@ -113,13 +108,10 @@ Verify prices against your local tariffs.
### Inverter ### Inverter
- `device_id`: ID of inverter
- `max_power_wh`: Maximum inverter power in Wh - `max_power_wh`: Maximum inverter power in Wh
- `battery_id`: ID of battery
### Electric Vehicle (EV) ### Electric Vehicle (EV)
- `device_id`: ID of electric vehicle
- `capacity_wh`: Battery capacity in Wh - `capacity_wh`: Battery capacity in Wh
- `charging_efficiency`: Charging efficiency (0-1) - `charging_efficiency`: Charging efficiency (0-1)
- `discharging_efficiency`: Discharging efficiency (0-1) - `discharging_efficiency`: Discharging efficiency (0-1)

View File

@@ -20,14 +20,10 @@ data is lost on re-start of the EOS REST server.
## Prediction Providers ## Prediction Providers
Most predictions can be sourced from various providers. The specific provider to use is configured Most predictions can be sourced from various providers. The specific provider to use is configured
in the EOS configuration and can be set by prediction type. For example: in the EOS configuration. For example:
```python ```python
{ weather_provider = "ClearOutside"
"weather": {
"provider": "ClearOutside"
}
}
``` ```
Some providers offer multiple prediction keys. For instance, a weather provider might provide data Some providers offer multiple prediction keys. For instance, a weather provider might provide data
@@ -78,7 +74,7 @@ predictions are adjusted by real data from your system's measurements if given t
For example, the load prediction provider `LoadAkkudoktor` takes generic load data assembled by For example, the load prediction provider `LoadAkkudoktor` takes generic load data assembled by
Akkudoktor.net, maps that to the yearly energy consumption given in the configuration option Akkudoktor.net, maps that to the yearly energy consumption given in the configuration option
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `loads` `loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `measurement_loads`
of your system. of your system.
## Prediction Updates ## Prediction Updates
@@ -114,45 +110,23 @@ Prediction keys:
Configuration options: Configuration options:
- `elecprice`: Electricity price configuration. - `elecprice_provider`: Electricity price provider id of provider to be used.
- `provider`: Electricity price provider id of provider to be used.
- `ElecPriceAkkudoktor`: Retrieves from Akkudoktor.net. - `ElecPriceAkkudoktor`: Retrieves from Akkudoktor.net.
- `ElecPriceEnergyCharts`: Retrieves from Energy-Charts.info.
- `ElecPriceImport`: Imports from a file or JSON string. - `ElecPriceImport`: Imports from a file or JSON string.
- `charges_kwh`: Electricity price charges (€/kWh). - `elecprice_charges_kwh`: Electricity price charges (€/kWh).
- `vat_rate`: VAT rate factor applied to electricity price when charges are used (default: 1.19). - `elecpriceimport_file_path`: Path to the file to import electricity price forecast data from.
- `provider_settings.import_file_path`: Path to the file to import electricity price forecast data from. - `elecpriceimport_json`: JSON string, dictionary of electricity price forecast value lists.
- `provider_settings.import_json`: JSON string, dictionary of electricity price forecast value lists.
### ElecPriceAkkudoktor Provider ### ElecPriceAkkudoktor Provider
The `ElecPriceAkkudoktor` provider retrieves electricity prices directly from **Akkudoktor.net**, The `ElecPriceAkkudoktor` provider retrieves electricity prices directly from **Akkudoktor.net**,
which supplies price data for the next 24 hours. For periods beyond 24 hours, the provider generates which supplies price data for the next 24 hours. For periods beyond 24 hours, the provider generates
prices by extrapolating historical price data combined with the most recent actual prices obtained prices by extrapolating historical price data combined with the most recent actual prices obtained
from Akkudoktor.net. Electricity price charges given in the `charges_kwh` configuration from Akkudoktor.net. Electricity price charges given in the `elecprice_charges_kwh` configuration
option are added. option are added.
### ElecPriceEnergyCharts Provider
The `ElecPriceEnergyCharts` provider retrieves day-ahead electricity market prices from
[Energy-Charts.info](https://www.Energy-Charts.info). It supports both short-term and extended forecasting by combining
real-time market data with historical price trends.
- For the next 24 hours, market prices are fetched directly from Energy-Charts.info.
- For periods beyond 24 hours, prices are estimated using extrapolation based on historical data and the latest
available market values.
Charges and VAT
- If `charges_kwh` configuration option is greater than 0, the electricity price is calculated as:
`(market price + charges_kwh) * vat_rate` where `vat_rate` is configurable (default: 1.19 for 19% VAT).
- If `charges_kwh` is set to 0, the electricity price is simply: `market_price` (no VAT applied).
**Note:** For the most accurate forecasts, it is recommended to set the `historic_hours` parameter to 840.
### ElecPriceImport Provider ### ElecPriceImport Provider
The `ElecPriceImport` provider is designed to import electricity prices from a file or a JSON The `ElecPriceImport` provider is designed to import electricity prices from a file or a JSON
@@ -164,11 +138,8 @@ The prediction key for the electricity price forecast data is:
- `elecprice_marketprice_wh`: Electricity market price per Wh (€/Wh). - `elecprice_marketprice_wh`: Electricity market price per Wh (€/Wh).
The electricity proce forecast data must be provided in one of the formats described in The electricity proce forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source can be given in the <project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option. `elecpriceimport_file_path` or `elecpriceimport_json` configuration option.
The data may additionally or solely be provided by the
**PUT** `/v1/prediction/import/ElecPriceImport` endpoint.
## Load Prediction ## Load Prediction
@@ -180,17 +151,14 @@ Prediction keys:
Configuration options: Configuration options:
- `load`: Load configuration. - `load_provider`: Load provider id of provider to be used.
- `provider`: Load provider id of provider to be used.
- `LoadAkkudoktor`: Retrieves from local database. - `LoadAkkudoktor`: Retrieves from local database.
- `LoadVrm`: Retrieves data from the VRM API by Victron Energy.
- `LoadImport`: Imports from a file or JSON string. - `LoadImport`: Imports from a file or JSON string.
- `provider_settings.loadakkudoktor_year_energy`: Yearly energy consumption (kWh). - `loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
- `provider_settings.loadimport_file_path`: Path to the file to import load forecast data from. - `loadimport_file_path`: Path to the file to import load forecast data from.
- `provider_settings.loadimport_json`: JSON string, dictionary of load forecast value lists. - `loadimport_json`: JSON string, dictionary of load forecast value lists.
### LoadAkkudoktor Provider ### LoadAkkudoktor Provider
@@ -198,27 +166,6 @@ The `LoadAkkudoktor` provider retrieves generic load data from a local database
align with the annual energy consumption specified in the `loadakkudoktor_year_energy` configuration align with the annual energy consumption specified in the `loadakkudoktor_year_energy` configuration
option. option.
### LoadVrm Provider
The `LoadVrm` provider retrieves load forecast data from the VRM API by Victron Energy.
To receive forecasts, the system data must be configured under Dynamic ESS in the VRM portal.
To query the forecasts, an API token is required, which can also be created in the VRM portal under Preferences.
This token must be stored in the EOS configuration along with the VRM-Installations-ID.
```python
{
"load": {
"provider": "LoadVrm",
"provider_settings": {
"load_vrm_token": "dummy-token",
"load_vrm_idsite": 12345
}
```
The prediction keys for the load forecast data are:
- `load_mean`: Predicted load mean value (W).
### LoadImport Provider ### LoadImport Provider
The `LoadImport` provider is designed to import load forecast data from a file or a JSON The `LoadImport` provider is designed to import load forecast data from a file or a JSON
@@ -232,12 +179,9 @@ The prediction keys for the load forecast data are:
- `load_mean_adjusted`: Predicted load mean value adjusted by load measurement (W). - `load_mean_adjusted`: Predicted load mean value adjusted by load measurement (W).
The load forecast data must be provided in one of the formats described in The load forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source can be given in the `loadimport_file_path` <project:#prediction-import-providers>. The data source must be given in the `loadimport_file_path`
or `loadimport_json` configuration option. or `loadimport_json` configuration option.
The data may additionally or solely be provided by the
**PUT** `/v1/prediction/import/LoadImport` endpoint.
## PV Power Prediction ## PV Power Prediction
Prediction keys: Prediction keys:
@@ -247,52 +191,48 @@ Prediction keys:
Configuration options: Configuration options:
- `general`: General configuration. - `pvforecast_provider`: PVForecast provider id of provider to be used.
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `pvforecast`: PV forecast configuration.
- `provider`: PVForecast provider id of provider to be used.
- `PVForecastAkkudoktor`: Retrieves from Akkudoktor.net. - `PVForecastAkkudoktor`: Retrieves from Akkudoktor.net.
- `PVForecastVrm`: Retrieves data from the VRM API by Victron Energy.
- `PVForecastImport`: Imports from a file or JSON string. - `PVForecastImport`: Imports from a file or JSON string.
- `planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking. - `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. - `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
Clockwise from north (north=0, east=90, south=180, west=270). Clockwise from north (north=0, east=90, south=180, west=270).
- `planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. - `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `planes[].peakpower`: Nominal power of PV system in kW. - `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
- `planes[].pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'. - `pvforecast<0..5>_pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `planes[].mountingplace`: Type of mounting for PV system. - `pvforecast<0..5>_mountingplace`: Type of mounting for PV system. Options are 'free' for free-standing
Options are 'free' for free-standing and 'building' for building-integrated. and 'building' for building-integrated.
- `planes[].loss`: Sum of PV system losses in percent - `pvforecast<0..5>_loss`: Sum of PV system losses in percent
- `planes[].trackingtype`: Type of suntracking. - `pvforecast<0..5>_trackingtype`: Type of suntracking. 0=fixed,
0=fixed,
1=single horizontal axis aligned north-south, 1=single horizontal axis aligned north-south,
2=two-axis tracking, 2=two-axis tracking,
3=vertical axis tracking, 3=vertical axis tracking,
4=single horizontal axis aligned east-west, 4=single horizontal axis aligned east-west,
5=single inclined axis aligned north-south. 5=single inclined axis aligned north-south.
- `planes[].optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking. - `pvforecast<0..5>_optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `planes[].optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking. - `pvforecast<0..5>_optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `planes[].albedo`: Proportion of the light hitting the ground that it reflects back. - `pvforecast<0..5>_albedo`: Proportion of the light hitting the ground that it reflects back.
- `planes[].module_model`: Model of the PV modules of this plane. - `pvforecast<0..5>_module_model`: Model of the PV modules of this plane.
- `planes[].inverter_model`: Model of the inverter of this plane. - `pvforecast<0..5>_inverter_model`: Model of the inverter of this plane.
- `planes[].inverter_paco`: AC power rating of the inverter. [W] - `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `planes[].modules_per_string`: Number of the PV modules of the strings of this plane. - `pvforecast<0..5>_modules_per_string`: Number of the PV modules of the strings of this plane.
- `planes[].strings_per_inverter`: Number of the strings of the inverter of this plane. - `pvforecast<0..5>_strings_per_inverter`: Number of the strings of the inverter of this plane.
- `provider_settings.import_file_path`: Path to the file to import PV forecast data from. - `pvforecastimport_file_path`: Path to the file to import PV forecast data from.
- `provider_settings.import_json`: JSON string, dictionary of PV forecast value lists. - `pvforecastimport_json`: JSON string, dictionary of PV forecast value lists.
--- ---
Detailed definitions taken from Some of the configuration options directly follow the
[PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en). [PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en)
nomenclature.
- `pvtechchoice` Detailed definitions taken from **PVGIS**:
- `pvforecast<0..5>_pvtechchoice`
The performance of PV modules depends on the temperature and on the solar irradiance, but the exact The performance of PV modules depends on the temperature and on the solar irradiance, but the exact
dependence varies between different types of PV modules. At the moment we can estimate the losses dependence varies between different types of PV modules. At the moment we can estimate the losses
@@ -311,7 +251,7 @@ variations of the spectrum of sunlight affects the overall energy production fro
the moment this calculation can be done for crystalline silicon and CdTe modules. Note that this the moment this calculation can be done for crystalline silicon and CdTe modules. Note that this
calculation is not yet available when using the NSRDB solar radiation database. calculation is not yet available when using the NSRDB solar radiation database.
- `peakpower` - `pvforecast<0..5>_peakpower`
This is the power that the manufacturer declares that the PV array can produce under standard test This is the power that the manufacturer declares that the PV array can produce under standard test
conditions (STC), which are a constant 1000W of solar irradiation per square meter in the plane of conditions (STC), which are a constant 1000W of solar irradiation per square meter in the plane of
@@ -327,7 +267,7 @@ value and the bifaciality factor, φ (if reported in the module data sheet) as:
P_BNPI = P_STC \* (1 + φ \* 0.135). NB this bifacial approach is not appropriate for BAPV or BIPV P_BNPI = P_STC \* (1 + φ \* 0.135). NB this bifacial approach is not appropriate for BAPV or BIPV
installations or for modules mounting on a N-S axis i.e. facing E-W. installations or for modules mounting on a N-S axis i.e. facing E-W.
- `loss` - `pvforecast<0..5>_loss`
The estimated system losses are all the losses in the system, which cause the power actually The estimated system losses are all the losses in the system, which cause the power actually
delivered to the electricity grid to be lower than the power produced by the PV modules. There are delivered to the electricity grid to be lower than the power produced by the PV modules. There are
@@ -339,7 +279,7 @@ in the first years.
We have given a default value of 14% for the overall losses. If you have a good idea that your value We have given a default value of 14% for the overall losses. If you have a good idea that your value
will be different (maybe due to a really high-efficiency inverter) you may reduce this value a little. will be different (maybe due to a really high-efficiency inverter) you may reduce this value a little.
- `mountingplace` - `pvforecast<0..5>_mountingplace`
For fixed (non-tracking) systems, the way the modules are mounted will have an influence on the For fixed (non-tracking) systems, the way the modules are mounted will have an influence on the
temperature of the module, which in turn affects the efficiency. Experiments have shown that if the temperature of the module, which in turn affects the efficiency. Experiments have shown that if the
@@ -355,7 +295,7 @@ Some types of mounting are in between these two extremes, for instance if the mo
a roof with curved roof tiles, allowing air to move behind the modules. In such cases, the a roof with curved roof tiles, allowing air to move behind the modules. In such cases, the
performance will be somewhere between the results of the two calculations that are possible here. performance will be somewhere between the results of the two calculations that are possible here.
- `userhorizon` - `pvforecast<0..5>_userhorizon`
Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. In the user horizon Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. In the user horizon
data each number represents the horizon height in degrees in a certain compass direction around the data each number represents the horizon height in degrees in a certain compass direction around the
@@ -372,11 +312,11 @@ Most of the configuration options are in line with the
Detailed definitions from **PVLib** for PVGIS data. Detailed definitions from **PVLib** for PVGIS data.
- `surface_tilt`: - `pvforecast<0..5>_surface_tilt`:
Tilt angle from horizontal plane. Tilt angle from horizontal plane.
- `surface_azimuth` - `pvforecast<0..5>_surface_azimuth`
Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180,
west=270). This is offset 180 degrees from the convention used by PVGIS. west=270). This is offset 180 degrees from the convention used by PVGIS.
@@ -388,86 +328,51 @@ west=270). This is offset 180 degrees from the convention used by PVGIS.
The `PVForecastAkkudoktor` provider retrieves the PV power forecast data directly from The `PVForecastAkkudoktor` provider retrieves the PV power forecast data directly from
**Akkudoktor.net**. **Akkudoktor.net**.
The following prediction configuration options of the PV system must be set: The following general configuration options of the PV system must be set:
- `general.latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)" - `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `general.longitude`: Longitude in decimal degrees, within -180 to 180 (°) - `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
For each plane of the PV system the following configuration options must be set: For each plane `<0..5>` of the PV system the following configuration options must be set:
- `pvforecast.planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking. - `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast.planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. - `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
Clockwise from north (north=0, east=90, south=180, west=270). Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast.planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. - `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast.planes[].inverter_paco`: AC power rating of the inverter. [W] - `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast.planes[].peakpower`: Nominal power of PV system in kW. - `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
Example: Example:
```Python ```Python
{ {
"general": {
"latitude": 50.1234, "latitude": 50.1234,
"longitude": 9.7654, "longitude": 9.7654,
}, "pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast": { "pvforecast0_peakpower": 5.0,
"provider": "PVForecastAkkudoktor", "pvforecast0_surface_azimuth": -10,
"planes": [ "pvforecast0_surface_tilt": 7,
{ "pvforecast0_userhorizon": [20, 27, 22, 20],
"peakpower": 5.0, "pvforecast0_inverter_paco": 10000,
"surface_azimuth": -10, "pvforecast1_peakpower": 4.8,
"surface_tilt": 7, "pvforecast1_surface_azimuth": -90,
"userhorizon": [20, 27, 22, 20], "pvforecast1_surface_tilt": 7,
"inverter_paco": 10000 "pvforecast1_userhorizon": [30, 30, 30, 50],
}, "pvforecast1_inverter_paco": 10000,
{ "pvforecast2_peakpower": 1.4,
"peakpower": 4.8, "pvforecast2_surface_azimuth": -40,
"surface_azimuth": -90, "pvforecast2_surface_tilt": 60,
"surface_tilt": 7, "pvforecast2_userhorizon": [60, 30, 0, 30],
"userhorizon": [30, 30, 30, 50], "pvforecast2_inverter_paco": 2000,
"inverter_paco": 10000 "pvforecast3_peakpower": 1.6,
}, "pvforecast3_surface_azimuth": 5,
{ "pvforecast3_surface_tilt": 45,
"peakpower": 1.4, "pvforecast3_userhorizon": [45, 25, 30, 60],
"surface_azimuth": -40, "pvforecast3_inverter_paco": 1400,
"surface_tilt": 60, "pvforecast4_peakpower": None,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400
}
]
}
} }
``` ```
### PVForecastVrm Provider
The `PVForecastVrm` provider retrieves pv power forecast data from the VRM API by Victron Energy.
To receive forecasts, the system data must be configured under Dynamic ESS in the VRM portal.
To query the forecasts, an API token is required, which can also be created in the VRM portal under Preferences.
This token must be stored in the EOS configuration along with the VRM-Installations-ID.
```python
{
"pvforecast": {
"provider": "PVForecastVrm",
"provider_settings": {
"pvforecast_vrm_token": "dummy-token",
"pvforecast_vrm_idsite": 12345
}
}
```
The prediction keys for the PV forecast data are:
- `pvforecast_dc_power`: Total DC power (W).
### PVForecastImport Provider ### PVForecastImport Provider
The `PVForecastImport` provider is designed to import PV forecast data from a file or a JSON The `PVForecastImport` provider is designed to import PV forecast data from a file or a JSON
@@ -476,15 +381,12 @@ becomes available.
The prediction keys for the PV forecast data are: The prediction keys for the PV forecast data are:
- `pvforecast_ac_power`: Total AC power (W). - `pvforecast_ac_power`: Total DC power (W).
- `pvforecast_dc_power`: Total DC power (W). - `pvforecast_dc_power`: Total AC power (W).
The PV forecast data must be provided in one of the formats described in The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source can be given in the <project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option. `pvforecastimport_file_path` or `pvforecastimport_json` configuration option.
The data may additionally or solely be provided by the
**PUT** `/v1/prediction/import/PVForecastImport` endpoint.
## Weather Prediction ## Weather Prediction
@@ -515,16 +417,14 @@ Prediction keys:
Configuration options: Configuration options:
- `weather`: General weather configuration. - `weather_provider`: Load provider id of provider to be used.
- `provider`: Load provider id of provider to be used.
- `BrightSky`: Retrieves from [BrightSky](https://api.brightsky.dev). - `BrightSky`: Retrieves from [BrightSky](https://api.brightsky.dev).
- `ClearOutside`: Retrieves from [ClearOutside](https://clearoutside.com/forecast). - `ClearOutside`: Retrieves from [ClearOutside](https://clearoutside.com/forecast).
- `LoadImport`: Imports from a file or JSON string. - `LoadImport`: Imports from a file or JSON string.
- `provider_settings.import_file_path`: Path to the file to import weatherforecast data from. - `weatherimport_file_path`: Path to the file to import weatherforecast data from.
- `provider_settings.import_json`: JSON string, dictionary of weather forecast value lists. - `weatherimport_json`: JSON string, dictionary of weather forecast value lists.
### BrightSky Provider ### BrightSky Provider
@@ -581,7 +481,7 @@ The `WeatherImport` provider is designed to import weather forecast data from a
string. An external entity should update the file or JSON string whenever new prediction data string. An external entity should update the file or JSON string whenever new prediction data
becomes available. becomes available.
The prediction keys for the weather forecast data are: The prediction keys for the PV forecast data are:
- `weather_dew_point`: Dew Point (°C) - `weather_dew_point`: Dew Point (°C)
- `weather_dhi`: Diffuse Horizontal Irradiance (W/m2) - `weather_dhi`: Diffuse Horizontal Irradiance (W/m2)
@@ -607,8 +507,5 @@ The prediction keys for the weather forecast data are:
- `weather_wind_speed`: Wind Speed (kmph) - `weather_wind_speed`: Wind Speed (kmph)
The PV forecast data must be provided in one of the formats described in The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source can be given in the <project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option. `weatherimport_file_path` or `pvforecastimport_json` configuration option.
The data may additionally or solely be provided by the
**PUT** `/v1/prediction/import/WeatherImport` endpoint.

View File

@@ -99,7 +99,6 @@ html_theme_options = {
"logo_only": False, "logo_only": False,
"titles_only": True, "titles_only": True,
} }
html_css_files = ["eos.css"]
# -- Options for autodoc ------------------------------------------------- # -- Options for autodoc -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html # https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

View File

@@ -40,7 +40,6 @@ akkudoktoreos/optimization.md
akkudoktoreos/prediction.md akkudoktoreos/prediction.md
akkudoktoreos/measurement.md akkudoktoreos/measurement.md
akkudoktoreos/integration.md akkudoktoreos/integration.md
akkudoktoreos/logging.md
akkudoktoreos/serverapi.md akkudoktoreos/serverapi.md
akkudoktoreos/api.rst akkudoktoreos/api.rst

File diff suppressed because it is too large Load Diff

View File

@@ -43,18 +43,12 @@ profile = "black"
[tool.ruff] [tool.ruff]
line-length = 100 line-length = 100
exclude = [
"tests",
"scripts",
]
output-format = "full"
[tool.ruff.lint] [tool.ruff.lint]
select = [ select = [
"F", # Enable all `Pyflakes` rules. "F", # Enable all `Pyflakes` rules.
"D", # Enable all `pydocstyle` rules, limiting to those that adhere to the "D", # Enable all `pydocstyle` rules, limiting to those that adhere to the
# Google convention via `convention = "google"`, below. # Google convention via `convention = "google"`, below.
"S", # Enable all `flake8-bandit` rules.
] ]
ignore = [ ignore = [
# Prevent errors due to ruff false positives # Prevent errors due to ruff false positives

View File

@@ -1,15 +1,14 @@
-r requirements.txt -r requirements.txt
gitlint==0.19.1 gitpython==3.1.44
GitPython==3.1.45 linkify-it-py==2.0.3
myst-parser==4.0.1 myst-parser==4.0.1
sphinx==8.2.3 sphinx==8.1.3
sphinx_rtd_theme==3.0.2 sphinx_rtd_theme==3.0.2
sphinx-tabs==3.4.7 sphinx-tabs==3.4.7
pymarkdownlnt==0.9.32 pytest==8.3.5
pytest==8.4.2 pytest-cov==6.0.0
pytest-cov==7.0.0
pytest-xprocess==1.0.2 pytest-xprocess==1.0.2
pre-commit pre-commit
mypy==1.18.2 mypy==1.15.0
types-requests==2.32.4.20250913 types-requests==2.32.0.20250306
pandas-stubs==2.3.2.250827 pandas-stubs==2.2.3.250308

View File

@@ -1,25 +1,16 @@
cachebox==5.0.2 numpy==2.2.4
numpy==2.3.3 numpydantic==1.6.8
numpydantic==1.6.11 matplotlib==3.10.1
matplotlib==3.10.6 fastapi[standard]==0.115.11
fastapi[standard]==0.115.14 python-fasthtml==0.12.4
python-fasthtml==0.12.29 uvicorn==0.34.0
MonsterUI==1.0.29 scikit-learn==1.6.1
markdown-it-py==4.0.0 timezonefinder==6.5.8
mdit-py-plugins==0.5.0 deap==1.4.2
bokeh==3.8.0 requests==2.32.3
uvicorn==0.36.0 pandas==2.2.3
scikit-learn==1.7.2 pendulum==3.0.0
timezonefinder==7.0.2 platformdirs==4.3.7
deap==1.4.3 pvlib==0.12.0
requests==2.32.5 pydantic==2.10.6
pandas==2.3.2 statsmodels==0.14.4
pendulum==3.1.0
platformdirs==4.4.0
psutil==7.1.0
pvlib==0.13.1
pydantic==2.11.9
statsmodels==0.14.5
pydantic-settings==2.11.0
linkify-it-py==2.0.3
loguru==0.7.3

View File

@@ -150,7 +150,7 @@ def main():
try: try:
if args.input_file: if args.input_file:
with open(args.input_file, "r", encoding="utf-8", newline=None) as f: with open(args.input_file, "r", encoding="utf8") as f:
content = f.read() content = f.read()
elif args.input: elif args.input:
content = args.input content = args.input
@@ -164,7 +164,7 @@ def main():
) )
if args.output_file: if args.output_file:
# Write to file # Write to file
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f: with open(args.output_file, "w", encoding="utf8") as f:
f.write(extracted_content) f.write(extracted_content)
else: else:
# Write to std output # Write to std output

View File

@@ -2,294 +2,135 @@
"""Utility functions for Configuration specification generation.""" """Utility functions for Configuration specification generation."""
import argparse import argparse
import json
import os
import re
import sys import sys
import textwrap
from pathlib import Path
from typing import Any, Union
from loguru import logger from akkudoktoreos.config.config import get_config
from pydantic.fields import ComputedFieldInfo, FieldInfo from akkudoktoreos.core.logging import get_logger
from pydantic_core import PydanticUndefined
from akkudoktoreos.config.config import ConfigEOS, GeneralSettings, get_config logger = get_logger(__name__)
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.docs import get_model_structure_from_examples
documented_types: set[PydanticBaseModel] = set() config_eos = get_config()
undocumented_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
global_config_dict: dict[str, Any] = dict() # Fixed set of prefixes to filter configuration values and their respective titles
CONFIG_PREFIXES = {
"battery": "Battery Device Simulation Configuration",
"bev": "Battery Electric Vehicle Device Simulation Configuration",
"dishwasher": "Dishwasher Device Simulation Configuration",
"inverter": "Inverter Device Simulation Configuration",
"measurement": "Measurement Configuration",
"optimization": "General Optimization Configuration",
"server": "Server Configuration",
"elecprice": "Electricity Price Prediction Configuration",
"load": "Load Prediction Configuration",
"logging": "Logging Configuration",
"prediction": "General Prediction Configuration",
"pvforecast": "PV Forecast Configuration",
"weather": "Weather Forecast Configuration",
}
# Static set of configuration names to include in a separate table
GENERAL_CONFIGS = [
"config_default_file_path",
"config_file_path",
"config_folder_path",
"config_keys",
"config_keys_read_only",
"data_cache_path",
"data_cache_subpath",
"data_folder_path",
"data_output_path",
"data_output_subpath",
"latitude",
"longitude",
"package_root_path",
"timezone",
]
def get_title(config: PydanticBaseModel) -> str: def generate_config_table_md(configs, title):
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return config.__doc__.strip().splitlines()[0].strip(".")
def get_body(config: PydanticBaseModel) -> str:
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return textwrap.dedent("\n".join(config.__doc__.strip().splitlines()[1:])).strip()
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
resolved_types: list[tuple[type, list[str]]] = []
origin = getattr(field_type, "__origin__", field_type)
if origin is Union:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types))
elif origin is list:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types + ["list"]))
else:
resolved_types.append((field_type, parent_types))
return resolved_types
def create_model_from_examples(
model_class: PydanticBaseModel, multiple: bool
) -> list[PydanticBaseModel]:
"""Create a model instance with default or example values, respecting constraints."""
return [
model_class(**data) for data in get_model_structure_from_examples(model_class, multiple)
]
def build_nested_structure(keys: list[str], value: Any) -> Any:
if not keys:
return value
current_key = keys[0]
if current_key == "list":
return [build_nested_structure(keys[1:], value)]
else:
return {current_key: build_nested_structure(keys[1:], value)}
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
default_value = ""
if regular_field:
if (val := field_info.default) is not PydanticUndefined:
default_value = val
else:
default_value = "required"
else:
default_value = "N/A"
return default_value
def get_type_name(field_type: type) -> str:
type_name = str(field_type).replace("typing.", "").replace("pathlib._local", "pathlib")
if type_name.startswith("<class"):
type_name = field_type.__name__
return type_name
def generate_config_table_md(
config: PydanticBaseModel,
toplevel_keys: list[str],
prefix: str,
toplevel: bool = False,
extra_config: bool = False,
) -> str:
"""Generate a markdown table for given configurations. """Generate a markdown table for given configurations.
Args: Args:
config (PydanticBaseModel): PydanticBaseModel configuration definition. configs (dict): Configuration values with keys and their descriptions.
prefix (str): Prefix for table entries. title (str): Title for the table.
Returns: Returns:
str: The markdown table as a string. str: The markdown table as a string.
""" """
table = "" if not configs:
if toplevel: return ""
title = get_title(config)
heading_level = "###" if extra_config else "##" table = f"## {title}\n\n"
env_header = "" table += ":::{table} " + f"{title}\n:widths: 10 10 5 5 30\n:align: left\n\n"
env_header_underline = "" table += "| Name | Type | Read-Only | Default | Description |\n"
env_width = "" table += "| ---- | ---- | --------- | ------- | ----------- |\n"
if not extra_config: for name, config in sorted(configs.items()):
env_header = "| Environment Variable " type_name = config["type"]
env_header_underline = "| -------------------- " if type_name.startswith("typing."):
env_width = "20 " type_name = type_name[len("typing.") :]
table += f"| `{config['name']}` | `{type_name}` | `{config['read-only']}` | `{config['default']}` | {config['description']} |\n"
table += f"{heading_level} {title}\n\n"
body = get_body(config)
if body:
table += body
table += "\n\n"
table += (
":::{table} "
+ f"{'::'.join(toplevel_keys)}\n:widths: 10 {env_width}10 5 5 30\n:align: left\n\n"
)
table += f"| Name {env_header}| Type | Read-Only | Default | Description |\n"
table += f"| ---- {env_header_underline}| ---- | --------- | ------- | ----------- |\n"
for field_name, field_info in list(config.model_fields.items()) + list(
config.model_computed_fields.items()
):
regular_field = isinstance(field_info, FieldInfo)
config_name = field_name if extra_config else field_name.upper()
field_type = field_info.annotation if regular_field else field_info.return_type
default_value = get_default_value(field_info, regular_field)
description = field_info.description if field_info.description else "-"
deprecated = field_info.deprecated if field_info.deprecated else None
read_only = "rw" if regular_field else "ro"
type_name = get_type_name(field_type)
env_entry = ""
if not extra_config:
if regular_field:
env_entry = f"| `{prefix}{config_name}` "
else:
env_entry = "| "
if deprecated:
if isinstance(deprecated, bool):
description = "Deprecated!"
else:
description = deprecated
table += f"| {field_name} {env_entry}| `{type_name}` | `{read_only}` | `{default_value}` | {description} |\n"
inner_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
def extract_nested_models(subtype: Any, subprefix: str, parent_types: list[str]):
if subtype in inner_types.keys():
return
nested_types = resolve_nested_types(subtype, [])
for nested_type, nested_parent_types in nested_types:
if issubclass(nested_type, PydanticBaseModel):
new_parent_types = parent_types + nested_parent_types
if "list" in parent_types:
new_prefix = ""
else:
new_prefix = f"{subprefix}"
inner_types.setdefault(nested_type, (new_prefix, new_parent_types))
for nested_field_name, nested_field_info in list(
nested_type.model_fields.items()
) + list(nested_type.model_computed_fields.items()):
nested_field_type = nested_field_info.annotation
if new_prefix:
new_prefix += f"{nested_field_name.upper()}__"
extract_nested_models(
nested_field_type,
new_prefix,
new_parent_types + [nested_field_name],
)
extract_nested_models(field_type, f"{prefix}{config_name}__", toplevel_keys + [field_name])
for new_type, info in inner_types.items():
if new_type not in documented_types:
undocumented_types.setdefault(new_type, (info[0], info[1]))
if toplevel:
table += ":::\n\n" # Add an empty line after the table table += ":::\n\n" # Add an empty line after the table
has_examples_list = toplevel_keys[-1] == "list"
instance_list = create_model_from_examples(config, has_examples_list)
if instance_list:
ins_dict_list = []
ins_out_dict_list = []
for ins in instance_list:
# Transform to JSON (and manually to dict) to use custom serializers and then merge with parent keys
ins_json = ins.model_dump_json(include_computed_fields=False)
ins_dict_list.append(json.loads(ins_json))
ins_out_json = ins.model_dump_json(include_computed_fields=True)
ins_out_dict_list.append(json.loads(ins_out_json))
same_output = ins_out_dict_list == ins_dict_list
same_output_str = "/Output" if same_output else ""
table += f"#{heading_level} Example Input{same_output_str}\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
input_dict = build_nested_structure(toplevel_keys[:-1], ins_dict_list)
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list
else:
input_dict = build_nested_structure(toplevel_keys, ins_dict_list[0])
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list[0]
table += textwrap.indent(json.dumps(input_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
if not same_output:
table += f"#{heading_level} Example Output\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
output_dict = build_nested_structure(toplevel_keys[:-1], ins_out_dict_list)
else:
output_dict = build_nested_structure(toplevel_keys, ins_out_dict_list[0])
table += textwrap.indent(json.dumps(output_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
while undocumented_types:
extra_config_type, extra_info = undocumented_types.popitem()
documented_types.add(extra_config_type)
table += generate_config_table_md(
extra_config_type, extra_info[1], extra_info[0], True, True
)
return table return table
def generate_config_md(config_eos: ConfigEOS) -> str: def generate_config_md() -> str:
"""Generate configuration specification in Markdown with extra tables for prefixed values. """Generate configuration specification in Markdown with extra tables for prefixed values.
Returns: Returns:
str: The Markdown representation of the configuration spec. str: The Markdown representation of the configuration spec.
""" """
# Fix file path for general settings to not show local/test file path configs = {}
GeneralSettings._config_file_path = Path( config_keys = config_eos.config_keys
"/home/user/.config/net.akkudoktoreos.net/EOS.config.json" config_keys_read_only = config_eos.config_keys_read_only
) for config_key in config_keys:
GeneralSettings._config_folder_path = config_eos.general.config_file_path.parent config = {}
config["name"] = config_key
config["value"] = getattr(config_eos, config_key)
if config_key in config_keys_read_only:
config["read-only"] = "ro"
computed_field_info = config_eos.__pydantic_decorators__.computed_fields[
config_key
].info
config["default"] = "N/A"
config["description"] = computed_field_info.description
config["type"] = str(computed_field_info.return_type)
else:
config["read-only"] = "rw"
field_info = config_eos.model_fields[config_key]
config["default"] = field_info.default
config["description"] = field_info.description
config["type"] = str(field_info.annotation)
configs[config_key] = config
# Generate markdown for the main table
markdown = "# Configuration Table\n\n" markdown = "# Configuration Table\n\n"
# Generate tables for each top level config # Generate table for general configuration names
for field_name, field_info in config_eos.__class__.model_fields.items(): general_configs = {k: v for k, v in configs.items() if k in GENERAL_CONFIGS}
field_type = field_info.annotation for k in general_configs.keys():
markdown += generate_config_table_md( del configs[k] # Remove general configs from the main configs dictionary
field_type, [field_name], f"EOS_{field_name.upper()}__", True markdown += generate_config_table_md(general_configs, "General Configuration Values")
)
# Full config non_prefixed_configs = {k: v for k, v in configs.items()}
markdown += "## Full example Config\n\n"
markdown += "```{eval-rst}\n"
markdown += ".. code-block:: json\n\n"
# Test for valid config first
config_eos.merge_settings_from_dict(global_config_dict)
markdown += textwrap.indent(json.dumps(global_config_dict, indent=4), " ")
markdown += "\n"
markdown += "```\n\n"
# Assure there is no double \n at end of file # Generate tables for each prefix (sorted by value) and remove prefixed configs from the main dictionary
sorted_prefixes = sorted(CONFIG_PREFIXES.items(), key=lambda item: item[1])
for prefix, title in sorted_prefixes:
prefixed_configs = {k: v for k, v in configs.items() if k.startswith(prefix)}
for k in prefixed_configs.keys():
del non_prefixed_configs[k]
markdown += generate_config_table_md(prefixed_configs, title)
# Generate markdown for the remaining non-prefixed configs if any
if non_prefixed_configs:
markdown += generate_config_table_md(non_prefixed_configs, "Other Configuration Values")
# Assure the is no double \n at end of file
markdown = markdown.rstrip("\n") markdown = markdown.rstrip("\n")
markdown += "\n" markdown += "\n"
# Assure log path does not leak to documentation
markdown = re.sub(
r'(?<=["\'])/[^"\']*/output/eos\.log(?=["\'])',
'/home/user/.local/share/net.akkudoktoreos.net/output/eos.log',
markdown
)
return markdown return markdown
@@ -304,15 +145,12 @@ def main():
) )
args = parser.parse_args() args = parser.parse_args()
config_eos = get_config()
try: try:
config_md = generate_config_md(config_eos) config_md = generate_config_md()
if os.name == "nt":
config_md = config_md.replace("\\\\", "/")
if args.output_file: if args.output_file:
# Write to file # Write to file
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f: with open(args.output_file, "w", encoding="utf8") as f:
f.write(config_md) f.write(config_md)
else: else:
# Write to std output # Write to std output
@@ -320,8 +158,7 @@ def main():
except Exception as e: except Exception as e:
print(f"Error during Configuration Specification generation: {e}", file=sys.stderr) print(f"Error during Configuration Specification generation: {e}", file=sys.stderr)
# keep throwing error to debug potential problems (e.g. invalid examples) sys.exit(1)
raise e
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -16,7 +16,6 @@ Example:
import argparse import argparse
import json import json
import os
import sys import sys
from fastapi.openapi.utils import get_openapi from fastapi.openapi.utils import get_openapi
@@ -38,14 +37,6 @@ def generate_openapi() -> dict:
routes=app.routes, routes=app.routes,
) )
# Fix file path for general settings to not show local/test file path
general = openapi_spec["components"]["schemas"]["ConfigEOS"]["properties"]["general"]["default"]
general["config_file_path"] = "/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
general["config_folder_path"] = "/home/user/.config/net.akkudoktoreos.net"
# Fix file path for logging settings to not show local/test file path
logging = openapi_spec["components"]["schemas"]["ConfigEOS"]["properties"]["logging"]["default"]
logging["file_path"] = "/home/user/.local/share/net.akkudoktoreos.net/output/eos.log"
return openapi_spec return openapi_spec
@@ -63,7 +54,7 @@ def main():
openapi_spec_str = json.dumps(openapi_spec, indent=2) openapi_spec_str = json.dumps(openapi_spec, indent=2)
if args.output_file: if args.output_file:
# Write to file # Write to file
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f: with open(args.output_file, "w", encoding="utf8") as f:
f.write(openapi_spec_str) f.write(openapi_spec_str)
else: else:
# Write to std output # Write to std output

View File

@@ -3,7 +3,6 @@
import argparse import argparse
import json import json
import os
import sys import sys
import git import git
@@ -285,11 +284,9 @@ def main():
try: try:
openapi_md = generate_openapi_md() openapi_md = generate_openapi_md()
if os.name == "nt":
openapi_md = openapi_md.replace("127.0.0.1", "127.0.0.1")
if args.output_file: if args.output_file:
# Write to file # Write to file
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f: with open(args.output_file, "w", encoding="utf8") as f:
f.write(openapi_md) f.write(openapi_md)
else: else:
# Write to std output # Write to std output

View File

@@ -1 +0,0 @@
# Placeholder for gitlint user rules (see https://jorisroovers.com/gitlint/latest/rules/user_defined_rules/).

View File

@@ -12,12 +12,15 @@ import numpy as np
from akkudoktoreos.config.config import get_config from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.ems import get_ems from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.optimization.genetic import ( from akkudoktoreos.optimization.genetic import (
OptimizationParameters, OptimizationParameters,
optimization_problem, optimization_problem,
) )
from akkudoktoreos.prediction.prediction import get_prediction from akkudoktoreos.prediction.prediction import get_prediction
get_logger(__name__, logging_level="DEBUG")
def prepare_optimization_real_parameters() -> OptimizationParameters: def prepare_optimization_real_parameters() -> OptimizationParameters:
"""Prepare and return optimization parameters with real world data. """Prepare and return optimization parameters with real world data.
@@ -27,63 +30,42 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
""" """
# Make a config # Make a config
settings = { settings = {
"general": { # -- General --
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
}, # -- Predictions --
"prediction": {
"hours": 48,
"historic_hours": 24,
},
# PV Forecast # PV Forecast
"pvforecast": { "pvforecast_provider": "PVForecastAkkudoktor",
"provider": "PVForecastAkkudoktor", "pvforecast0_peakpower": 5.0,
"planes": [ "pvforecast0_surface_azimuth": -10,
{ "pvforecast0_surface_tilt": 7,
"peakpower": 5.0, "pvforecast0_userhorizon": [20, 27, 22, 20],
"surface_azimuth": -10, "pvforecast0_inverter_paco": 10000,
"surface_tilt": 7, "pvforecast1_peakpower": 4.8,
"userhorizon": [20, 27, 22, 20], "pvforecast1_surface_azimuth": -90,
"inverter_paco": 10000, "pvforecast1_surface_tilt": 7,
}, "pvforecast1_userhorizon": [30, 30, 30, 50],
{ "pvforecast1_inverter_paco": 10000,
"peakpower": 4.8, "pvforecast2_peakpower": 1.4,
"surface_azimuth": -90, "pvforecast2_surface_azimuth": -40,
"surface_tilt": 7, "pvforecast2_surface_tilt": 60,
"userhorizon": [30, 30, 30, 50], "pvforecast2_userhorizon": [60, 30, 0, 30],
"inverter_paco": 10000, "pvforecast2_inverter_paco": 2000,
}, "pvforecast3_peakpower": 1.6,
{ "pvforecast3_surface_azimuth": 5,
"peakpower": 1.4, "pvforecast3_surface_tilt": 45,
"surface_azimuth": -40, "pvforecast3_userhorizon": [45, 25, 30, 60],
"surface_tilt": 60, "pvforecast3_inverter_paco": 1400,
"userhorizon": [60, 30, 0, 30], "pvforecast4_peakpower": None,
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
# Weather Forecast # Weather Forecast
"weather": { "weather_provider": "ClearOutside",
"provider": "ClearOutside",
},
# Electricity Price Forecast # Electricity Price Forecast
"elecprice": { "elecprice_provider": "ElecPriceAkkudoktor",
"provider": "ElecPriceAkkudoktor",
},
# Load Forecast # Load Forecast
"load": { "load_provider": "LoadAkkudoktor",
"provider": "LoadAkkudoktor",
"provider_settings": {
"loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh "loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh
},
},
# -- Simulations -- # -- Simulations --
} }
config_eos = get_config() config_eos = get_config()
@@ -147,20 +129,20 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
"strompreis_euro_pro_wh": strompreis_euro_pro_wh, "strompreis_euro_pro_wh": strompreis_euro_pro_wh,
}, },
"pv_akku": { "pv_akku": {
"device_id": "battery1",
"capacity_wh": 26400, "capacity_wh": 26400,
"initial_soc_percentage": 15, "initial_soc_percentage": 15,
"min_soc_percentage": 15, "min_soc_percentage": 15,
}, },
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
"eauto": { "eauto": {
"device_id": "ev1",
"min_soc_percentage": 50, "min_soc_percentage": 50,
"capacity_wh": 60000, "capacity_wh": 60000,
"charging_efficiency": 0.95, "charging_efficiency": 0.95,
"max_charge_power_w": 11040, "max_charge_power_w": 11040,
"initial_soc_percentage": 5, "initial_soc_percentage": 5,
}, },
"inverter": {
"max_power_wh": 10000,
},
"temperature_forecast": temperature_forecast, "temperature_forecast": temperature_forecast,
"start_solution": start_solution, "start_solution": start_solution,
} }
@@ -301,20 +283,20 @@ def prepare_optimization_parameters() -> OptimizationParameters:
"strompreis_euro_pro_wh": strompreis_euro_pro_wh, "strompreis_euro_pro_wh": strompreis_euro_pro_wh,
}, },
"pv_akku": { "pv_akku": {
"device_id": "battery1",
"capacity_wh": 26400, "capacity_wh": 26400,
"initial_soc_percentage": 15, "initial_soc_percentage": 15,
"min_soc_percentage": 15, "min_soc_percentage": 15,
}, },
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
"eauto": { "eauto": {
"device_id": "ev1",
"min_soc_percentage": 50, "min_soc_percentage": 50,
"capacity_wh": 60000, "capacity_wh": 60000,
"charging_efficiency": 0.95, "charging_efficiency": 0.95,
"max_charge_power_w": 11040, "max_charge_power_w": 11040,
"initial_soc_percentage": 5, "initial_soc_percentage": 5,
}, },
"inverter": {
"max_power_wh": 10000,
},
"temperature_forecast": temperature_forecast, "temperature_forecast": temperature_forecast,
"start_solution": start_solution, "start_solution": start_solution,
} }
@@ -348,9 +330,7 @@ def run_optimization(
# Initialize the optimization problem using the default configuration # Initialize the optimization problem using the default configuration
config_eos = get_config() config_eos = get_config()
config_eos.merge_settings_from_dict( config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
{"prediction": {"hours": 48}, "optimization": {"hours": 48}}
)
opt_class = optimization_problem(verbose=verbose, fixed_seed=seed) opt_class = optimization_problem(verbose=verbose, fixed_seed=seed)
# Perform the optimisation based on the provided parameters and start hour # Perform the optimisation based on the provided parameters and start hour

View File

@@ -16,47 +16,32 @@ prediction_eos = get_prediction()
def config_pvforecast() -> dict: def config_pvforecast() -> dict:
"""Configure settings for PV forecast.""" """Configure settings for PV forecast."""
settings = { settings = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
}, "pvforecast_provider": "PVForecastAkkudoktor",
"prediction": { "pvforecast0_peakpower": 5.0,
"hours": 48, "pvforecast0_surface_azimuth": -10,
"historic_hours": 24, "pvforecast0_surface_tilt": 7,
}, "pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast": { "pvforecast0_inverter_paco": 10000,
"provider": "PVForecastAkkudoktor", "pvforecast1_peakpower": 4.8,
"planes": [ "pvforecast1_surface_azimuth": -90,
{ "pvforecast1_surface_tilt": 7,
"peakpower": 5.0, "pvforecast1_userhorizon": [30, 30, 30, 50],
"surface_azimuth": -10, "pvforecast1_inverter_paco": 10000,
"surface_tilt": 7, "pvforecast2_peakpower": 1.4,
"userhorizon": [20, 27, 22, 20], "pvforecast2_surface_azimuth": -40,
"inverter_paco": 10000, "pvforecast2_surface_tilt": 60,
}, "pvforecast2_userhorizon": [60, 30, 0, 30],
{ "pvforecast2_inverter_paco": 2000,
"peakpower": 4.8, "pvforecast3_peakpower": 1.6,
"surface_azimuth": -90, "pvforecast3_surface_azimuth": 5,
"surface_tilt": 7, "pvforecast3_surface_tilt": 45,
"userhorizon": [30, 30, 30, 50], "pvforecast3_userhorizon": [45, 25, 30, 60],
"inverter_paco": 10000, "pvforecast3_inverter_paco": 1400,
}, "pvforecast4_peakpower": None,
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
} }
return settings return settings
@@ -64,15 +49,10 @@ def config_pvforecast() -> dict:
def config_weather() -> dict: def config_weather() -> dict:
"""Configure settings for weather forecast.""" """Configure settings for weather forecast."""
settings = { settings = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"weather": dict(),
} }
return settings return settings
@@ -80,15 +60,10 @@ def config_weather() -> dict:
def config_elecprice() -> dict: def config_elecprice() -> dict:
"""Configure settings for electricity price forecast.""" """Configure settings for electricity price forecast."""
settings = { settings = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"elecprice": dict(),
} }
return settings return settings
@@ -96,14 +71,10 @@ def config_elecprice() -> dict:
def config_load() -> dict: def config_load() -> dict:
"""Configure settings for load forecast.""" """Configure settings for load forecast."""
settings = { settings = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
} }
return settings return settings
@@ -121,40 +92,30 @@ def run_prediction(provider_id: str, verbose: bool = False) -> str:
# Initialize the oprediction # Initialize the oprediction
config_eos = get_config() config_eos = get_config()
prediction_eos = get_prediction() prediction_eos = get_prediction()
if verbose:
print(f"\nProvider ID: {provider_id}")
if provider_id in ("PVForecastAkkudoktor",): if provider_id in ("PVForecastAkkudoktor",):
settings = config_pvforecast() settings = config_pvforecast()
forecast = "pvforecast" settings["pvforecast_provider"] = provider_id
elif provider_id in ("BrightSky", "ClearOutside"): elif provider_id in ("BrightSky", "ClearOutside"):
settings = config_weather() settings = config_weather()
forecast = "weather" settings["weather_provider"] = provider_id
elif provider_id in ("ElecPriceAkkudoktor",): elif provider_id in ("ElecPriceAkkudoktor",):
settings = config_elecprice() settings = config_elecprice()
forecast = "elecprice" settings["elecprice_provider"] = provider_id
elif provider_id in ("LoadAkkudoktor",): elif provider_id in ("LoadAkkudoktor",):
settings = config_elecprice() settings = config_elecprice()
forecast = "load" settings["loadakkudoktor_year_energy"] = 1000
settings["load"]["loadakkudoktor_year_energy"] = 1000 settings["load_provider"] = provider_id
else: else:
raise ValueError(f"Unknown provider '{provider_id}'.") raise ValueError(f"Unknown provider '{provider_id}'.")
settings[forecast]["provider"] = provider_id
config_eos.merge_settings_from_dict(settings) config_eos.merge_settings_from_dict(settings)
provider = prediction_eos.provider_by_id(provider_id)
prediction_eos.update_data() prediction_eos.update_data()
# Return result of prediction # Return result of prediction
provider = prediction_eos.provider_by_id(provider_id)
if verbose: if verbose:
print(f"\nProvider ID: {provider.provider_id()}")
print("----------")
print("\nSettings\n----------")
print(settings)
print("\nProvider\n----------")
print(f"elecprice.provider: {config_eos.elecprice.provider}")
print(f"load.provider: {config_eos.load.provider}")
print(f"pvforecast.provider: {config_eos.pvforecast.provider}")
print(f"weather.provider: {config_eos.weather.provider}")
print(f"enabled: {provider.enabled()}")
for key in provider.record_keys: for key in provider.record_keys:
print(f"\n{key}\n----------") print(f"\n{key}\n----------")
print(f"Array: {provider.key_to_array(key)}") print(f"Array: {provider.key_to_array(key)}")

View File

@@ -12,38 +12,34 @@ Key features:
import os import os
import shutil import shutil
from pathlib import Path from pathlib import Path
from typing import Any, ClassVar, Optional, Type from typing import Any, ClassVar, List, Optional
from loguru import logger
from platformdirs import user_config_dir, user_data_dir from platformdirs import user_config_dir, user_data_dir
from pydantic import Field, computed_field from pydantic import Field, ValidationError, computed_field
from pydantic_settings import (
BaseSettings,
JsonConfigSettingsSource,
PydanticBaseSettingsSource,
SettingsConfigDict,
)
# settings # settings
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.cachesettings import CacheCommonSettings
from akkudoktoreos.core.coreabc import SingletonMixin from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.decorators import classproperty from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.emsettings import EnergyManagementCommonSettings
from akkudoktoreos.core.logsettings import LoggingCommonSettings from akkudoktoreos.core.logsettings import LoggingCommonSettings
from akkudoktoreos.core.pydantic import PydanticModelNestedValueMixin, merge_models from akkudoktoreos.devices.devices import DevicesCommonSettings
from akkudoktoreos.devices.settings import DevicesCommonSettings
from akkudoktoreos.measurement.measurement import MeasurementCommonSettings from akkudoktoreos.measurement.measurement import MeasurementCommonSettings
from akkudoktoreos.optimization.optimization import OptimizationCommonSettings from akkudoktoreos.optimization.optimization import OptimizationCommonSettings
from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
from akkudoktoreos.prediction.load import LoadCommonSettings from akkudoktoreos.prediction.load import LoadCommonSettings
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
from akkudoktoreos.prediction.prediction import PredictionCommonSettings from akkudoktoreos.prediction.prediction import PredictionCommonSettings
from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
from akkudoktoreos.prediction.weather import WeatherCommonSettings from akkudoktoreos.prediction.weather import WeatherCommonSettings
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
from akkudoktoreos.server.server import ServerCommonSettings from akkudoktoreos.server.server import ServerCommonSettings
from akkudoktoreos.utils.datetimeutil import to_timezone
from akkudoktoreos.utils.utils import UtilsCommonSettings from akkudoktoreos.utils.utils import UtilsCommonSettings
logger = get_logger(__name__)
def get_absolute_path( def get_absolute_path(
basepath: Optional[Path | str], subpath: Optional[Path | str] basepath: Optional[Path | str], subpath: Optional[Path | str]
@@ -63,169 +59,61 @@ def get_absolute_path(
return None return None
class GeneralSettings(SettingsBaseModel): class ConfigCommonSettings(SettingsBaseModel):
"""Settings for common configuration. """Settings for common configuration."""
General configuration to set directories of cache and output files and system location (latitude
and longitude).
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
determines the time zone based on latitude and longitude.
Attributes:
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
Properties:
timezone (Optional[str]): Computed time zone string based on the specified latitude
and longitude.
"""
_config_folder_path: ClassVar[Optional[Path]] = None
_config_file_path: ClassVar[Optional[Path]] = None
data_folder_path: Optional[Path] = Field( data_folder_path: Optional[Path] = Field(
default=None, description="Path to EOS data directory.", examples=[None, "/home/eos/data"] default=None, description="Path to EOS data directory."
) )
data_output_subpath: Optional[Path] = Field( data_output_subpath: Optional[Path] = Field(
default="output", description="Sub-path for the EOS output data directory." "output", description="Sub-path for the EOS output data directory."
) )
latitude: Optional[float] = Field( data_cache_subpath: Optional[Path] = Field(
default=52.52, "cache", description="Sub-path for the EOS cache data directory."
ge=-90.0,
le=90.0,
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
)
longitude: Optional[float] = Field(
default=13.405,
ge=-180.0,
le=180.0,
description="Longitude in decimal degrees, within -180 to 180 (°)",
) )
# Computed fields # Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def timezone(self) -> Optional[str]:
"""Compute timezone based on latitude and longitude."""
if self.latitude and self.longitude:
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
return None
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def data_output_path(self) -> Optional[Path]: def data_output_path(self) -> Optional[Path]:
"""Compute data_output_path based on data_folder_path.""" """Compute data_output_path based on data_folder_path."""
return get_absolute_path(self.data_folder_path, self.data_output_subpath) return get_absolute_path(self.data_folder_path, self.data_output_subpath)
# Computed fields
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def config_folder_path(self) -> Optional[Path]: def data_cache_path(self) -> Optional[Path]:
"""Path to EOS configuration directory.""" """Compute data_cache_path based on data_folder_path."""
return self._config_folder_path return get_absolute_path(self.data_folder_path, self.data_cache_subpath)
@computed_field # type: ignore[prop-decorator]
@property
def config_file_path(self) -> Optional[Path]:
"""Path to EOS configuration file."""
return self._config_file_path
class SettingsEOS(BaseSettings, PydanticModelNestedValueMixin): class SettingsEOS(
"""Settings for all EOS. ConfigCommonSettings,
LoggingCommonSettings,
DevicesCommonSettings,
MeasurementCommonSettings,
OptimizationCommonSettings,
PredictionCommonSettings,
ElecPriceCommonSettings,
ElecPriceImportCommonSettings,
LoadCommonSettings,
LoadAkkudoktorCommonSettings,
LoadImportCommonSettings,
PVForecastCommonSettings,
PVForecastImportCommonSettings,
WeatherCommonSettings,
WeatherImportCommonSettings,
ServerCommonSettings,
UtilsCommonSettings,
):
"""Settings for all EOS."""
Used by updating the configuration with specific settings only. pass
"""
general: Optional[GeneralSettings] = Field(
default=None,
description="General Settings",
)
cache: Optional[CacheCommonSettings] = Field(
default=None,
description="Cache Settings",
)
ems: Optional[EnergyManagementCommonSettings] = Field(
default=None,
description="Energy Management Settings",
)
logging: Optional[LoggingCommonSettings] = Field(
default=None,
description="Logging Settings",
)
devices: Optional[DevicesCommonSettings] = Field(
default=None,
description="Devices Settings",
)
measurement: Optional[MeasurementCommonSettings] = Field(
default=None,
description="Measurement Settings",
)
optimization: Optional[OptimizationCommonSettings] = Field(
default=None,
description="Optimization Settings",
)
prediction: Optional[PredictionCommonSettings] = Field(
default=None,
description="Prediction Settings",
)
elecprice: Optional[ElecPriceCommonSettings] = Field(
default=None,
description="Electricity Price Settings",
)
load: Optional[LoadCommonSettings] = Field(
default=None,
description="Load Settings",
)
pvforecast: Optional[PVForecastCommonSettings] = Field(
default=None,
description="PV Forecast Settings",
)
weather: Optional[WeatherCommonSettings] = Field(
default=None,
description="Weather Settings",
)
server: Optional[ServerCommonSettings] = Field(
default=None,
description="Server Settings",
)
utils: Optional[UtilsCommonSettings] = Field(
default=None,
description="Utilities Settings",
)
model_config = SettingsConfigDict(
env_nested_delimiter="__",
nested_model_default_partial_update=True,
env_prefix="EOS_",
ignored_types=(classproperty,),
)
class SettingsEOSDefaults(SettingsEOS): class ConfigEOS(SingletonMixin, SettingsEOS):
"""Settings for all of EOS with defaults.
Used by ConfigEOS instance to make all fields available.
"""
general: GeneralSettings = GeneralSettings()
cache: CacheCommonSettings = CacheCommonSettings()
ems: EnergyManagementCommonSettings = EnergyManagementCommonSettings()
logging: LoggingCommonSettings = LoggingCommonSettings()
devices: DevicesCommonSettings = DevicesCommonSettings()
measurement: MeasurementCommonSettings = MeasurementCommonSettings()
optimization: OptimizationCommonSettings = OptimizationCommonSettings()
prediction: PredictionCommonSettings = PredictionCommonSettings()
elecprice: ElecPriceCommonSettings = ElecPriceCommonSettings()
load: LoadCommonSettings = LoadCommonSettings()
pvforecast: PVForecastCommonSettings = PVForecastCommonSettings()
weather: WeatherCommonSettings = WeatherCommonSettings()
server: ServerCommonSettings = ServerCommonSettings()
utils: UtilsCommonSettings = UtilsCommonSettings()
class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
"""Singleton configuration handler for the EOS application. """Singleton configuration handler for the EOS application.
ConfigEOS extends `SettingsEOS` with support for default configuration paths and automatic ConfigEOS extends `SettingsEOS` with support for default configuration paths and automatic
@@ -255,6 +143,8 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
in one part of the application reflects across all references to this class. in one part of the application reflects across all references to this class.
Attributes: Attributes:
_settings (ClassVar[SettingsEOS]): Holds application-wide settings.
_file_settings (ClassVar[SettingsEOS]): Stores configuration loaded from file.
config_folder_path (Optional[Path]): Path to the configuration directory. config_folder_path (Optional[Path]): Path to the configuration directory.
config_file_path (Optional[Path]): Path to the configuration file. config_file_path (Optional[Path]): Path to the configuration file.
@@ -265,7 +155,7 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
To initialize and access configuration attributes (only one instance is created): To initialize and access configuration attributes (only one instance is created):
```python ```python
config_eos = ConfigEOS() # Always returns the same instance config_eos = ConfigEOS() # Always returns the same instance
print(config_eos.prediction.hours) # Access a setting from the loaded configuration print(config_eos.prediction_hours) # Access a setting from the loaded configuration
``` ```
""" """
@@ -277,141 +167,111 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
ENCODING: ClassVar[str] = "UTF-8" ENCODING: ClassVar[str] = "UTF-8"
CONFIG_FILE_NAME: ClassVar[str] = "EOS.config.json" CONFIG_FILE_NAME: ClassVar[str] = "EOS.config.json"
def __hash__(self) -> int: _settings: ClassVar[Optional[SettingsEOS]] = None
# ConfigEOS is a singleton _file_settings: ClassVar[Optional[SettingsEOS]] = None
return hash("config_eos")
def __eq__(self, other: Any) -> bool: _config_folder_path: Optional[Path] = None
if not isinstance(other, ConfigEOS): _config_file_path: Optional[Path] = None
return False
# ConfigEOS is a singleton
return True
@classmethod # Computed fields
def settings_customise_sources( @computed_field # type: ignore[prop-decorator]
cls, @property
settings_cls: Type[BaseSettings], def config_folder_path(self) -> Optional[Path]:
init_settings: PydanticBaseSettingsSource, """Path to EOS configuration directory."""
env_settings: PydanticBaseSettingsSource, return self._config_folder_path
dotenv_settings: PydanticBaseSettingsSource,
file_secret_settings: PydanticBaseSettingsSource,
) -> tuple[PydanticBaseSettingsSource, ...]:
"""Customizes the order and handling of settings sources for a Pydantic BaseSettings subclass.
This method determines the sources for application configuration settings, including @computed_field # type: ignore[prop-decorator]
environment variables, dotenv files and JSON configuration files. @property
It ensures that a default configuration file exists and creates one if necessary. def config_file_path(self) -> Optional[Path]:
"""Path to EOS configuration file."""
return self._config_file_path
Args: @computed_field # type: ignore[prop-decorator]
settings_cls (Type[BaseSettings]): The Pydantic BaseSettings class for which sources are customized. @property
init_settings (PydanticBaseSettingsSource): The initial settings source, typically passed at runtime. def config_default_file_path(self) -> Path:
env_settings (PydanticBaseSettingsSource): Settings sourced from environment variables.
dotenv_settings (PydanticBaseSettingsSource): Settings sourced from a dotenv file.
file_secret_settings (PydanticBaseSettingsSource): Unused (needed for parent class interface).
Returns:
tuple[PydanticBaseSettingsSource, ...]: A tuple of settings sources in the order they should be applied.
Behavior:
1. Checks for the existence of a JSON configuration file in the expected location.
2. If the configuration file does not exist, creates the directory (if needed) and attempts to copy a
default configuration file to the location. If the copy fails, uses the default configuration file directly.
3. Creates a `JsonConfigSettingsSource` for both the configuration file and the default configuration file.
4. Updates class attributes `GeneralSettings._config_folder_path` and
`GeneralSettings._config_file_path` to reflect the determined paths.
5. Returns a tuple containing all provided and newly created settings sources in the desired order.
Notes:
- This method logs a warning if the default configuration file cannot be copied.
- It ensures that a fallback to the default configuration file is always possible.
"""
setting_sources = [
init_settings,
env_settings,
dotenv_settings,
]
file_settings: Optional[JsonConfigSettingsSource] = None
config_file, exists = cls._get_config_file_path()
config_dir = config_file.parent
if not exists:
config_dir.mkdir(parents=True, exist_ok=True)
try:
shutil.copy2(cls.config_default_file_path, config_file)
except Exception as exc:
logger.warning(f"Could not copy default config: {exc}. Using default config...")
config_file = cls.config_default_file_path
config_dir = config_file.parent
try:
file_settings = JsonConfigSettingsSource(settings_cls, json_file=config_file)
setting_sources.append(file_settings)
except Exception as e:
logger.error(
f"Error reading config file '{config_file}' (falling back to default config): {e}"
)
default_settings = JsonConfigSettingsSource(
settings_cls, json_file=cls.config_default_file_path
)
GeneralSettings._config_folder_path = config_dir
GeneralSettings._config_file_path = config_file
setting_sources.append(default_settings)
return tuple(setting_sources)
@classproperty
def config_default_file_path(cls) -> Path:
"""Compute the default config file path.""" """Compute the default config file path."""
return cls.package_root_path.joinpath("data/default.config.json") return self.package_root_path.joinpath("data/default.config.json")
@classproperty @computed_field # type: ignore[prop-decorator]
def package_root_path(cls) -> Path: @property
def package_root_path(self) -> Path:
"""Compute the package root path.""" """Compute the package root path."""
return Path(__file__).parent.parent.resolve() return Path(__file__).parent.parent.resolve()
def __init__(self, *args: Any, **kwargs: Any) -> None: # Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def config_keys(self) -> List[str]:
"""Returns the keys of all fields in the configuration."""
key_list = []
key_list.extend(list(self.model_fields.keys()))
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
return key_list
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def config_keys_read_only(self) -> List[str]:
"""Returns the keys of all read only fields in the configuration."""
key_list = []
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
return key_list
def __init__(self) -> None:
"""Initializes the singleton ConfigEOS instance. """Initializes the singleton ConfigEOS instance.
Configuration data is loaded from a configuration file or a default one is created if none Configuration data is loaded from a configuration file or a default one is created if none
exists. exists.
""" """
if hasattr(self, "_initialized"): super().__init__()
return self.from_config_file()
self._setup(self, *args, **kwargs) self.update()
def _setup(self, *args: Any, **kwargs: Any) -> None: @property
"""Re-initialize global settings.""" def settings(self) -> Optional[SettingsEOS]:
# Check for config file content/ version type """Returns global settings for EOS.
config_file, exists = self._get_config_file_path()
if exists:
with config_file.open("r", encoding="utf-8", newline=None) as f_config:
config_txt = f_config.read()
if '"directories": {' in config_txt or '"server_eos_host": ' in config_txt:
error_msg = f"Configuration file '{config_file}' is outdated. Please remove or update manually."
logger.error(error_msg)
raise ValueError(error_msg)
# Assure settings base knows EOS configuration
SettingsBaseModel.config = self
# (Re-)load settings
SettingsEOSDefaults.__init__(self, *args, **kwargs)
# Init config file and data folder pathes
self._create_initial_config_file()
self._update_data_folder_path()
def merge_settings(self, settings: SettingsEOS) -> None: Settings generally provide configuration for EOS and are typically set only once.
Returns:
SettingsEOS: The settings for EOS or None.
"""
return ConfigEOS._settings
@classmethod
def _merge_and_update_settings(cls, settings: SettingsEOS) -> None:
"""Merge new and available settings.
Args:
settings (SettingsEOS): The new settings to apply.
"""
for key in SettingsEOS.model_fields:
if value := getattr(settings, key, None):
setattr(cls._settings, key, value)
def merge_settings(self, settings: SettingsEOS, force: Optional[bool] = None) -> None:
"""Merges the provided settings into the global settings for EOS, with optional overwrite. """Merges the provided settings into the global settings for EOS, with optional overwrite.
Args: Args:
settings (SettingsEOS): The settings to apply globally. settings (SettingsEOS): The settings to apply globally.
force (Optional[bool]): If True, overwrites the existing settings completely.
If False, the new settings are merged to the existing ones with priority for
the new ones. Defaults to False.
Raises: Raises:
ValueError: If the `settings` is not a `SettingsEOS` instance. ValueError: If settings are already set and `force` is not True or
if the `settings` is not a `SettingsEOS` instance.
""" """
if not isinstance(settings, SettingsEOS): if not isinstance(settings, SettingsEOS):
error_msg = f"Settings must be an instance of SettingsEOS: '{settings}'." raise ValueError(f"Settings must be an instance of SettingsEOS: '{settings}'.")
logger.error(error_msg)
raise ValueError(error_msg)
self.merge_settings_from_dict(settings.model_dump(exclude_none=True, exclude_unset=True)) if ConfigEOS._settings is None or force:
ConfigEOS._settings = settings
else:
self._merge_and_update_settings(settings)
# Update configuration after merging
self.update()
def merge_settings_from_dict(self, data: dict) -> None: def merge_settings_from_dict(self, data: dict) -> None:
"""Merges the provided dictionary data into the current instance. """Merges the provided dictionary data into the current instance.
@@ -429,83 +289,141 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
Example: Example:
>>> config = get_config() >>> config = get_config()
>>> new_data = {"prediction": {"hours": 24}, "server": {"port": 8000}} >>> new_data = {"prediction_hours": 24, "server_eos_port": 8000}
>>> config.merge_settings_from_dict(new_data) >>> config.merge_settings_from_dict(new_data)
""" """
self._setup(**merge_models(self, data)) # Create new settings instance with reset optional fields and merged data
settings = SettingsEOS.from_dict(data)
self.merge_settings(settings)
def reset_settings(self) -> None: def reset_settings(self) -> None:
"""Reset all changed settings to environment/config file defaults. """Reset all available settings.
This functions basically deletes the settings provided before. This functions basically deletes the settings provided before.
""" """
self._setup() ConfigEOS._settings = None
def _create_initial_config_file(self) -> None:
if self.general.config_file_path and not self.general.config_file_path.exists():
self.general.config_file_path.parent.mkdir(parents=True, exist_ok=True)
try:
with self.general.config_file_path.open("w", encoding="utf-8", newline="\n") as f:
f.write(self.model_dump_json(indent=4))
except Exception as e:
logger.error(
f"Could not write configuration file '{self.general.config_file_path}': {e}"
)
def _update_data_folder_path(self) -> None: def _update_data_folder_path(self) -> None:
"""Updates path to the data directory.""" """Updates path to the data directory."""
# From Settings # From Settings
if data_dir := self.general.data_folder_path: if self.settings and (data_dir := self.settings.data_folder_path):
try: try:
data_dir.mkdir(parents=True, exist_ok=True) data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir self.data_folder_path = data_dir
return return
except Exception as e: except:
logger.warning(f"Could not setup data dir: {e}") pass
# From EOS_DIR env # From EOS_DIR env
if env_dir := os.getenv(self.EOS_DIR): env_dir = os.getenv(self.EOS_DIR)
if env_dir is not None:
try: try:
data_dir = Path(env_dir).resolve() data_dir = Path(env_dir).resolve()
data_dir.mkdir(parents=True, exist_ok=True) data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir self.data_folder_path = data_dir
return return
except Exception as e: except:
logger.warning(f"Could not setup data dir: {e}") pass
# From configuration file
if self._file_settings and (data_dir := self._file_settings.data_folder_path):
try:
data_dir.mkdir(parents=True, exist_ok=True)
self.data_folder_path = data_dir
return
except:
pass
# From platform specific default path # From platform specific default path
try: try:
data_dir = Path(user_data_dir(self.APP_NAME, self.APP_AUTHOR)) data_dir = Path(user_data_dir(self.APP_NAME, self.APP_AUTHOR))
if data_dir is not None: if data_dir is not None:
data_dir.mkdir(parents=True, exist_ok=True) data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir self.data_folder_path = data_dir
return return
except Exception as e: except:
logger.warning(f"Could not setup data dir: {e}") pass
# Current working directory # Current working directory
data_dir = Path.cwd() data_dir = Path.cwd()
self.general.data_folder_path = data_dir self.data_folder_path = data_dir
@classmethod def _get_config_file_path(self) -> tuple[Path, bool]:
def _get_config_file_path(cls) -> tuple[Path, bool]: """Finds the a valid configuration file or returns the desired path for a new config file.
"""Find a valid configuration file or return the desired path for a new config file.
Returns: Returns:
tuple[Path, bool]: The path to the configuration file and if there is already a config file there tuple[Path, bool]: The path to the configuration directory and if there is already a config file there
""" """
config_dirs = [] config_dirs = []
env_base_dir = os.getenv(cls.EOS_DIR) env_base_dir = os.getenv(self.EOS_DIR)
env_config_dir = os.getenv(cls.EOS_CONFIG_DIR) env_config_dir = os.getenv(self.EOS_CONFIG_DIR)
env_dir = get_absolute_path(env_base_dir, env_config_dir) env_dir = get_absolute_path(env_base_dir, env_config_dir)
logger.debug(f"Environment config dir: '{env_dir}'") logger.debug(f"Envionment config dir: '{env_dir}'")
if env_dir is not None: if env_dir is not None:
config_dirs.append(env_dir.resolve()) config_dirs.append(env_dir.resolve())
config_dirs.append(Path(user_config_dir(cls.APP_NAME, cls.APP_AUTHOR))) config_dirs.append(Path(user_config_dir(self.APP_NAME)))
config_dirs.append(Path.cwd()) config_dirs.append(Path.cwd())
for cdir in config_dirs: for cdir in config_dirs:
cfile = cdir.joinpath(cls.CONFIG_FILE_NAME) cfile = cdir.joinpath(self.CONFIG_FILE_NAME)
if cfile.exists(): if cfile.exists():
logger.debug(f"Found config file: '{cfile}'") logger.debug(f"Found config file: '{cfile}'")
return cfile, True return cfile, True
return config_dirs[0].joinpath(cls.CONFIG_FILE_NAME), False return config_dirs[0].joinpath(self.CONFIG_FILE_NAME), False
def settings_from_config_file(self) -> tuple[SettingsEOS, Path]:
"""Load settings from the configuration file.
If the config file does not exist, it will be created.
Returns:
tuple of settings and path
settings (SettingsEOS): The settings defined by the EOS configuration file.
path (pathlib.Path): The path of the configuration file.
Raises:
ValueError: If the configuration file is invalid or incomplete.
"""
config_file, exists = self._get_config_file_path()
config_dir = config_file.parent
# Create config directory and copy default config if file does not exist
if not exists:
config_dir.mkdir(parents=True, exist_ok=True)
try:
shutil.copy2(self.config_default_file_path, config_file)
except Exception as exc:
logger.warning(f"Could not copy default config: {exc}. Using default config...")
config_file = self.config_default_file_path
config_dir = config_file.parent
# Load and validate the configuration file
with config_file.open("r", encoding=self.ENCODING) as f_in:
try:
json_str = f_in.read()
settings = SettingsEOS.model_validate_json(json_str)
except ValidationError as exc:
raise ValueError(f"Configuration '{config_file}' is incomplete or not valid: {exc}")
return settings, config_file
def from_config_file(self) -> tuple[SettingsEOS, Path]:
"""Load the configuration file settings for EOS.
Returns:
tuple of settings and path
settings (SettingsEOS): The settings defined by the EOS configuration file.
path (pathlib.Path): The path of the configuration file.
Raises:
ValueError: If the configuration file is invalid or incomplete.
"""
# Load settings from config file
ConfigEOS._file_settings, config_file = self.settings_from_config_file()
# Update configuration in memory
self.update()
# Everything worked, remember the values
self._config_folder_path = config_file.parent
self._config_file_path = config_file
return ConfigEOS._file_settings, config_file
def to_config_file(self) -> None: def to_config_file(self) -> None:
"""Saves the current configuration to the configuration file. """Saves the current configuration to the configuration file.
@@ -515,24 +433,77 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
Raises: Raises:
ValueError: If the configuration file path is not specified or can not be written to. ValueError: If the configuration file path is not specified or can not be written to.
""" """
if not self.general.config_file_path: if not self.config_file_path:
raise ValueError("Configuration file path unknown.") raise ValueError("Configuration file path unknown.")
with self.general.config_file_path.open("w", encoding="utf-8", newline="\n") as f_out: with self.config_file_path.open("w", encoding=self.ENCODING) as f_out:
json_str = super().model_dump_json(indent=4) try:
json_str = super().to_json()
# Write to file
f_out.write(json_str) f_out.write(json_str)
# Also remember as actual settings
ConfigEOS._file_settings = SettingsEOS.model_validate_json(json_str)
except ValidationError as exc:
raise ValueError(f"Could not update '{self.config_file_path}': {exc}")
def _config_value(self, key: str) -> Any:
"""Retrieves the configuration value for a specific key, following a priority order.
Values are fetched in the following order:
1. Settings.
2. Environment variables.
3. EOS configuration file.
4. Current configuration.
5. Field default constants.
Args:
key (str): The configuration key to retrieve.
Returns:
Any: The configuration value, or None if not found.
"""
# Settings
if ConfigEOS._settings:
if (value := getattr(self.settings, key, None)) is not None:
return value
# Environment variables
if (value := os.getenv(key)) is not None:
try:
return float(value)
except ValueError:
return value
# EOS configuration file.
if self._file_settings:
if (value := getattr(self._file_settings, key, None)) is not None:
return value
# Current configuration - key is valid as called by update().
if (value := getattr(self, key, None)) is not None:
return value
# Field default constants
if (value := ConfigEOS.model_fields[key].default) is not None:
return value
logger.debug(f"Value for configuration key '{key}' not found or is {value}")
return None
def update(self) -> None: def update(self) -> None:
"""Updates all configuration fields. """Updates all configuration fields.
This method updates all configuration fields using the following order for value retrieval: This method updates all configuration fields using the following order for value retrieval:
1. Current settings. 1. Settings.
2. Environment variables. 2. Environment variables.
3. EOS configuration file. 3. EOS configuration file.
4. Field default constants. 4. Current configuration.
5. Field default constants.
The first non None value in priority order is taken. The first non None value in priority order is taken.
""" """
self._setup(**self.model_dump()) self._update_data_folder_path()
for key in self.model_fields:
setattr(self, key, self._config_value(key))
def get_config() -> ConfigEOS: def get_config() -> ConfigEOS:

View File

@@ -1,12 +1,13 @@
"""Abstract and base classes for configuration.""" """Abstract and base classes for configuration."""
from typing import Any, ClassVar
from akkudoktoreos.core.pydantic import PydanticBaseModel from akkudoktoreos.core.pydantic import PydanticBaseModel
class SettingsBaseModel(PydanticBaseModel): class SettingsBaseModel(PydanticBaseModel):
"""Base model class for all settings configurations.""" """Base model class for all settings configurations.
# EOS configuration - set by ConfigEOS Note:
config: ClassVar[Any] = None Settings property names shall be disjunctive to all existing settings' property names.
"""
pass

View File

@@ -1,32 +0,0 @@
"""Settings for caching.
Kept in an extra module to avoid cyclic dependencies on package import.
"""
from pathlib import Path
from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
class CacheCommonSettings(SettingsBaseModel):
"""Cache Configuration."""
subpath: Optional[Path] = Field(
default="cache", description="Sub-path for the EOS cache data directory."
)
cleanup_interval: float = Field(
default=5 * 60, description="Intervall in seconds for EOS file cache cleanup."
)
# Do not make this a pydantic computed field. The pydantic model must be fully initialized
# to have access to config.general, which may not be the case if it is a computed field.
def path(self) -> Optional[Path]:
"""Compute cache path based on general.data_folder_path."""
data_cache_path = self.config.general.data_folder_path
if data_cache_path is None or self.subpath is None:
return None
return data_cache_path.joinpath(self.subpath)

View File

@@ -13,10 +13,13 @@ Classes:
import threading import threading
from typing import Any, ClassVar, Dict, Optional, Type from typing import Any, ClassVar, Dict, Optional, Type
from loguru import logger
from pendulum import DateTime from pendulum import DateTime
from pydantic import computed_field from pydantic import computed_field
from akkudoktoreos.core.logging import get_logger
logger = get_logger(__name__)
config_eos: Any = None config_eos: Any = None
measurement_eos: Any = None measurement_eos: Any = None
prediction_eos: Any = None prediction_eos: Any = None
@@ -262,14 +265,6 @@ class SingletonMixin:
class MySingletonModel(SingletonMixin, PydanticBaseModel): class MySingletonModel(SingletonMixin, PydanticBaseModel):
name: str name: str
# implement __init__ to avoid re-initialization of parent classes:
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
# Your initialisation here
...
super().__init__(*args, **kwargs)
instance1 = MySingletonModel(name="Instance 1") instance1 = MySingletonModel(name="Instance 1")
instance2 = MySingletonModel(name="Instance 2") instance2 = MySingletonModel(name="Instance 2")

View File

@@ -19,7 +19,6 @@ from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union, over
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pendulum import pendulum
from loguru import logger
from numpydantic import NDArray, Shape from numpydantic import NDArray, Shape
from pendulum import DateTime, Duration from pendulum import DateTime, Duration
from pydantic import ( from pydantic import (
@@ -32,6 +31,7 @@ from pydantic import (
) )
from akkudoktoreos.core.coreabc import ConfigMixin, SingletonMixin, StartMixin from akkudoktoreos.core.coreabc import ConfigMixin, SingletonMixin, StartMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ( from akkudoktoreos.core.pydantic import (
PydanticBaseModel, PydanticBaseModel,
PydanticDateTimeData, PydanticDateTimeData,
@@ -39,6 +39,8 @@ from akkudoktoreos.core.pydantic import (
) )
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
logger = get_logger(__name__)
class DataBase(ConfigMixin, StartMixin, PydanticBaseModel): class DataBase(ConfigMixin, StartMixin, PydanticBaseModel):
"""Base class for handling generic data. """Base class for handling generic data.
@@ -809,8 +811,7 @@ class DataSequence(DataBase, MutableSequence):
dates, values = self.key_to_lists( dates, values = self.key_to_lists(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, dropna=dropna key=key, start_datetime=start_datetime, end_datetime=end_datetime, dropna=dropna
) )
series = pd.Series(data=values, index=pd.DatetimeIndex(dates), name=key) return pd.Series(data=values, index=pd.DatetimeIndex(dates), name=key)
return series
def key_from_series(self, key: str, series: pd.Series) -> None: def key_from_series(self, key: str, series: pd.Series) -> None:
"""Update the DataSequence from a Pandas Series. """Update the DataSequence from a Pandas Series.
@@ -952,44 +953,6 @@ class DataSequence(DataBase, MutableSequence):
array = resampled.values array = resampled.values
return array return array
def to_dataframe(
self,
start_datetime: Optional[DateTime] = None,
end_datetime: Optional[DateTime] = None,
) -> pd.DataFrame:
"""Converts the sequence of DataRecord instances into a Pandas DataFrame.
Args:
start_datetime (Optional[datetime]): The lower bound for filtering (inclusive).
Defaults to the earliest possible datetime if None.
end_datetime (Optional[datetime]): The upper bound for filtering (exclusive).
Defaults to the latest possible datetime if None.
Returns:
pd.DataFrame: A DataFrame containing the filtered data from all records.
"""
if not self.records:
return pd.DataFrame() # Return empty DataFrame if no records exist
# Use filter_by_datetime to get filtered records
filtered_records = self.filter_by_datetime(start_datetime, end_datetime)
# Convert filtered records to a dictionary list
data = [record.model_dump() for record in filtered_records]
# Convert to DataFrame
df = pd.DataFrame(data)
if df.empty:
return df
# Ensure `date_time` column exists and use it for the index
if not "date_time" in df.columns:
error_msg = f"Cannot create dataframe: no `date_time` column in `{df}`."
logger.error(error_msg)
raise TypeError(error_msg)
df.index = pd.DatetimeIndex(df["date_time"])
return df
def sort_by_datetime(self, reverse: bool = False) -> None: def sort_by_datetime(self, reverse: bool = False) -> None:
"""Sort the DataRecords in the sequence by their date_time attribute. """Sort the DataRecords in the sequence by their date_time attribute.
@@ -1147,7 +1110,7 @@ class DataProvider(SingletonMixin, DataSequence):
To be implemented by derived classes. To be implemented by derived classes.
""" """
raise NotImplementedError() return self.provider_id() == self.config.abstract_provider
@abstractmethod @abstractmethod
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
@@ -1158,11 +1121,6 @@ class DataProvider(SingletonMixin, DataSequence):
""" """
pass pass
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def update_data( def update_data(
self, self,
force_enable: Optional[bool] = False, force_enable: Optional[bool] = False,
@@ -1266,14 +1224,14 @@ class DataImportMixin:
# We jump back by 1 hour # We jump back by 1 hour
# Repeat the value(s) (reuse value index) # Repeat the value(s) (reuse value index)
for i in range(interval_steps_per_hour): for i in range(interval_steps_per_hour):
logger.debug(f"{i + 1}: Repeat at {next_time} with index {value_index}") logger.debug(f"{i+1}: Repeat at {next_time} with index {value_index}")
timestamps_with_indices.append((next_time, value_index)) timestamps_with_indices.append((next_time, value_index))
next_time = next_time.add(seconds=interval.total_seconds()) next_time = next_time.add(seconds=interval.total_seconds())
else: else:
# We jump forward by 1 hour # We jump forward by 1 hour
# Drop the value(s) # Drop the value(s)
logger.debug( logger.debug(
f"{i + 1}: Skip {interval_steps_per_hour} at {next_time} with index {value_index}" f"{i+1}: Skip {interval_steps_per_hour} at {next_time} with index {value_index}"
) )
value_index += interval_steps_per_hour value_index += interval_steps_per_hour
@@ -1502,7 +1460,7 @@ class DataImportMixin:
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n" error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
logger.debug(f"PydanticDateTimeDataFrame import: {error_msg}") logger.debug(f"PydanticDateTimeDataFrame import: {error_msg}")
# Try dictionary with special keys start_datetime and interval # Try dictionary with special keys start_datetime and intervall
try: try:
import_data = PydanticDateTimeData.model_validate_json(json_str) import_data = PydanticDateTimeData.model_validate_json(json_str)
self.import_from_dict(import_data.to_dict()) self.import_from_dict(import_data.to_dict())
@@ -1562,7 +1520,7 @@ class DataImportMixin:
and `key_prefix = "load"`, only the "load_mean" key will be processed even though and `key_prefix = "load"`, only the "load_mean" key will be processed even though
both keys are in the record. both keys are in the record.
""" """
with import_file_path.open("r", encoding="utf-8", newline=None) as import_file: with import_file_path.open("r") as import_file:
import_str = import_file.read() import_str = import_file.read()
self.import_from_json( self.import_from_json(
import_str, key_prefix=key_prefix, start_datetime=start_datetime, interval=interval import_str, key_prefix=key_prefix, start_datetime=start_datetime, interval=interval
@@ -1637,11 +1595,6 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
) )
return list(key_set) return list(key_set)
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def __getitem__(self, key: str) -> pd.Series: def __getitem__(self, key: str) -> pd.Series:
"""Retrieve a Pandas Series for a specified key from the data in each DataProvider. """Retrieve a Pandas Series for a specified key from the data in each DataProvider.
@@ -1844,88 +1797,6 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
return array return array
def keys_to_dataframe(
self,
keys: list[str],
start_datetime: Optional[DateTime] = None,
end_datetime: Optional[DateTime] = None,
interval: Optional[Any] = None, # Duration assumed
fill_method: Optional[str] = None,
) -> pd.DataFrame:
"""Retrieve a dataframe indexed by fixed time intervals for specified keys from the data in each DataProvider.
Generates a pandas DataFrame using the NumPy arrays for each specified key, ensuring a common time index..
Args:
keys (list[str]): A list of field names to retrieve.
start_datetime (datetime, optional): Start date for filtering records (inclusive).
end_datetime (datetime, optional): End date for filtering records (exclusive).
interval (duration, optional): The fixed time interval. Defaults to 1 hour.
fill_method (str, optional): Method to handle missing values during resampling.
- 'linear': Linearly interpolate missing values (for numeric data only).
- 'ffill': Forward fill missing values.
- 'bfill': Backward fill missing values.
- 'none': Defaults to 'linear' for numeric values, otherwise 'ffill'.
Returns:
pd.DataFrame: A DataFrame where each column represents a key's array with a common time index.
Raises:
KeyError: If no valid data is found for any of the requested keys.
ValueError: If any retrieved array has a different time index than the first one.
"""
# Ensure datetime objects are normalized
start_datetime = to_datetime(start_datetime, to_maxtime=False) if start_datetime else None
end_datetime = to_datetime(end_datetime, to_maxtime=False) if end_datetime else None
if interval is None:
interval = to_duration("1 hour")
if start_datetime is None:
# Take earliest datetime of all providers that are enabled
for provider in self.enabled_providers:
if start_datetime is None:
start_datetime = provider.min_datetime
elif (
provider.min_datetime
and compare_datetimes(provider.min_datetime, start_datetime).lt
):
start_datetime = provider.min_datetime
if end_datetime is None:
# Take latest datetime of all providers that are enabled
for provider in self.enabled_providers:
if end_datetime is None:
end_datetime = provider.max_datetime
elif (
provider.max_datetime
and compare_datetimes(provider.max_datetime, end_datetime).gt
):
end_datetime = provider.min_datetime
if end_datetime:
end_datetime.add(seconds=1)
# Create a DatetimeIndex based on start, end, and interval
reference_index = pd.date_range(
start=start_datetime, end=end_datetime, freq=interval, inclusive="left"
)
data = {}
for key in keys:
try:
array = self.key_to_array(key, start_datetime, end_datetime, interval, fill_method)
if len(array) != len(reference_index):
raise ValueError(
f"Array length mismatch for key '{key}' (expected {len(reference_index)}, got {len(array)})"
)
data[key] = array
except KeyError as e:
raise KeyError(f"Failed to retrieve data for key '{key}': {e}")
if not data:
raise KeyError(f"No valid data found for the requested keys {keys}.")
return pd.DataFrame(data, index=reference_index)
def provider_by_id(self, provider_id: str) -> DataProvider: def provider_by_id(self, provider_id: str) -> DataProvider:
"""Retrieves a data provider by its unique identifier. """Retrieves a data provider by its unique identifier.

View File

@@ -1,44 +0,0 @@
from collections.abc import Callable
from typing import Any, Optional
class classproperty:
"""A decorator to define a read-only property at the class level.
This class replaces the built-in `property` which is no longer available in
combination with @classmethod since Python 3.13 to allow a method to be
accessed as a property on the class itself, rather than an instance. This
is useful when you want a property-like syntax for methods that depend on
the class rather than any instance of the class.
Example:
class MyClass:
_value = 42
@classproperty
def value(cls):
return cls._value
print(MyClass.value) # Outputs: 42
Methods:
__get__: Retrieves the value of the class property by calling the
decorated method on the class.
Parameters:
fget (Callable[[Any], Any]): A method that takes the class as an
argument and returns a value.
Raises:
RuntimeError: If `fget` is not defined when `__get__` is called.
"""
def __init__(self, fget: Callable[[Any], Any]) -> None:
self.fget = fget
def __get__(self, _: Any, owner_cls: Optional[type[Any]] = None) -> Any:
if owner_cls is None:
return self
if self.fget is None:
raise RuntimeError("'fget' not defined when `__get__` is called")
return self.fget(owner_cls)

View File

@@ -1,24 +1,24 @@
import traceback
from typing import Any, ClassVar, Optional from typing import Any, ClassVar, Optional
import numpy as np import numpy as np
from loguru import logger
from numpydantic import NDArray, Shape from numpydantic import NDArray, Shape
from pendulum import DateTime from pendulum import DateTime
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
from typing_extensions import Self from typing_extensions import Self
from akkudoktoreos.core.cache import CacheUntilUpdateStore
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel
from akkudoktoreos.devices.battery import Battery from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.generic import HomeAppliance from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Inverter from akkudoktoreos.devices.inverter import Inverter
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime from akkudoktoreos.utils.datetimeutil import to_datetime
from akkudoktoreos.utils.utils import NumpyEncoder from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
class EnergyManagementParameters(ParametersBaseModel):
class EnergieManagementSystemParameters(ParametersBaseModel):
pv_prognose_wh: list[float] = Field( pv_prognose_wh: list[float] = Field(
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals." description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
) )
@@ -107,7 +107,7 @@ class SimulationResult(ParametersBaseModel):
return NumpyEncoder.convert_numpy(field)[0] return NumpyEncoder.convert_numpy(field)[0]
class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel): class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
# Disable validation on assignment to speed up simulation runs. # Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict( model_config = ConfigDict(
validate_assignment=False, validate_assignment=False,
@@ -116,33 +116,16 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
# Start datetime. # Start datetime.
_start_datetime: ClassVar[Optional[DateTime]] = None _start_datetime: ClassVar[Optional[DateTime]] = None
# last run datetime. Used by energy management task
_last_datetime: ClassVar[Optional[DateTime]] = None
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def start_datetime(self) -> DateTime: def start_datetime(self) -> DateTime:
"""The starting datetime of the current or latest energy management.""" """The starting datetime of the current or latest energy management."""
if EnergyManagement._start_datetime is None: if EnergieManagementSystem._start_datetime is None:
EnergyManagement.set_start_datetime() EnergieManagementSystem.set_start_datetime()
return EnergyManagement._start_datetime return EnergieManagementSystem._start_datetime
@classmethod @classmethod
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime: def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
"""Set the start datetime for the next energy management cycle.
If no datetime is provided, the current datetime is used.
The start datetime is always rounded down to the nearest hour
(i.e., setting minutes, seconds, and microseconds to zero).
Args:
start_datetime (Optional[DateTime]): The datetime to set as the start.
If None, the current datetime is used.
Returns:
DateTime: The adjusted start datetime.
"""
if start_datetime is None: if start_datetime is None:
start_datetime = to_datetime() start_datetime = to_datetime()
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0) cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
@@ -186,14 +169,9 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD") dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD") ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def set_parameters( def set_parameters(
self, self,
parameters: EnergyManagementParameters, parameters: EnergieManagementSystemParameters,
ev: Optional[Battery] = None, ev: Optional[Battery] = None,
home_appliance: Optional[HomeAppliance] = None, home_appliance: Optional[HomeAppliance] = None,
inverter: Optional[Inverter] = None, inverter: Optional[Inverter] = None,
@@ -215,9 +193,9 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
self.ev = ev self.ev = ev
self.home_appliance = home_appliance self.home_appliance = home_appliance
self.inverter = inverter self.inverter = inverter
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0) self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0) self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0) self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
def set_akku_discharge_hours(self, ds: np.ndarray) -> None: def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
if self.battery: if self.battery:
@@ -260,88 +238,26 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
is mostly relevant to prediction providers. is mostly relevant to prediction providers.
force_update (bool, optional): If True, forces to update the data even if still cached. force_update (bool, optional): If True, forces to update the data even if still cached.
""" """
# Throw away any cached results of the last run.
CacheUntilUpdateStore().clear()
self.set_start_hour(start_hour=start_hour) self.set_start_hour(start_hour=start_hour)
self.config.update()
# Check for run definitions # Check for run definitions
if self.start_datetime is None: if self.start_datetime is None:
error_msg = "Start datetime unknown." error_msg = "Start datetime unknown."
logger.error(error_msg) logger.error(error_msg)
raise ValueError(error_msg) raise ValueError(error_msg)
if self.config.prediction.hours is None: if self.config.prediction_hours is None:
error_msg = "Prediction hours unknown." error_msg = "Prediction hours unknown."
logger.error(error_msg) logger.error(error_msg)
raise ValueError(error_msg) raise ValueError(error_msg)
if self.config.optimization.hours is None: if self.config.optimisation_hours is None:
error_msg = "Optimization hours unknown." error_msg = "Optimisation hours unknown."
logger.error(error_msg) logger.error(error_msg)
raise ValueError(error_msg) raise ValueError(error_msg)
self.prediction.update_data(force_enable=force_enable, force_update=force_update) self.prediction.update_data(force_enable=force_enable, force_update=force_update)
# TODO: Create optimisation problem that calls into devices.update_data() for simulations. # TODO: Create optimisation problem that calls into devices.update_data() for simulations.
logger.info("Energy management run (crippled version - prediction update only)")
def manage_energy(self) -> None:
"""Repeating task for managing energy.
This task should be executed by the server regularly (e.g., every 10 seconds)
to ensure proper energy management. Configuration changes to the energy management interval
will only take effect if this task is executed.
- Initializes and runs the energy management for the first time if it has never been run
before.
- If the energy management interval is not configured or invalid (NaN), the task will not
trigger any repeated energy management runs.
- Compares the current time with the last run time and runs the energy management if the
interval has elapsed.
- Logs any exceptions that occur during the initialization or execution of the energy
management.
Note: The task maintains the interval even if some intervals are missed.
"""
current_datetime = to_datetime()
interval = self.config.ems.interval # interval maybe changed in between
if EnergyManagement._last_datetime is None:
# Never run before
try:
# Remember energy run datetime.
EnergyManagement._last_datetime = current_datetime
# Try to run a first energy management. May fail due to config incomplete.
self.run()
except Exception as e:
trace = "".join(traceback.TracebackException.from_exception(e).format())
message = f"EOS init: {e}\n{trace}"
logger.error(message)
return
if interval is None or interval == float("nan"):
# No Repetition
return
if (
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
< interval
):
# Wait for next run
return
try:
self.run()
except Exception as e:
trace = "".join(traceback.TracebackException.from_exception(e).format())
message = f"EOS run: {e}\n{trace}"
logger.error(message)
# Remember the energy management run - keep on interval even if we missed some intervals
while (
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
>= interval
):
EnergyManagement._last_datetime = EnergyManagement._last_datetime.add(seconds=interval)
def set_start_hour(self, start_hour: Optional[int] = None) -> None: def set_start_hour(self, start_hour: Optional[int] = None) -> None:
"""Sets start datetime to given hour. """Sets start datetime to given hour.
@@ -394,8 +310,7 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
# Fetch objects # Fetch objects
battery = self.battery battery = self.battery
if battery is None: assert battery # to please mypy
raise ValueError(f"battery not set: {battery}")
ev = self.ev ev = self.ev
home_appliance = self.home_appliance home_appliance = self.home_appliance
inverter = self.inverter inverter = self.inverter
@@ -520,9 +435,9 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
# Initialize the Energy Management System, it is a singleton. # Initialize the Energy Management System, it is a singleton.
ems = EnergyManagement() ems = EnergieManagementSystem()
def get_ems() -> EnergyManagement: def get_ems() -> EnergieManagementSystem:
"""Gets the EOS Energy Management System.""" """Gets the EOS Energy Management System."""
return ems return ems

View File

@@ -1,26 +0,0 @@
"""Settings for energy management.
Kept in an extra module to avoid cyclic dependencies on package import.
"""
from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
class EnergyManagementCommonSettings(SettingsBaseModel):
"""Energy Management Configuration."""
startup_delay: float = Field(
default=5,
ge=1,
description="Startup delay in seconds for EOS energy management runs.",
)
interval: Optional[float] = Field(
default=None,
description="Intervall in seconds between EOS energy management runs.",
examples=["300"],
)

View File

@@ -1,3 +1,20 @@
"""Abstract and base classes for logging.""" """Abstract and base classes for logging."""
LOGGING_LEVELS: list[str] = ["TRACE", "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] import logging
def logging_str_to_level(level_str: str) -> int:
"""Convert log level string to logging level."""
if level_str == "DEBUG":
level = logging.DEBUG
elif level_str == "INFO":
level = logging.INFO
elif level_str == "WARNING":
level = logging.WARNING
elif level_str == "CRITICAL":
level = logging.CRITICAL
elif level_str == "ERROR":
level = logging.ERROR
else:
raise ValueError(f"Unknown loggin level: {level_str}")
return level

View File

@@ -1,241 +1,91 @@
"""Utility for configuring Loguru loggers.""" """Utility functions for handling logging tasks.
Functions:
----------
- get_logger: Creates and configures a logger with console and optional rotating file logging.
Example usage:
--------------
# Logger setup
>>> logger = get_logger(__name__, log_file="app.log", logging_level="DEBUG")
>>> logger.info("Logging initialized.")
Notes:
------
- The logger supports rotating log files to prevent excessive log file size.
"""
import json
import logging as pylogging import logging as pylogging
import os import os
import re from logging.handlers import RotatingFileHandler
import sys from typing import Optional
from pathlib import Path
from types import FrameType
from typing import Any, List, Optional
import pendulum from akkudoktoreos.core.logabc import logging_str_to_level
from loguru import logger
from akkudoktoreos.core.logabc import LOGGING_LEVELS
class InterceptHandler(pylogging.Handler): def get_logger(
"""A logging handler that redirects standard Python logging messages to Loguru. name: str,
log_file: Optional[str] = None,
logging_level: Optional[str] = None,
max_bytes: int = 5000000,
backup_count: int = 5,
) -> pylogging.Logger:
"""Creates and configures a logger with a given name.
This handler ensures consistency between the `logging` module and Loguru by intercepting The logger supports logging to both the console and an optional log file. File logging is
logs sent to the standard logging system and re-emitting them through Loguru with proper handled by a rotating file handler to prevent excessive log file size.
formatting and context (including exception info and call depth).
Attributes:
loglevel_mapping (dict): Mapping from standard logging levels to Loguru level names.
"""
loglevel_mapping: dict[int, str] = {
50: "CRITICAL",
40: "ERROR",
30: "WARNING",
20: "INFO",
10: "DEBUG",
5: "TRACE",
0: "NOTSET",
}
def emit(self, record: pylogging.LogRecord) -> None:
"""Emits a logging record by forwarding it to Loguru with preserved metadata.
Args: Args:
record (logging.LogRecord): A record object containing log message and metadata. name (str): The name of the logger, typically `__name__` from the calling module.
""" log_file (Optional[str]): Path to the log file for file logging. If None, no file logging is done.
try: logging_level (Optional[str]): Logging level (e.g., "INFO", "DEBUG"). Defaults to "INFO".
level = logger.level(record.levelname).name max_bytes (int): Maximum size in bytes for log file before rotation. Defaults to 5 MB.
except AttributeError: backup_count (int): Number of backup log files to keep. Defaults to 5.
level = self.loglevel_mapping.get(record.levelno, "INFO")
frame: Optional[FrameType] = pylogging.currentframe()
depth: int = 2
while frame and frame.f_code.co_filename == pylogging.__file__:
frame = frame.f_back
depth += 1
log = logger.bind(request_id="app")
log.opt(depth=depth, exception=record.exc_info).log(level, record.getMessage())
console_handler_id = None
file_handler_id = None
def track_logging_config(config_eos: Any, path: str, old_value: Any, value: Any) -> None:
"""Track logging config changes."""
global console_handler_id, file_handler_id
if not path.startswith("logging"):
raise ValueError(f"Logging shall not track '{path}'")
if not config_eos.logging.console_level:
# No value given - check environment value - may also be None
config_eos.logging.console_level = os.getenv("EOS_LOGGING__LEVEL")
if not config_eos.logging.file_level:
# No value given - check environment value - may also be None
config_eos.logging.file_level = os.getenv("EOS_LOGGING__LEVEL")
# Remove handlers
if console_handler_id:
try:
logger.remove(console_handler_id)
except Exception as e:
logger.debug("Exception on logger.remove: {}", e, exc_info=True)
console_handler_id = None
if file_handler_id:
try:
logger.remove(file_handler_id)
except Exception as e:
logger.debug("Exception on logger.remove: {}", e, exc_info=True)
file_handler_id = None
# Create handlers with new configuration
# Always add console handler
if config_eos.logging.console_level not in LOGGING_LEVELS:
logger.error(
f"Invalid console log level '{config_eos.logging.console_level} - forced to INFO'."
)
config_eos.logging.console_level = "INFO"
console_handler_id = logger.add(
sys.stderr,
enqueue=True,
backtrace=True,
level=config_eos.logging.console_level,
# format=_console_format
)
# Add file handler
if config_eos.logging.file_level and config_eos.logging.file_path:
if config_eos.logging.file_level not in LOGGING_LEVELS:
logger.error(
f"Invalid file log level '{config_eos.logging.console_level}' - forced to INFO."
)
config_eos.logging.file_level = "INFO"
file_handler_id = logger.add(
sink=config_eos.logging.file_path,
rotation="100 MB",
retention="3 days",
enqueue=True,
backtrace=True,
level=config_eos.logging.file_level,
serialize=True, # JSON dict formatting
# format=_file_format
)
# Redirect standard logging to Loguru
pylogging.basicConfig(handlers=[InterceptHandler()], level=0)
# Redirect uvicorn and fastapi logging to Loguru
pylogging.getLogger("uvicorn.access").handlers = [InterceptHandler()]
for pylogger_name in ["uvicorn", "uvicorn.error", "fastapi"]:
pylogger = pylogging.getLogger(pylogger_name)
pylogger.handlers = [InterceptHandler()]
pylogger.propagate = False
logger.info(
f"Logger reconfigured - console: {config_eos.logging.console_level}, file: {config_eos.logging.file_level}."
)
def read_file_log(
log_path: Path,
limit: int = 100,
level: Optional[str] = None,
contains: Optional[str] = None,
regex: Optional[str] = None,
from_time: Optional[str] = None,
to_time: Optional[str] = None,
tail: bool = False,
) -> List[dict]:
"""Read and filter structured log entries from a JSON-formatted log file.
Args:
log_path (Path): Path to the JSON-formatted log file.
limit (int, optional): Maximum number of log entries to return. Defaults to 100.
level (Optional[str], optional): Filter logs by log level (e.g., "INFO", "ERROR"). Defaults to None.
contains (Optional[str], optional): Filter logs that contain this substring in their message. Case-insensitive. Defaults to None.
regex (Optional[str], optional): Filter logs whose message matches this regular expression. Defaults to None.
from_time (Optional[str], optional): ISO 8601 datetime string to filter logs not earlier than this time. Defaults to None.
to_time (Optional[str], optional): ISO 8601 datetime string to filter logs not later than this time. Defaults to None.
tail (bool, optional): If True, read the last lines of the file (like `tail -n`). Defaults to False.
Returns: Returns:
List[dict]: A list of filtered log entries as dictionaries. logging.Logger: Configured logger instance.
Raises: Example:
FileNotFoundError: If the log file does not exist. logger = get_logger(__name__, log_file="app.log", logging_level="DEBUG")
ValueError: If the datetime strings are invalid or improperly formatted. logger.info("Application started")
Exception: For other unforeseen I/O or parsing errors.
""" """
if not log_path.exists(): # Create a logger with the specified name
raise FileNotFoundError("Log file not found") logger = pylogging.getLogger(name)
logger.propagate = True
if logging_level is not None:
level = logging_str_to_level(logging_level)
logger.setLevel(level)
try: # The log message format
from_dt = pendulum.parse(from_time) if from_time else None formatter = pylogging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
to_dt = pendulum.parse(to_time) if to_time else None
except Exception as e:
raise ValueError(f"Invalid date/time format: {e}")
regex_pattern = re.compile(regex) if regex else None # Prevent loggers from being added multiple times
# There may already be a logger from pytest
if not logger.handlers:
# Create a console handler with a standard output stream
console_handler = pylogging.StreamHandler()
if logging_level is not None:
console_handler.setLevel(level)
console_handler.setFormatter(formatter)
def matches_filters(log: dict) -> bool: # Add the console handler to the logger
if level and log.get("level", {}).get("name") != level.upper(): logger.addHandler(console_handler)
return False
if contains and contains.lower() not in log.get("message", "").lower():
return False
if regex_pattern and not regex_pattern.search(log.get("message", "")):
return False
if from_dt or to_dt:
try:
log_time = pendulum.parse(log["time"])
except Exception:
return False
if from_dt and log_time < from_dt:
return False
if to_dt and log_time > to_dt:
return False
return True
matched_logs = [] if log_file and len(logger.handlers) < 2: # We assume a console logger to be the first logger
lines: list[str] = [] # If a log file path is specified, create a rotating file handler
if tail: # Ensure the log directory exists
with log_path.open("rb") as f: log_dir = os.path.dirname(log_file)
f.seek(0, 2) if log_dir and not os.path.exists(log_dir):
end = f.tell() os.makedirs(log_dir)
buffer = bytearray()
pointer = end
while pointer > 0 and len(lines) < limit * 5: # Create a rotating file handler
pointer -= 1 file_handler = RotatingFileHandler(log_file, maxBytes=max_bytes, backupCount=backup_count)
f.seek(pointer) if logging_level is not None:
byte = f.read(1) file_handler.setLevel(level)
if byte == b"\n": file_handler.setFormatter(formatter)
if buffer:
line = buffer[::-1].decode("utf-8", errors="ignore")
lines.append(line)
buffer.clear()
else:
buffer.append(byte[0])
if buffer:
line = buffer[::-1].decode("utf-8", errors="ignore")
lines.append(line)
lines = lines[::-1]
else:
with log_path.open("r", encoding="utf-8", newline=None) as f_txt:
lines = f_txt.readlines()
for line in lines: # Add the file handler to the logger
if not line.strip(): logger.addHandler(file_handler)
continue
try:
log = json.loads(line)
except json.JSONDecodeError:
continue
if matches_filters(log):
matched_logs.append(log)
if len(matched_logs) >= limit:
break
return matched_logs return logger

View File

@@ -3,61 +3,43 @@
Kept in an extra module to avoid cyclic dependencies on package import. Kept in an extra module to avoid cyclic dependencies on package import.
""" """
from pathlib import Path import logging
import os
from typing import Optional from typing import Optional
from pydantic import Field, computed_field, field_validator from pydantic import Field, computed_field, field_validator
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logabc import LOGGING_LEVELS from akkudoktoreos.core.logabc import logging_str_to_level
class LoggingCommonSettings(SettingsBaseModel): class LoggingCommonSettings(SettingsBaseModel):
"""Logging Configuration.""" """Common settings for logging."""
level: Optional[str] = Field( logging_level_default: Optional[str] = Field(
default=None, default=None, description="EOS default logging level."
deprecated="This is deprecated. Use console_level and file_level instead.",
) )
console_level: Optional[str] = Field(
default=None,
description="Logging level when logging to console.",
examples=LOGGING_LEVELS,
)
file_level: Optional[str] = Field(
default=None,
description="Logging level when logging to file.",
examples=LOGGING_LEVELS,
)
@computed_field # type: ignore[prop-decorator]
@property
def file_path(self) -> Optional[Path]:
"""Computed log file path based on data output path."""
try:
path = SettingsBaseModel.config.general.data_output_path / "eos.log"
except:
# Config may not be fully set up
path = None
return path
# Validators # Validators
@field_validator("console_level", "file_level", mode="after") @field_validator("logging_level_default", mode="after")
@classmethod @classmethod
def validate_level(cls, value: Optional[str]) -> Optional[str]: def set_default_logging_level(cls, value: Optional[str]) -> Optional[str]:
"""Validate logging level string.""" if isinstance(value, str) and value.upper() == "NONE":
value = None
if value is None and (env_level := os.getenv("EOS_LOGGING_LEVEL")) is not None:
# Take default logging level from special environment variable
value = env_level
if value is None: if value is None:
# Nothing to set
return None return None
if isinstance(value, str): level = logging_str_to_level(value)
level = value.upper() logging.getLogger().setLevel(level)
if level == "NONE":
return None
if level not in LOGGING_LEVELS:
raise ValueError(f"Logging level {value} not supported")
value = level
else:
raise TypeError(f"Invalid {type(value)} of logging level {value}")
return value return value
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def logging_level_root(self) -> str:
"""Root logger logging level."""
level = logging.getLogger().getEffectiveLevel()
level_name = logging.getLevelName(level)
return level_name

View File

@@ -12,35 +12,19 @@ Key Features:
pandas DataFrames and Series with datetime indexes. pandas DataFrames and Series with datetime indexes.
""" """
import inspect
import json import json
import re import re
import uuid from typing import Any, Dict, List, Optional, Type, Union
import weakref
from copy import deepcopy
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Type,
Union,
get_args,
get_origin,
)
from zoneinfo import ZoneInfo from zoneinfo import ZoneInfo
import pandas as pd import pandas as pd
import pendulum import pendulum
from loguru import logger
from pandas.api.types import is_datetime64_any_dtype from pandas.api.types import is_datetime64_any_dtype
from pydantic import ( from pydantic import (
AwareDatetime, AwareDatetime,
BaseModel, BaseModel,
ConfigDict, ConfigDict,
Field, Field,
PrivateAttr,
RootModel, RootModel,
TypeAdapter, TypeAdapter,
ValidationError, ValidationError,
@@ -50,25 +34,6 @@ from pydantic import (
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
# Global weakref dictionary to hold external state per model instance
# Used as a workaround for PrivateAttr not working in e.g. Mixin Classes
_model_private_state: "weakref.WeakKeyDictionary[Union[PydanticBaseModel, PydanticModelNestedValueMixin], Dict[str, Any]]" = weakref.WeakKeyDictionary()
def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, Any]:
def deep_update(source_dict: dict[str, Any], update_dict: dict[str, Any]) -> dict[str, Any]:
for key, value in source_dict.items():
if isinstance(value, dict) and isinstance(update_dict.get(key), dict):
update_dict[key] = deep_update(update_dict[key], value)
else:
update_dict[key] = value
return update_dict
source_dict = source.model_dump(exclude_unset=True)
merged_dict = deep_update(source_dict, deepcopy(update_dict))
return merged_dict
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]): class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
"""Custom type adapter for Pendulum DateTime fields.""" """Custom type adapter for Pendulum DateTime fields."""
@@ -101,538 +66,11 @@ class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
return bool(re.match(iso8601_pattern, value)) return bool(re.match(iso8601_pattern, value))
class PydanticModelNestedValueMixin: class PydanticBaseModel(BaseModel):
"""A mixin providing methods to get, set and track nested values within a Pydantic model. """Base model class with automatic serialization and deserialization of `pendulum.DateTime` fields.
The methods use a '/'-separated path to denote the nested values. This model serializes pendulum.DateTime objects to ISO 8601 strings and
Supports handling `Optional`, `List`, and `Dict` types, ensuring correct initialization of deserializes ISO 8601 strings to pendulum.DateTime objects.
missing attributes.
Example:
class Address(PydanticBaseModel):
city: str
class User(PydanticBaseModel):
name: str
address: Address
def on_city_change(old, new, path):
print(f"{path}: {old} -> {new}")
user = User(name="Alice", address=Address(city="NY"))
user.track_nested_value("address/city", on_city_change)
user.set_nested_value("address/city", "LA") # triggers callback
"""
def track_nested_value(self, path: str, callback: Callable[[Any, str, Any, Any], None]) -> None:
"""Register a callback for a specific path (or subtree).
Callback triggers if set path is equal or deeper.
Args:
path (str): '/'-separated path to track.
callback (callable): Function called as callback(model_instance, set_path, old_value, new_value).
"""
try:
self._validate_path_structure(path)
pass
except:
raise ValueError(f"Path '{path}' is invalid")
path = path.strip("/")
# Use private data workaround
# Should be:
# _nested_value_callbacks: dict[str, list[Callable[[str, Any, Any], None]]]
# = PrivateAttr(default_factory=dict)
nested_value_callbacks = get_private_attr(self, "nested_value_callbacks", dict())
if path not in nested_value_callbacks:
nested_value_callbacks[path] = []
nested_value_callbacks[path].append(callback)
set_private_attr(self, "nested_value_callbacks", nested_value_callbacks)
logger.debug("Nested value callbacks {}", nested_value_callbacks)
def _validate_path_structure(self, path: str) -> None:
"""Validate that a '/'-separated path is structurally valid for this model.
Checks that each segment of the path corresponds to a field or index in the model's type structure,
without requiring that all intermediate values are currently initialized. This method is intended
to ensure that the path could be valid for nested access or assignment, according to the model's
class definition.
Args:
path (str): The '/'-separated attribute/index path to validate (e.g., "address/city" or "items/0/value").
Raises:
ValueError: If any segment of the path does not correspond to a valid field in the model,
or an invalid transition is made (such as an attribute on a non-model).
Example:
class Address(PydanticBaseModel):
city: str
class User(PydanticBaseModel):
name: str
address: Address
user = User(name="Alice", address=Address(city="NY"))
user._validate_path_structure("address/city") # OK
user._validate_path_structure("address/zipcode") # Raises ValueError
"""
path_elements = path.strip("/").split("/")
# The model we are currently working on
model: Any = self
# The model we get the type information from. It is a pydantic BaseModel
parent: BaseModel = model
# The field that provides type information for the current key
# Fields may have nested types that translates to a sequence of keys, not just one
# - my_field: Optional[list[OtherModel]] -> e.g. "myfield/0" for index 0
# parent_key = ["myfield",] ... ["myfield", "0"]
# parent_key_types = [list, OtherModel]
parent_key: list[str] = []
parent_key_types: list = []
for i, key in enumerate(path_elements):
is_final_key = i == len(path_elements) - 1
# Add current key to parent key to enable nested type tracking
parent_key.append(key)
# Get next value
next_value = None
if isinstance(model, BaseModel):
# Track parent and key for possible assignment later
parent = model
parent_key = [
key,
]
parent_key_types = self._get_key_types(model.__class__, key)
# If this is the final key, set the value
if is_final_key:
return
# Attempt to access the next attribute, handling None values
next_value = getattr(model, key, None)
# Handle missing values (initialize dict/list/model if necessary)
if next_value is None:
next_type = parent_key_types[len(parent_key) - 1]
next_value = self._initialize_value(next_type)
elif isinstance(model, list):
# Handle lists
try:
idx = int(key)
except Exception as e:
raise IndexError(
f"Invalid list index '{key}' at '{path}': key = '{key}'; parent = '{parent}', parent_key = '{parent_key}'; model = '{model}'; {e}"
)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if len(model) > idx:
next_value = model[idx]
else:
return
if is_final_key:
return
elif isinstance(model, dict):
# Handle dictionaries (auto-create missing keys)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if is_final_key:
return
if key not in model:
return
else:
next_value = model[key]
else:
raise KeyError(f"Key '{key}' not found in model.")
# Move deeper
model = next_value
def get_nested_value(self, path: str) -> Any:
"""Retrieve a nested value from the model using a '/'-separated path.
Supports accessing nested attributes and list indices.
Args:
path (str): A '/'-separated path to the nested attribute (e.g., "key1/key2/0").
Returns:
Any: The retrieved value.
Raises:
KeyError: If a key is not found in the model.
IndexError: If a list index is out of bounds or invalid.
Example:
```python
class Address(PydanticBaseModel):
city: str
class User(PydanticBaseModel):
name: str
address: Address
user = User(name="Alice", address=Address(city="New York"))
city = user.get_nested_value("address/city")
print(city) # Output: "New York"
```
"""
path_elements = path.strip("/").split("/")
model: Any = self
for key in path_elements:
if isinstance(model, list):
try:
model = model[int(key)]
except (ValueError, IndexError) as e:
raise IndexError(f"Invalid list index at '{path}': {key}; {e}")
elif isinstance(model, dict):
try:
model = model[key]
except Exception as e:
raise KeyError(f"Invalid dict key at '{path}': {key}; {e}")
elif isinstance(model, BaseModel):
model = getattr(model, key)
else:
raise KeyError(f"Key '{key}' not found in model.")
return model
def set_nested_value(self, path: str, value: Any) -> None:
"""Set a nested value in the model using a '/'-separated path.
Supports modifying nested attributes and list indices while preserving Pydantic validation.
Automatically initializes missing `Optional`, `Union`, `dict`, and `list` fields if necessary.
If a missing field cannot be initialized, raises an exception.
Triggers the callbacks registered by track_nested_value().
Args:
path (str): A '/'-separated path to the nested attribute (e.g., "key1/key2/0").
value (Any): The new value to set.
Raises:
KeyError: If a key is not found in the model.
IndexError: If a list index is out of bounds or invalid.
ValueError: If a validation error occurs.
TypeError: If a missing field cannot be initialized.
Example:
```python
class Address(PydanticBaseModel):
city: Optional[str]
class User(PydanticBaseModel):
name: str
address: Optional[Address]
settings: Optional[Dict[str, Any]]
user = User(name="Alice", address=None, settings=None)
user.set_nested_value("address/city", "Los Angeles")
user.set_nested_value("settings/theme", "dark")
print(user.address.city) # Output: "Los Angeles"
print(user.settings) # Output: {'theme': 'dark'}
```
"""
path = path.strip("/")
# Store old value (if possible)
try:
old_value = self.get_nested_value(path)
except Exception as e:
# We can not get the old value
# raise ValueError(f"Can not get old (current) value of '{path}': {e}") from e
old_value = None
# Proceed with core logic
self._set_nested_value(path, value)
# Trigger all callbacks whose path is a prefix of set path
triggered = set()
nested_value_callbacks = get_private_attr(self, "nested_value_callbacks", dict())
for cb_path, callbacks in nested_value_callbacks.items():
# Match: cb_path == path, or cb_path is a prefix (parent) of path
pass
if path == cb_path or path.startswith(cb_path + "/"):
for cb in callbacks:
# Prevent duplicate calls
if (cb_path, id(cb)) not in triggered:
cb(self, path, old_value, value)
triggered.add((cb_path, id(cb)))
def _set_nested_value(self, path: str, value: Any) -> None:
"""Set a nested value core logic.
Args:
path (str): A '/'-separated path to the nested attribute (e.g., "key1/key2/0").
value (Any): The new value to set.
Raises:
KeyError: If a key is not found in the model.
IndexError: If a list index is out of bounds or invalid.
ValueError: If a validation error occurs.
TypeError: If a missing field cannot be initialized.
"""
path_elements = path.strip("/").split("/")
# The model we are currently working on
model: Any = self
# The model we get the type information from. It is a pydantic BaseModel
parent: BaseModel = model
# The field that provides type information for the current key
# Fields may have nested types that translates to a sequence of keys, not just one
# - my_field: Optional[list[OtherModel]] -> e.g. "myfield/0" for index 0
# parent_key = ["myfield",] ... ["myfield", "0"]
# parent_key_types = [list, OtherModel]
parent_key: list[str] = []
parent_key_types: list = []
for i, key in enumerate(path_elements):
is_final_key = i == len(path_elements) - 1
# Add current key to parent key to enable nested type tracking
parent_key.append(key)
# Get next value
next_value = None
if isinstance(model, BaseModel):
# Track parent and key for possible assignment later
parent = model
parent_key = [
key,
]
parent_key_types = self._get_key_types(model.__class__, key)
# If this is the final key, set the value
if is_final_key:
try:
model.__pydantic_validator__.validate_assignment(model, key, value)
except ValidationError as e:
raise ValueError(f"Error updating model: {e}") from e
return
# Attempt to access the next attribute, handling None values
next_value = getattr(model, key, None)
# Handle missing values (initialize dict/list/model if necessary)
if next_value is None:
next_type = parent_key_types[len(parent_key) - 1]
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
setattr(parent, key, next_value)
# pydantic may copy on validation assignment - reread to get the copied model
next_value = getattr(model, key, None)
elif isinstance(model, list):
# Handle lists (ensure index exists and modify safely)
try:
idx = int(key)
except Exception as e:
raise IndexError(
f"Invalid list index '{key}' at '{path}': key = '{key}'; parent = '{parent}', parent_key = '{parent_key}'; model = '{model}'; {e}"
)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if len(model) > idx:
next_value = model[idx]
else:
# Extend the list with default values if index is out of range
while len(model) <= idx:
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
model.append(next_value)
if is_final_key:
if (
(isinstance(next_type, type) and not isinstance(value, next_type))
or (next_type is dict and not isinstance(value, dict))
or (next_type is list and not isinstance(value, list))
):
raise TypeError(
f"Expected type {next_type} for key '{key}' in path '{path}', but got {type(value)}: {value}"
)
model[idx] = value
return
elif isinstance(model, dict):
# Handle dictionaries (auto-create missing keys)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if is_final_key:
if (
(isinstance(next_type, type) and not isinstance(value, next_type))
or (next_type is dict and not isinstance(value, dict))
or (next_type is list and not isinstance(value, list))
):
raise TypeError(
f"Expected type {next_type} for key '{key}' in path '{path}', but got {type(value)}: {value}"
)
model[key] = value
return
if key not in model:
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
model[key] = next_value
else:
next_value = model[key]
else:
raise KeyError(f"Key '{key}' not found in model.")
# Move deeper
model = next_value
@staticmethod
def _get_key_types(model: Type[BaseModel], key: str) -> List[Union[Type[Any], list, dict]]:
"""Returns a list of nested types for a given Pydantic model key.
- Skips `Optional` and `Union`, using only the first non-None type.
- Skips dictionary keys and only adds value types.
- Keeps `list` and `dict` as origins.
Args:
model (Type[BaseModel]): The Pydantic model class to inspect.
key (str): The attribute name in the model.
Returns:
List[Union[Type[Any], list, dict]]: A list of extracted types, preserving `list` and `dict` origins.
Raises:
TypeError: If the key does not exist or lacks a valid type annotation.
"""
if not inspect.isclass(model):
raise TypeError(f"Model '{model}' is not of class type.")
if key not in model.model_fields:
raise TypeError(f"Field '{key}' does not exist in model '{model.__name__}'.")
field_annotation = model.model_fields[key].annotation
if not field_annotation:
raise TypeError(
f"Missing type annotation for field '{key}' in model '{model.__name__}'."
)
nested_types: list[Union[Type[Any], list, dict]] = []
queue: list[Any] = [field_annotation]
while queue:
annotation = queue.pop(0)
origin = get_origin(annotation)
args = get_args(annotation)
# Handle Union (Optional[X] is treated as Union[X, None])
if origin is Union:
queue.extend(arg for arg in args if arg is not type(None))
continue
# Handle lists and dictionaries
if origin is list:
nested_types.append(list)
if args:
queue.append(args[0]) # Extract value type for list[T]
continue
if origin is dict:
nested_types.append(dict)
if len(args) == 2:
queue.append(args[1]) # Extract only the value type for dict[K, V]
continue
# If it's a BaseModel, add it to the list
if isinstance(annotation, type) and issubclass(annotation, BaseModel):
nested_types.append(annotation)
continue
# Otherwise, it's a standard type (e.g., str, int, bool, float, etc.)
nested_types.append(annotation)
return nested_types
@staticmethod
def _initialize_value(type_hint: Type[Any] | None | list[Any] | dict[Any, Any]) -> Any:
"""Initialize a missing value based on the provided type hint.
Args:
type_hint (Type[Any] | None | list[Any] | dict[Any, Any]): The type hint that determines
how the missing value should be initialized.
Returns:
Any: An instance of the expected type (e.g., list, dict, or Pydantic model), or `None`
if initialization is not possible.
Raises:
TypeError: If instantiation fails.
Example:
- For `list[str]`, returns `[]`
- For `dict[str, Any]`, returns `{}`
- For `Address` (a Pydantic model), returns a new `Address()` instance.
"""
if type_hint is None:
return None
# Handle direct instances of list or dict
if isinstance(type_hint, list):
return []
if isinstance(type_hint, dict):
return {}
origin = get_origin(type_hint)
# Handle generic list and dictionary
if origin is list:
return []
if origin is dict:
return {}
# Handle Pydantic models
if isinstance(type_hint, type) and issubclass(type_hint, BaseModel):
try:
return type_hint.model_construct()
except Exception as e:
raise TypeError(f"Failed to initialize model '{type_hint.__name__}': {e}")
# Handle standard built-in types (int, float, str, bool, etc.)
if isinstance(type_hint, type):
try:
return type_hint()
except Exception as e:
raise TypeError(f"Failed to initialize instance of '{type_hint.__name__}': {e}")
raise TypeError(f"Unsupported type hint '{type_hint}' for initialization.")
class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
"""Base model with pendulum datetime support, nested value utilities, and stable hashing.
This class provides:
- ISO 8601 serialization/deserialization of `pendulum.DateTime` fields.
- Nested attribute access and mutation via `PydanticModelNestedValueMixin`.
- A consistent hash using a UUID for use in sets and as dictionary keys
""" """
# Enable custom serialization globally in config # Enable custom serialization globally in config
@@ -642,17 +80,6 @@ class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
validate_assignment=True, validate_assignment=True,
) )
_uuid: str = PrivateAttr(default_factory=lambda: str(uuid.uuid4()))
"""str: A private UUID string generated on instantiation, used for hashing."""
def __hash__(self) -> int:
"""Returns a stable hash based on the instance's UUID.
Returns:
int: Hash value derived from the model's UUID.
"""
return hash(self._uuid)
@field_validator("*", mode="before") @field_validator("*", mode="before")
def validate_and_convert_pendulum(cls, value: Any, info: ValidationInfo) -> Any: def validate_and_convert_pendulum(cls, value: Any, info: ValidationInfo) -> Any:
"""Validator to convert fields of type `pendulum.DateTime`. """Validator to convert fields of type `pendulum.DateTime`.
@@ -681,21 +108,14 @@ class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
if expected_type is pendulum.DateTime or expected_type is AwareDatetime: if expected_type is pendulum.DateTime or expected_type is AwareDatetime:
try: try:
value = to_datetime(value) value = to_datetime(value)
except Exception as e: except:
raise ValueError(f"Cannot convert {value!r} to datetime: {e}") pass
return value return value
# Override Pydantics serialization for all DateTime fields # Override Pydantics serialization for all DateTime fields
def model_dump( def model_dump(self, *args: Any, **kwargs: Any) -> dict:
self, *args: Any, include_computed_fields: bool = True, **kwargs: Any
) -> dict[str, Any]:
"""Custom dump method to handle serialization for DateTime fields.""" """Custom dump method to handle serialization for DateTime fields."""
result = super().model_dump(*args, **kwargs) result = super().model_dump(*args, **kwargs)
if not include_computed_fields:
for computed_field_name in self.model_computed_fields:
result.pop(computed_field_name, None)
for key, value in result.items(): for key, value in result.items():
if isinstance(value, pendulum.DateTime): if isinstance(value, pendulum.DateTime):
result[key] = PydanticTypeAdapterDateTime.serialize(value) result[key] = PydanticTypeAdapterDateTime.serialize(value)
@@ -750,10 +170,6 @@ class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
""" """
return cls.model_validate(data) return cls.model_validate(data)
def model_dump_json(self, *args: Any, indent: Optional[int] = None, **kwargs: Any) -> str:
data = self.model_dump(*args, **kwargs)
return json.dumps(data, indent=indent, default=str)
def to_json(self) -> str: def to_json(self) -> str:
"""Convert the PydanticBaseModel instance to a JSON string. """Convert the PydanticBaseModel instance to a JSON string.
@@ -930,10 +346,6 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index]) index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index])
df.index = index df.index = index
# Check if 'date_time' column exists, if not, create it
if "date_time" not in df.columns:
df["date_time"] = df.index
dtype_mapping = { dtype_mapping = {
"int": int, "int": int,
"float": float, "float": float,
@@ -1070,27 +482,3 @@ class PydanticDateTimeSeries(PydanticBaseModel):
class ParametersBaseModel(PydanticBaseModel): class ParametersBaseModel(PydanticBaseModel):
model_config = ConfigDict(extra="forbid") model_config = ConfigDict(extra="forbid")
def set_private_attr(
model: Union[PydanticBaseModel, PydanticModelNestedValueMixin], key: str, value: Any
) -> None:
"""Set a private attribute for a model instance (not stored in model itself)."""
if model not in _model_private_state:
_model_private_state[model] = {}
_model_private_state[model][key] = value
def get_private_attr(
model: Union[PydanticBaseModel, PydanticModelNestedValueMixin], key: str, default: Any = None
) -> Any:
"""Get a private attribute or return default."""
return _model_private_state.get(model, {}).get(key, default)
def del_private_attr(
model: Union[PydanticBaseModel, PydanticModelNestedValueMixin], key: str
) -> None:
"""Delete a private attribute."""
if model in _model_private_state and key in _model_private_state[model]:
del _model_private_state[model][key]

View File

@@ -1,2 +1,113 @@
{ {
"config_file_path": null,
"config_folder_path": null,
"data_cache_path": null,
"data_cache_subpath": null,
"data_folder_path": null,
"data_output_path": null,
"data_output_subpath": null,
"elecprice_charges_kwh": 0.21,
"elecprice_provider": null,
"elecpriceimport_file_path": null,
"latitude": 52.5,
"load_import_file_path": null,
"load_name": null,
"load_provider": null,
"loadakkudoktor_year_energy": null,
"logging_level": "INFO",
"longitude": 13.4,
"optimization_ev_available_charge_rates_percent": null,
"optimization_hours": 48,
"optimization_penalty": null,
"prediction_historic_hours": 48,
"prediction_hours": 48,
"pvforecast0_albedo": null,
"pvforecast0_inverter_model": null,
"pvforecast0_inverter_paco": null,
"pvforecast0_loss": null,
"pvforecast0_module_model": null,
"pvforecast0_modules_per_string": null,
"pvforecast0_mountingplace": "free",
"pvforecast0_optimal_surface_tilt": false,
"pvforecast0_optimalangles": false,
"pvforecast0_peakpower": null,
"pvforecast0_pvtechchoice": "crystSi",
"pvforecast0_strings_per_inverter": null,
"pvforecast0_surface_azimuth": 180,
"pvforecast0_surface_tilt": 0,
"pvforecast0_trackingtype": 0,
"pvforecast0_userhorizon": null,
"pvforecast1_albedo": null,
"pvforecast1_inverter_model": null,
"pvforecast1_inverter_paco": null,
"pvforecast1_loss": 0,
"pvforecast1_module_model": null,
"pvforecast1_modules_per_string": null,
"pvforecast1_mountingplace": "free",
"pvforecast1_optimal_surface_tilt": false,
"pvforecast1_optimalangles": false,
"pvforecast1_peakpower": null,
"pvforecast1_pvtechchoice": "crystSi",
"pvforecast1_strings_per_inverter": null,
"pvforecast1_surface_azimuth": 180,
"pvforecast1_surface_tilt": 0,
"pvforecast1_trackingtype": 0,
"pvforecast1_userhorizon": null,
"pvforecast2_albedo": null,
"pvforecast2_inverter_model": null,
"pvforecast2_inverter_paco": null,
"pvforecast2_loss": 0,
"pvforecast2_module_model": null,
"pvforecast2_modules_per_string": null,
"pvforecast2_mountingplace": "free",
"pvforecast2_optimal_surface_tilt": false,
"pvforecast2_optimalangles": false,
"pvforecast2_peakpower": null,
"pvforecast2_pvtechchoice": "crystSi",
"pvforecast2_strings_per_inverter": null,
"pvforecast2_surface_azimuth": 180,
"pvforecast2_surface_tilt": 0,
"pvforecast2_trackingtype": 0,
"pvforecast2_userhorizon": null,
"pvforecast3_albedo": null,
"pvforecast3_inverter_model": null,
"pvforecast3_inverter_paco": null,
"pvforecast3_loss": 0,
"pvforecast3_module_model": null,
"pvforecast3_modules_per_string": null,
"pvforecast3_mountingplace": "free",
"pvforecast3_optimal_surface_tilt": false,
"pvforecast3_optimalangles": false,
"pvforecast3_peakpower": null,
"pvforecast3_pvtechchoice": "crystSi",
"pvforecast3_strings_per_inverter": null,
"pvforecast3_surface_azimuth": 180,
"pvforecast3_surface_tilt": 0,
"pvforecast3_trackingtype": 0,
"pvforecast3_userhorizon": null,
"pvforecast4_albedo": null,
"pvforecast4_inverter_model": null,
"pvforecast4_inverter_paco": null,
"pvforecast4_loss": 0,
"pvforecast4_module_model": null,
"pvforecast4_modules_per_string": null,
"pvforecast4_mountingplace": "free",
"pvforecast4_optimal_surface_tilt": false,
"pvforecast4_optimalangles": false,
"pvforecast4_peakpower": null,
"pvforecast4_pvtechchoice": "crystSi",
"pvforecast4_strings_per_inverter": null,
"pvforecast4_surface_azimuth": 180,
"pvforecast4_surface_tilt": 0,
"pvforecast4_trackingtype": 0,
"pvforecast4_userhorizon": null,
"pvforecast_provider": null,
"pvforecastimport_file_path": null,
"server_eos_startup_eosdash": true,
"server_eos_host": "0.0.0.0",
"server_eos_port": 8503,
"server_eosdash_host": "0.0.0.0",
"server_eosdash_port": 8504,
"weather_provider": null,
"weatherimport_file_path": null
} }

View File

@@ -1,15 +1,15 @@
from typing import Any, Optional from typing import Any, Optional
import numpy as np import numpy as np
from pydantic import Field, field_validator from pydantic import BaseModel, Field, field_validator
from akkudoktoreos.devices.devicesabc import ( from akkudoktoreos.core.logging import get_logger
DeviceBase, from akkudoktoreos.core.pydantic import ParametersBaseModel
DeviceOptimizeResult, from akkudoktoreos.devices.devicesabc import DeviceBase
DeviceParameters,
)
from akkudoktoreos.utils.utils import NumpyEncoder from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
def max_charging_power_field(description: Optional[str] = None) -> float: def max_charging_power_field(description: Optional[str] = None) -> float:
if description is None: if description is None:
@@ -22,26 +22,14 @@ def max_charging_power_field(description: Optional[str] = None) -> float:
def initial_soc_percentage_field(description: str) -> int: def initial_soc_percentage_field(description: str) -> int:
return Field(default=0, ge=0, le=100, description=description, examples=[42]) return Field(default=0, ge=0, le=100, description=description)
def discharging_efficiency_field(default_value: float) -> float: class BaseBatteryParameters(ParametersBaseModel):
return Field( """Base class for battery parameters with fields for capacity, efficiency, and state of charge."""
default=default_value,
gt=0,
le=1,
description="A float representing the discharge efficiency of the battery.",
)
class BaseBatteryParameters(DeviceParameters):
"""Battery Device Simulation Configuration."""
device_id: str = Field(description="ID of battery", examples=["battery1"])
capacity_wh: int = Field( capacity_wh: int = Field(
gt=0, gt=0, description="An integer representing the capacity of the battery in watt-hours."
description="An integer representing the capacity of the battery in watt-hours.",
examples=[8000],
) )
charging_efficiency: float = Field( charging_efficiency: float = Field(
default=0.88, default=0.88,
@@ -49,7 +37,12 @@ class BaseBatteryParameters(DeviceParameters):
le=1, le=1,
description="A float representing the charging efficiency of the battery.", description="A float representing the charging efficiency of the battery.",
) )
discharging_efficiency: float = discharging_efficiency_field(0.88) discharging_efficiency: float = Field(
default=0.88,
gt=0,
le=1,
description="A float representing the discharge efficiency of the battery.",
)
max_charge_power_w: Optional[float] = max_charging_power_field() max_charge_power_w: Optional[float] = max_charging_power_field()
initial_soc_percentage: int = initial_soc_percentage_field( initial_soc_percentage: int = initial_soc_percentage_field(
"An integer representing the state of charge of the battery at the **start** of the current hour (not the current state)." "An integer representing the state of charge of the battery at the **start** of the current hour (not the current state)."
@@ -59,7 +52,6 @@ class BaseBatteryParameters(DeviceParameters):
ge=0, ge=0,
le=100, le=100,
description="An integer representing the minimum state of charge (SOC) of the battery in percentage.", description="An integer representing the minimum state of charge (SOC) of the battery in percentage.",
examples=[10],
) )
max_soc_percentage: int = Field( max_soc_percentage: int = Field(
default=100, default=100,
@@ -74,19 +66,17 @@ class SolarPanelBatteryParameters(BaseBatteryParameters):
class ElectricVehicleParameters(BaseBatteryParameters): class ElectricVehicleParameters(BaseBatteryParameters):
"""Battery Electric Vehicle Device Simulation Configuration.""" """Parameters specific to an electric vehicle (EV)."""
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"]) discharging_efficiency: float = 1.0
discharging_efficiency: float = discharging_efficiency_field(1.0)
initial_soc_percentage: int = initial_soc_percentage_field( initial_soc_percentage: int = initial_soc_percentage_field(
"An integer representing the current state of charge (SOC) of the battery in percentage." "An integer representing the current state of charge (SOC) of the battery in percentage."
) )
class ElectricVehicleResult(DeviceOptimizeResult): class ElectricVehicleResult(BaseModel):
"""Result class containing information related to the electric vehicle's charging and discharging behavior.""" """Result class containing information related to the electric vehicle's charging and discharging behavior."""
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
charge_array: list[float] = Field( charge_array: list[float] = Field(
description="Hourly charging status (0 for no charging, 1 for charging)." description="Hourly charging status (0 for no charging, 1 for charging)."
) )
@@ -94,6 +84,7 @@ class ElectricVehicleResult(DeviceOptimizeResult):
description="Hourly discharging status (0 for no discharging, 1 for discharging)." description="Hourly discharging status (0 for no discharging, 1 for discharging)."
) )
discharging_efficiency: float = Field(description="The discharge efficiency as a float..") discharging_efficiency: float = Field(description="The discharge efficiency as a float..")
hours: int = Field(description="Number of hours in the simulation.")
capacity_wh: int = Field(description="Capacity of the EVs battery in watt-hours.") capacity_wh: int = Field(description="Capacity of the EVs battery in watt-hours.")
charging_efficiency: float = Field(description="Charging efficiency as a float..") charging_efficiency: float = Field(description="Charging efficiency as a float..")
max_charge_power_w: int = Field(description="Maximum charging power in watts.") max_charge_power_w: int = Field(description="Maximum charging power in watts.")
@@ -112,19 +103,67 @@ class ElectricVehicleResult(DeviceOptimizeResult):
class Battery(DeviceBase): class Battery(DeviceBase):
"""Represents a battery device with methods to simulate energy charging and discharging.""" """Represents a battery device with methods to simulate energy charging and discharging."""
def __init__(self, parameters: Optional[BaseBatteryParameters] = None): def __init__(
self.parameters: Optional[BaseBatteryParameters] = None self,
super().__init__(parameters) parameters: Optional[BaseBatteryParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
# Initialize configuration and parameters
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericBattery":
self.prefix = "battery"
elif self.provider_id == "GenericBEV":
self.prefix = "bev"
def _setup(self) -> None: self.parameters = parameters
if hours is None:
self.hours = self.total_hours # TODO where does that come from?
else:
self.hours = hours
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
"""Sets up the battery parameters based on configuration or provided parameters.""" """Sets up the battery parameters based on configuration or provided parameters."""
if self.parameters is None: if self.initialised:
raise ValueError(f"Parameters not set: {self.parameters}") return
if self.provider_id:
# Setup from configuration
self.capacity_wh = getattr(self.config, f"{self.prefix}_capacity")
self.initial_soc_percentage = getattr(self.config, f"{self.prefix}_initial_soc")
self.hours = self.total_hours # TODO where does that come from?
self.charging_efficiency = getattr(self.config, f"{self.prefix}_charging_efficiency")
self.discharging_efficiency = getattr(
self.config, f"{self.prefix}_discharging_efficiency"
)
self.max_charge_power_w = getattr(self.config, f"{self.prefix}_max_charging_power")
if self.provider_id == "GenericBattery":
self.min_soc_percentage = getattr(
self.config,
f"{self.prefix}_soc_min",
)
else:
self.min_soc_percentage = 0
self.max_soc_percentage = getattr(
self.config,
f"{self.prefix}_soc_max",
)
elif self.parameters:
# Setup from parameters
self.capacity_wh = self.parameters.capacity_wh self.capacity_wh = self.parameters.capacity_wh
self.initial_soc_percentage = self.parameters.initial_soc_percentage self.initial_soc_percentage = self.parameters.initial_soc_percentage
self.charging_efficiency = self.parameters.charging_efficiency self.charging_efficiency = self.parameters.charging_efficiency
self.discharging_efficiency = self.parameters.discharging_efficiency self.discharging_efficiency = self.parameters.discharging_efficiency
self.max_charge_power_w = self.parameters.max_charge_power_w
# Only assign for storage battery # Only assign for storage battery
self.min_soc_percentage = ( self.min_soc_percentage = (
self.parameters.min_soc_percentage self.parameters.min_soc_percentage
@@ -132,11 +171,13 @@ class Battery(DeviceBase):
else 0 else 0
) )
self.max_soc_percentage = self.parameters.max_soc_percentage self.max_soc_percentage = self.parameters.max_soc_percentage
else:
error_msg = "Parameters and provider ID are missing. Cannot instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
# Initialize state of charge # Initialize state of charge
if self.parameters.max_charge_power_w is not None: if self.max_charge_power_w is None:
self.max_charge_power_w = self.parameters.max_charge_power_w
else:
self.max_charge_power_w = self.capacity_wh # TODO this should not be equal capacity_wh self.max_charge_power_w = self.capacity_wh # TODO this should not be equal capacity_wh
self.discharge_array = np.full(self.hours, 1) self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1) self.charge_array = np.full(self.hours, 1)
@@ -144,10 +185,11 @@ class Battery(DeviceBase):
self.min_soc_wh = (self.min_soc_percentage / 100) * self.capacity_wh self.min_soc_wh = (self.min_soc_percentage / 100) * self.capacity_wh
self.max_soc_wh = (self.max_soc_percentage / 100) * self.capacity_wh self.max_soc_wh = (self.max_soc_percentage / 100) * self.capacity_wh
self.initialised = True
def to_dict(self) -> dict[str, Any]: def to_dict(self) -> dict[str, Any]:
"""Converts the object to a dictionary representation.""" """Converts the object to a dictionary representation."""
return { return {
"device_id": self.device_id,
"capacity_wh": self.capacity_wh, "capacity_wh": self.capacity_wh,
"initial_soc_percentage": self.initial_soc_percentage, "initial_soc_percentage": self.initial_soc_percentage,
"soc_wh": self.soc_wh, "soc_wh": self.soc_wh,

View File

@@ -1,49 +1,313 @@
from typing import Optional from typing import Any, ClassVar, Dict, Optional, Union
import numpy as np
from numpydantic import NDArray, Shape
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.battery import Battery from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.devicesabc import DevicesBase from akkudoktoreos.devices.devicesabc import DevicesBase
from akkudoktoreos.devices.generic import HomeAppliance from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Inverter from akkudoktoreos.devices.inverter import Inverter
from akkudoktoreos.devices.settings import DevicesCommonSettings from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class DevicesCommonSettings(SettingsBaseModel):
"""Base configuration for devices simulation settings."""
# Battery
# -------
battery_provider: Optional[str] = Field(
default=None, description="Id of Battery simulation provider."
)
battery_capacity: Optional[int] = Field(default=None, description="Battery capacity [Wh].")
battery_initial_soc: Optional[int] = Field(
default=None, description="Battery initial state of charge [%]."
)
battery_soc_min: Optional[int] = Field(
default=None, description="Battery minimum state of charge [%]."
)
battery_soc_max: Optional[int] = Field(
default=None, description="Battery maximum state of charge [%]."
)
battery_charging_efficiency: Optional[float] = Field(
default=None, description="Battery charging efficiency [%]."
)
battery_discharging_efficiency: Optional[float] = Field(
default=None, description="Battery discharging efficiency [%]."
)
battery_max_charging_power: Optional[int] = Field(
default=None, description="Battery maximum charge power [W]."
)
# Battery Electric Vehicle
# ------------------------
bev_provider: Optional[str] = Field(
default=None, description="Id of Battery Electric Vehicle simulation provider."
)
bev_capacity: Optional[int] = Field(
default=None, description="Battery Electric Vehicle capacity [Wh]."
)
bev_initial_soc: Optional[int] = Field(
default=None, description="Battery Electric Vehicle initial state of charge [%]."
)
bev_soc_max: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum state of charge [%]."
)
bev_charging_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle charging efficiency [%]."
)
bev_discharging_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle discharging efficiency [%]."
)
bev_max_charging_power: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum charge power [W]."
)
# Home Appliance - Dish Washer
# ----------------------------
dishwasher_provider: Optional[str] = Field(
default=None, description="Id of Dish Washer simulation provider."
)
dishwasher_consumption: Optional[int] = Field(
default=None, description="Dish Washer energy consumption [Wh]."
)
dishwasher_duration: Optional[int] = Field(
default=None, description="Dish Washer usage duration [h]."
)
# PV Inverter
# -----------
inverter_provider: Optional[str] = Field(
default=None, description="Id of PV Inverter simulation provider."
)
inverter_power_max: Optional[float] = Field(
default=None, description="Inverter maximum power [W]."
)
class Devices(SingletonMixin, DevicesBase): class Devices(SingletonMixin, DevicesBase):
def __init__(self, settings: Optional[DevicesCommonSettings] = None): # Results of the devices simulation and
if hasattr(self, "_initialized"): # insights into various parameters over the entire forecast period.
return # -----------------------------------------------------------------
super().__init__() last_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
if settings is None: default=None, description="The load in watt-hours per hour."
settings = self.config.devices )
if settings is None: eauto_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
return default=None, description="The state of charge of the EV for each hour."
)
einnahmen_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The revenue from grid feed-in or other sources in euros per hour.",
)
home_appliance_wh_per_hour: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The energy consumption of a household appliance in watt-hours per hour.",
)
kosten_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The costs in euros per hour."
)
grid_import_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The grid energy drawn in watt-hours per hour."
)
grid_export_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The energy fed into the grid in watt-hours per hour."
)
verluste_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The losses in watt-hours per hour."
)
akku_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The state of charge of the battery (not the EV) in percentage per hour.",
)
# initialize devices # Computed fields
if settings.batteries is not None: @computed_field # type: ignore[prop-decorator]
for battery_params in settings.batteries: @property
self.add_device(Battery(battery_params)) def total_balance_euro(self) -> float:
if settings.inverters is not None: """The total balance of revenues minus costs in euros."""
for inverter_params in settings.inverters: return self.total_revenues_euro - self.total_costs_euro
self.add_device(Inverter(inverter_params))
if settings.home_appliances is not None:
for home_appliance_params in settings.home_appliances:
self.add_device(HomeAppliance(home_appliance_params))
self.post_setup() @computed_field # type: ignore[prop-decorator]
@property
def total_revenues_euro(self) -> float:
"""The total revenues in euros."""
if self.einnahmen_euro_pro_stunde is None:
return 0
return np.nansum(self.einnahmen_euro_pro_stunde)
def post_setup(self) -> None: @computed_field # type: ignore[prop-decorator]
for device in self.devices.values(): @property
device.post_setup() def total_costs_euro(self) -> float:
"""The total costs in euros."""
if self.kosten_euro_pro_stunde is None:
return 0
return np.nansum(self.kosten_euro_pro_stunde)
@computed_field # type: ignore[prop-decorator]
@property
def total_losses_wh(self) -> float:
"""The total losses in watt-hours over the entire period."""
if self.verluste_wh_pro_stunde is None:
return 0
return np.nansum(self.verluste_wh_pro_stunde)
# Devices
# TODO: Make devices class a container of device simulation providers.
# Device simulations to be used are then enabled in the configuration.
battery: ClassVar[Battery] = Battery(provider_id="GenericBattery")
ev: ClassVar[Battery] = Battery(provider_id="GenericBEV")
home_appliance: ClassVar[HomeAppliance] = HomeAppliance(provider_id="GenericDishWasher")
inverter: ClassVar[Inverter] = Inverter(
self_consumption_predictor=SelfConsumptionProbabilityInterpolator,
battery=battery,
provider_id="GenericInverter",
)
def update_data(self) -> None:
"""Update device simulation data."""
# Assure devices are set up
self.battery.setup()
self.ev.setup()
self.home_appliance.setup()
self.inverter.setup()
# Pre-allocate arrays for the results, optimized for speed
self.last_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.grid_export_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.grid_import_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.kosten_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.einnahmen_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.akku_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.eauto_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.verluste_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.home_appliance_wh_per_hour = np.full((self.total_hours), np.nan)
# Set initial state
simulation_step = to_duration("1 hour")
if self.battery:
self.akku_soc_pro_stunde[0] = self.battery.current_soc_percentage()
if self.ev:
self.eauto_soc_pro_stunde[0] = self.ev.current_soc_percentage()
# Get predictions for full device simulation time range
# gesamtlast[stunde]
load_total_mean = self.prediction.key_to_array(
"load_total_mean",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# pv_prognose_wh[stunde]
pvforecast_ac_power = self.prediction.key_to_array(
"pvforecast_ac_power",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# strompreis_euro_pro_wh[stunde]
elecprice_marketprice_wh = self.prediction.key_to_array(
"elecprice_marketprice_wh",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# einspeiseverguetung_euro_pro_wh_arr[stunde]
# TODO: Create prediction for einspeiseverguetung_euro_pro_wh_arr
einspeiseverguetung_euro_pro_wh_arr = np.full((self.total_hours), 0.078)
for stunde_since_now in range(0, self.total_hours):
hour = self.start_datetime.hour + stunde_since_now
# Accumulate loads and PV generation
consumption = load_total_mean[stunde_since_now]
self.verluste_wh_pro_stunde[stunde_since_now] = 0.0
# Home appliances
if self.home_appliance:
ha_load = self.home_appliance.get_load_for_hour(hour)
consumption += ha_load
self.home_appliance_wh_per_hour[stunde_since_now] = ha_load
# E-Auto handling
if self.ev:
if self.ev_charge_hours[hour] > 0:
geladene_menge_eauto, verluste_eauto = self.ev.charge_energy(
None, hour, relative_power=self.ev_charge_hours[hour]
)
consumption += geladene_menge_eauto
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
self.eauto_soc_pro_stunde[stunde_since_now] = self.ev.current_soc_percentage()
# Process inverter logic
grid_export, grid_import, losses, self_consumption = (0.0, 0.0, 0.0, 0.0)
if self.battery:
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
if self.inverter:
generation = pvforecast_ac_power[hour]
grid_export, grid_import, losses, self_consumption = self.inverter.process_energy(
generation, consumption, hour
)
# AC PV Battery Charge
if self.battery and self.ac_charge_hours[hour] > 0.0:
self.battery.set_charge_allowed_for_hour(1, hour)
geladene_menge, verluste_wh = self.battery.charge_energy(
None, hour, relative_power=self.ac_charge_hours[hour]
)
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.battery.current_soc_percentage())
consumption += geladene_menge
grid_import += geladene_menge
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
self.grid_export_wh_pro_stunde[stunde_since_now] = grid_export
self.grid_import_wh_pro_stunde[stunde_since_now] = grid_import
self.verluste_wh_pro_stunde[stunde_since_now] += losses
self.last_wh_pro_stunde[stunde_since_now] = consumption
# Financial calculations
self.kosten_euro_pro_stunde[stunde_since_now] = (
grid_import * self.strompreis_euro_pro_wh[hour]
)
self.einnahmen_euro_pro_stunde[stunde_since_now] = (
grid_export * self.einspeiseverguetung_euro_pro_wh_arr[hour]
)
# battery SOC tracking
if self.battery:
self.akku_soc_pro_stunde[stunde_since_now] = self.battery.current_soc_percentage()
else:
self.akku_soc_pro_stunde[stunde_since_now] = 0.0
def report_dict(self) -> Dict[str, Any]:
"""Provides devices simulation output as a dictionary."""
out: Dict[str, Optional[Union[np.ndarray, float]]] = {
"Last_Wh_pro_Stunde": self.last_wh_pro_stunde,
"grid_export_Wh_pro_Stunde": self.grid_export_wh_pro_stunde,
"grid_import_Wh_pro_Stunde": self.grid_import_wh_pro_stunde,
"Kosten_Euro_pro_Stunde": self.kosten_euro_pro_stunde,
"akku_soc_pro_stunde": self.akku_soc_pro_stunde,
"Einnahmen_Euro_pro_Stunde": self.einnahmen_euro_pro_stunde,
"Gesamtbilanz_Euro": self.total_balance_euro,
"EAuto_SoC_pro_Stunde": self.eauto_soc_pro_stunde,
"Gesamteinnahmen_Euro": self.total_revenues_euro,
"Gesamtkosten_Euro": self.total_costs_euro,
"Verluste_Pro_Stunde": self.verluste_wh_pro_stunde,
"Gesamt_Verluste": self.total_losses_wh,
"Home_appliance_wh_per_hour": self.home_appliance_wh_per_hour,
}
return out
# Initialize the Devices simulation, it is a singleton. # Initialize the Devices simulation, it is a singleton.
devices: Optional[Devices] = None devices = Devices()
def get_devices() -> Devices: def get_devices() -> Devices:
global devices
# Fix circular import at runtime
if devices is None:
devices = Devices()
"""Gets the EOS Devices simulation.""" """Gets the EOS Devices simulation."""
return devices return devices

View File

@@ -1,41 +1,20 @@
"""Abstract and base classes for devices.""" """Abstract and base classes for devices."""
from enum import Enum from typing import Optional
from typing import Optional, Type
from loguru import logger
from pendulum import DateTime from pendulum import DateTime
from pydantic import Field, computed_field from pydantic import ConfigDict, computed_field
from akkudoktoreos.core.coreabc import ( from akkudoktoreos.core.coreabc import (
ConfigMixin, ConfigMixin,
DevicesMixin,
EnergyManagementSystemMixin, EnergyManagementSystemMixin,
PredictionMixin, PredictionMixin,
) )
from akkudoktoreos.core.pydantic import ParametersBaseModel from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.datetimeutil import to_duration from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class DeviceParameters(ParametersBaseModel):
device_id: str = Field(description="ID of device", examples="device1")
hours: Optional[int] = Field(
default=None,
gt=0,
description="Number of prediction hours. Defaults to global config prediction hours.",
examples=[None],
)
class DeviceOptimizeResult(ParametersBaseModel):
device_id: str = Field(description="ID of device", examples=["device1"])
hours: int = Field(gt=0, description="Number of hours in the simulation.", examples=[24])
class DeviceState(Enum):
UNINITIALIZED = 0
PREPARED = 1
INITIALIZED = 2
class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin): class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
@@ -49,16 +28,16 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def end_datetime(self) -> Optional[DateTime]: def end_datetime(self) -> Optional[DateTime]:
"""Compute the end datetime based on the `start_datetime` and `hours`. """Compute the end datetime based on the `start_datetime` and `prediction_hours`.
Ajusts the calculated end time if DST transitions occur within the prediction window. Ajusts the calculated end time if DST transitions occur within the prediction window.
Returns: Returns:
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing. Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
""" """
if self.ems.start_datetime and self.config.prediction.hours: if self.ems.start_datetime and self.config.prediction_hours:
end_datetime = self.ems.start_datetime + to_duration( end_datetime = self.ems.start_datetime + to_duration(
f"{self.config.prediction.hours} hours" f"{self.config.prediction_hours} hours"
) )
dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours
logger.debug( logger.debug(
@@ -89,93 +68,33 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
return int(duration.total_hours()) return int(duration.total_hours())
class DeviceBase(DevicesStartEndMixin, PredictionMixin, DevicesMixin): class DeviceBase(DevicesStartEndMixin, PredictionMixin):
"""Base class for device simulations. """Base class for device simulations.
Enables access to EOS configuration data (attribute `config`), EOS prediction data (attribute Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`) and EOS device registry (attribute `devices`). `prediction`).
Behavior: Note:
- Several initialization phases (setup, post_setup): Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
- setup: Initialize class attributes from DeviceParameters (pydantic input validation)
- post_setup: Set connections between devices
- NotImplemented:
- hooks during optimization
Notes:
- This class is base to concrete devices like battery, inverter, etc. that are used in optimization.
- Not a pydantic model for a low footprint during optimization.
""" """
def __init__(self, parameters: Optional[DeviceParameters] = None): # Disable validation on assignment to speed up simulation runs.
self.device_id: str = "<invalid>" model_config = ConfigDict(
self.parameters: Optional[DeviceParameters] = None validate_assignment=False,
self.hours = -1 )
if self.total_hours is not None:
self.hours = self.total_hours
self.initialized = DeviceState.UNINITIALIZED
if parameters is not None:
self.setup(parameters)
def setup(self, parameters: DeviceParameters) -> None:
if self.initialized != DeviceState.UNINITIALIZED:
return
self.parameters = parameters
self.device_id = self.parameters.device_id
if self.parameters.hours is not None:
self.hours = self.parameters.hours
if self.hours < 0:
raise ValueError("hours is unset")
self._setup()
self.initialized = DeviceState.PREPARED
def post_setup(self) -> None:
if self.initialized.value >= DeviceState.INITIALIZED.value:
return
self._post_setup()
self.initialized = DeviceState.INITIALIZED
def _setup(self) -> None:
"""Implement custom setup in derived device classes."""
pass
def _post_setup(self) -> None:
"""Implement custom setup in derived device classes that is run when all devices are initialized."""
pass
class DevicesBase(DevicesStartEndMixin, PredictionMixin): class DevicesBase(DevicesStartEndMixin, PredictionMixin, PydanticBaseModel):
"""Base class for handling device data. """Base class for handling device data.
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`). `prediction`).
Note:
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
""" """
def __init__(self) -> None: # Disable validation on assignment to speed up simulation runs.
super().__init__() model_config = ConfigDict(
self.devices: dict[str, "DeviceBase"] = dict() validate_assignment=False,
)
def get_device_by_id(self, device_id: str) -> Optional["DeviceBase"]:
return self.devices.get(device_id)
def add_device(self, device: Optional["DeviceBase"]) -> None:
if device is None:
return
if device.device_id in self.devices:
raise ValueError(f"{device.device_id} already registered")
self.devices[device.device_id] = device
def remove_device(self, device: Type["DeviceBase"] | str) -> bool:
if isinstance(device, DeviceBase):
device = device.device_id
return self.devices.pop(device, None) is not None # type: ignore[arg-type]
def reset(self) -> None:
self.devices = dict()

View File

@@ -3,22 +3,21 @@ from typing import Optional
import numpy as np import numpy as np
from pydantic import Field from pydantic import Field
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.devicesabc import DeviceBase
logger = get_logger(__name__)
class HomeApplianceParameters(DeviceParameters): class HomeApplianceParameters(ParametersBaseModel):
"""Home Appliance Device Simulation Configuration."""
device_id: str = Field(description="ID of home appliance", examples=["dishwasher"])
consumption_wh: int = Field( consumption_wh: int = Field(
gt=0, gt=0,
description="An integer representing the energy consumption of a household device in watt-hours.", description="An integer representing the energy consumption of a household device in watt-hours.",
examples=[2000],
) )
duration_h: int = Field( duration_h: int = Field(
gt=0, gt=0,
description="An integer representing the usage duration of a household device in hours.", description="An integer representing the usage duration of a household device in hours.",
examples=[3],
) )
@@ -26,16 +25,46 @@ class HomeAppliance(DeviceBase):
def __init__( def __init__(
self, self,
parameters: Optional[HomeApplianceParameters] = None, parameters: Optional[HomeApplianceParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
): ):
self.parameters: Optional[HomeApplianceParameters] = None # Configuration initialisation
super().__init__(parameters) self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericDishWasher":
self.prefix = "dishwasher"
# Parameter initialisiation
self.parameters = parameters
if hours is None:
self.hours = self.total_hours
else:
self.hours = hours
def _setup(self) -> None: self.initialised = False
if self.parameters is None: # Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
raise ValueError(f"Parameters not set: {self.parameters}") if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.hours = self.total_hours
self.consumption_wh = getattr(self.config, f"{self.prefix}_consumption")
self.duration_h = getattr(self.config, f"{self.prefix}_duration")
elif self.parameters is not None:
# Setup by parameters
self.consumption_wh = (
self.parameters.consumption_wh
) # Total energy consumption of the device in kWh
self.duration_h = self.parameters.duration_h # Duration of use in hours
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
self.load_curve = np.zeros(self.hours) # Initialize the load curve with zeros self.load_curve = np.zeros(self.hours) # Initialize the load curve with zeros
self.duration_h = self.parameters.duration_h self.initialised = True
self.consumption_wh = self.parameters.consumption_wh
def set_starting_time(self, start_hour: int, global_start_hour: int = 0) -> None: def set_starting_time(self, start_hour: int, global_start_hour: int = 0) -> None:
"""Sets the start time of the device and generates the corresponding load curve. """Sets the start time of the device and generates the corresponding load curve.

View File

@@ -1,7 +1,6 @@
import logging
from typing import List, Sequence from typing import List, Sequence
from loguru import logger
class Heatpump: class Heatpump:
MAX_HEAT_OUTPUT = 5000 MAX_HEAT_OUTPUT = 5000
@@ -19,9 +18,10 @@ class Heatpump:
COP_COEFFICIENT = 0.1 COP_COEFFICIENT = 0.1
"""COP increase per degree""" """COP increase per degree"""
def __init__(self, max_heat_output: int, hours: int): def __init__(self, max_heat_output: int, prediction_hours: int):
self.max_heat_output = max_heat_output self.max_heat_output = max_heat_output
self.hours = hours self.prediction_hours = prediction_hours
self.log = logging.getLogger(__name__)
def __check_outside_temperature_range__(self, temp_celsius: float) -> bool: def __check_outside_temperature_range__(self, temp_celsius: float) -> bool:
"""Check if temperature is in valid range between -100 and 100 degree Celsius. """Check if temperature is in valid range between -100 and 100 degree Celsius.
@@ -58,7 +58,7 @@ class Heatpump:
f"Outside temperature '{outside_temperature_celsius}' not in range " f"Outside temperature '{outside_temperature_celsius}' not in range "
"(min: -100 Celsius, max: 100 Celsius)" "(min: -100 Celsius, max: 100 Celsius)"
) )
logger.error(err_msg) self.log.error(err_msg)
raise ValueError(err_msg) raise ValueError(err_msg)
def calculate_heating_output(self, outside_temperature_celsius: float) -> float: def calculate_heating_output(self, outside_temperature_celsius: float) -> float:
@@ -86,7 +86,7 @@ class Heatpump:
f"Outside temperature '{outside_temperature_celsius}' not in range " f"Outside temperature '{outside_temperature_celsius}' not in range "
"(min: -100 Celsius, max: 100 Celsius)" "(min: -100 Celsius, max: 100 Celsius)"
) )
logger.error(err_msg) self.log.error(err_msg)
raise ValueError(err_msg) raise ValueError(err_msg)
def calculate_heat_power(self, outside_temperature_celsius: float) -> float: def calculate_heat_power(self, outside_temperature_celsius: float) -> float:
@@ -110,16 +110,16 @@ class Heatpump:
f"Outside temperature '{outside_temperature_celsius}' not in range " f"Outside temperature '{outside_temperature_celsius}' not in range "
"(min: -100 Celsius, max: 100 Celsius)" "(min: -100 Celsius, max: 100 Celsius)"
) )
logger.error(err_msg) self.log.error(err_msg)
raise ValueError(err_msg) raise ValueError(err_msg)
def simulate_24h(self, temperatures: Sequence[float]) -> List[float]: def simulate_24h(self, temperatures: Sequence[float]) -> List[float]:
"""Simulate power data for 24 hours based on provided temperatures.""" """Simulate power data for 24 hours based on provided temperatures."""
power_data: List[float] = [] power_data: List[float] = []
if len(temperatures) != self.hours: if len(temperatures) != self.prediction_hours:
raise ValueError( raise ValueError(
f"The temperature array must contain exactly {self.hours} entries, " f"The temperature array must contain exactly {self.prediction_hours} entries, "
"one for each hour of the day." "one for each hour of the day."
) )

View File

@@ -1,64 +1,64 @@
from typing import Optional from typing import Optional
from loguru import logger
from pydantic import Field from pydantic import Field
from scipy.interpolate import RegularGridInterpolator
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.interpolator import get_eos_load_interpolator from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.devicesabc import DeviceBase
logger = get_logger(__name__)
class InverterParameters(DeviceParameters): class InverterParameters(ParametersBaseModel):
"""Inverter Device Simulation Configuration.""" max_power_wh: float = Field(gt=0)
device_id: str = Field(description="ID of inverter", examples=["inverter1"])
max_power_wh: float = Field(gt=0, examples=[10000])
battery_id: Optional[str] = Field(
default=None, description="ID of battery", examples=[None, "battery1"]
)
class Inverter(DeviceBase): class Inverter(DeviceBase):
def __init__( def __init__(
self, self,
self_consumption_predictor: RegularGridInterpolator,
parameters: Optional[InverterParameters] = None, parameters: Optional[InverterParameters] = None,
battery: Optional[Battery] = None,
provider_id: Optional[str] = None,
): ):
self.parameters: Optional[InverterParameters] = None # Configuration initialisation
super().__init__(parameters) self.provider_id = provider_id
self.prefix = "<invalid>"
self.scr_lookup: dict = {} if self.provider_id == "GenericInverter":
self.prefix = "inverter"
def _calculate_scr(self, consumption: float, generation: float) -> float: # Parameter initialisiation
"""Check if the consumption and production is in the lookup table. If not, calculate and store the value.""" self.parameters = parameters
if consumption not in self.scr_lookup: if battery is None:
self.scr_lookup[consumption] = {}
if generation not in self.scr_lookup[consumption]:
scr = self.self_consumption_predictor.calculate_self_consumption(
consumption, generation
)
self.scr_lookup[consumption][generation] = scr
return scr
return self.scr_lookup[consumption][generation]
def _setup(self) -> None:
if self.parameters is None:
raise ValueError(f"Parameters not set: {self.parameters}")
if self.parameters.battery_id is None:
# For the moment raise exception # For the moment raise exception
# TODO: Make battery configurable by config # TODO: Make battery configurable by config
error_msg = "Battery for PV inverter is mandatory." error_msg = "Battery for PV inverter is mandatory."
logger.error(error_msg) logger.error(error_msg)
raise NotImplementedError(error_msg) raise NotImplementedError(error_msg)
self.self_consumption_predictor = get_eos_load_interpolator() self.battery = battery # Connection to a battery object
self.max_power_wh = ( self.self_consumption_predictor = self_consumption_predictor
self.parameters.max_power_wh
) # Maximum power that the inverter can handle
def _post_setup(self) -> None: self.initialised = False
if self.parameters is None: # Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
raise ValueError(f"Parameters not set: {self.parameters}") if self.parameters is not None:
self.battery = self.devices.get_device_by_id(self.parameters.battery_id) self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.max_power_wh = getattr(self.config, f"{self.prefix}_power_max")
elif self.parameters is not None:
# Setup by parameters
self.max_power_wh = (
self.parameters.max_power_wh # Maximum power that the inverter can handle
)
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
def process_energy( def process_energy(
self, generation: float, consumption: float, hour: int self, generation: float, consumption: float, hour: int
@@ -76,8 +76,9 @@ class Inverter(DeviceBase):
grid_import = -remaining_power # Negative indicates feeding into the grid grid_import = -remaining_power # Negative indicates feeding into the grid
self_consumption = self.max_power_wh self_consumption = self.max_power_wh
else: else:
# Calculate scr with lookup table scr = self.self_consumption_predictor.calculate_self_consumption(
scr = self._calculate_scr(consumption, generation) consumption, generation
)
# Remaining power after consumption # Remaining power after consumption
remaining_power = (generation - consumption) * scr # EVQ remaining_power = (generation - consumption) * scr # EVQ

View File

@@ -1,24 +0,0 @@
from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.devices.battery import BaseBatteryParameters
from akkudoktoreos.devices.generic import HomeApplianceParameters
from akkudoktoreos.devices.inverter import InverterParameters
class DevicesCommonSettings(SettingsBaseModel):
"""Base configuration for devices simulation settings."""
batteries: Optional[list[BaseBatteryParameters]] = Field(
default=None,
description="List of battery/ev devices",
examples=[[{"device_id": "battery1", "capacity_wh": 8000}]],
)
inverters: Optional[list[InverterParameters]] = Field(
default=None, description="List of inverters", examples=[[]]
)
home_appliances: Optional[list[HomeApplianceParameters]] = Field(
default=None, description="List of home appliances", examples=[[]]
)

View File

@@ -9,7 +9,6 @@ The measurements can be added programmatically or imported from a file or JSON s
from typing import Any, ClassVar, List, Optional from typing import Any, ClassVar, List, Optional
import numpy as np import numpy as np
from loguru import logger
from numpydantic import NDArray, Shape from numpydantic import NDArray, Shape
from pendulum import DateTime, Duration from pendulum import DateTime, Duration
from pydantic import Field, computed_field from pydantic import Field, computed_field
@@ -17,26 +16,27 @@ from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.dataabc import DataImportMixin, DataRecord, DataSequence from akkudoktoreos.core.dataabc import DataImportMixin, DataRecord, DataSequence
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.utils.datetimeutil import to_duration from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class MeasurementCommonSettings(SettingsBaseModel): class MeasurementCommonSettings(SettingsBaseModel):
"""Measurement Configuration.""" measurement_load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source (e.g. 'Household', 'Heat Pump')"
load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source", examples=["Household", "Heat Pump"]
) )
load1_name: Optional[str] = Field( measurement_load1_name: Optional[str] = Field(
default=None, description="Name of the load1 source", examples=[None] default=None, description="Name of the load1 source (e.g. 'Household', 'Heat Pump')"
) )
load2_name: Optional[str] = Field( measurement_load2_name: Optional[str] = Field(
default=None, description="Name of the load2 source", examples=[None] default=None, description="Name of the load2 source (e.g. 'Household', 'Heat Pump')"
) )
load3_name: Optional[str] = Field( measurement_load3_name: Optional[str] = Field(
default=None, description="Name of the load3 source", examples=[None] default=None, description="Name of the load3 source (e.g. 'Household', 'Heat Pump')"
) )
load4_name: Optional[str] = Field( measurement_load4_name: Optional[str] = Field(
default=None, description="Name of the load4 source", examples=[None] default=None, description="Name of the load4 source (e.g. 'Household', 'Heat Pump')"
) )
@@ -48,42 +48,42 @@ class MeasurementDataRecord(DataRecord):
""" """
# Single loads, to be aggregated to total load # Single loads, to be aggregated to total load
load0_mr: Optional[float] = Field( measurement_load0_mr: Optional[float] = Field(
default=None, ge=0, description="Load0 meter reading [kWh]", examples=[40421] default=None, ge=0, description="Load0 meter reading [kWh]"
) )
load1_mr: Optional[float] = Field( measurement_load1_mr: Optional[float] = Field(
default=None, ge=0, description="Load1 meter reading [kWh]", examples=[None] default=None, ge=0, description="Load1 meter reading [kWh]"
) )
load2_mr: Optional[float] = Field( measurement_load2_mr: Optional[float] = Field(
default=None, ge=0, description="Load2 meter reading [kWh]", examples=[None] default=None, ge=0, description="Load2 meter reading [kWh]"
) )
load3_mr: Optional[float] = Field( measurement_load3_mr: Optional[float] = Field(
default=None, ge=0, description="Load3 meter reading [kWh]", examples=[None] default=None, ge=0, description="Load3 meter reading [kWh]"
) )
load4_mr: Optional[float] = Field( measurement_load4_mr: Optional[float] = Field(
default=None, ge=0, description="Load4 meter reading [kWh]", examples=[None] default=None, ge=0, description="Load4 meter reading [kWh]"
) )
max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set measurement_max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
grid_export_mr: Optional[float] = Field( measurement_grid_export_mr: Optional[float] = Field(
default=None, ge=0, description="Export to grid meter reading [kWh]", examples=[1000] default=None, ge=0, description="Export to grid meter reading [kWh]"
) )
grid_import_mr: Optional[float] = Field( measurement_grid_import_mr: Optional[float] = Field(
default=None, ge=0, description="Import from grid meter reading [kWh]", examples=[1000] default=None, ge=0, description="Import from grid meter reading [kWh]"
) )
# Computed fields # Computed fields
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def loads(self) -> List[str]: def measurement_loads(self) -> List[str]:
"""Compute a list of active loads.""" """Compute a list of active loads."""
active_loads = [] active_loads = []
# Loop through loadx # Loop through measurement_loadx
for i in range(self.max_loads): for i in range(self.measurement_max_loads):
load_attr = f"load{i}_mr" load_attr = f"measurement_load{i}_mr"
# Check if either attribute is set and add to active loads # Check if either attribute is set and add to active loads
if getattr(self, load_attr, None): if getattr(self, load_attr, None):
@@ -103,14 +103,9 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
) )
topics: ClassVar[List[str]] = [ topics: ClassVar[List[str]] = [
"load", "measurement_load",
] ]
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def _interval_count( def _interval_count(
self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration
) -> int: ) -> int:
@@ -148,16 +143,11 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
if topic not in self.topics: if topic not in self.topics:
return None return None
topic_keys = [ topic_keys = [key for key in self.config.config_keys if key.startswith(topic)]
key for key in self.config.measurement.model_fields.keys() if key.startswith(topic)
]
key = None key = None
if topic == "load": if topic == "measurement_load":
for config_key in topic_keys: for config_key in topic_keys:
if ( if config_key.endswith("_name") and getattr(self.config, config_key) == name:
config_key.endswith("_name")
and getattr(self.config.measurement, config_key) == name
):
key = topic + config_key[len(topic) : len(topic) + 1] + "_mr" key = topic + config_key[len(topic) : len(topic) + 1] + "_mr"
break break
@@ -253,9 +243,9 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
end_datetime = self[-1].date_time end_datetime = self[-1].date_time
size = self._interval_count(start_datetime, end_datetime, interval) size = self._interval_count(start_datetime, end_datetime, interval)
load_total_array = np.zeros(size) load_total_array = np.zeros(size)
# Loop through load<x>_mr # Loop through measurement_load<x>_mr
for i in range(self.record_class().max_loads): for i in range(self.record_class().measurement_max_loads):
key = f"load{i}_mr" key = f"measurement_load{i}_mr"
# Calculate load per interval # Calculate load per interval
load_array = self._energy_from_meter_readings( load_array = self._energy_from_meter_readings(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval

View File

@@ -1,10 +1,11 @@
import logging
import random import random
import time import time
from pathlib import Path
from typing import Any, Optional from typing import Any, Optional
import numpy as np import numpy as np
from deap import algorithms, base, creator, tools from deap import algorithms, base, creator, tools
from loguru import logger
from pydantic import Field, field_validator, model_validator from pydantic import Field, field_validator, model_validator
from typing_extensions import Self from typing_extensions import Self
@@ -13,7 +14,8 @@ from akkudoktoreos.core.coreabc import (
DevicesMixin, DevicesMixin,
EnergyManagementSystemMixin, EnergyManagementSystemMixin,
) )
from akkudoktoreos.core.ems import EnergyManagementParameters, SimulationResult from akkudoktoreos.core.ems import EnergieManagementSystemParameters, SimulationResult
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ParametersBaseModel from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.battery import ( from akkudoktoreos.devices.battery import (
Battery, Battery,
@@ -23,11 +25,14 @@ from akkudoktoreos.devices.battery import (
) )
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Inverter, InverterParameters from akkudoktoreos.devices.inverter import Inverter, InverterParameters
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
from akkudoktoreos.utils.utils import NumpyEncoder from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
class OptimizationParameters(ParametersBaseModel): class OptimizationParameters(ParametersBaseModel):
ems: EnergyManagementParameters ems: EnergieManagementSystemParameters
pv_akku: Optional[SolarPanelBatteryParameters] pv_akku: Optional[SolarPanelBatteryParameters]
inverter: Optional[InverterParameters] inverter: Optional[InverterParameters]
eauto: Optional[ElectricVehicleParameters] eauto: Optional[ElectricVehicleParameters]
@@ -107,8 +112,8 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
): ):
"""Initialize the optimization problem with the required parameters.""" """Initialize the optimization problem with the required parameters."""
self.opti_param: dict[str, Any] = {} self.opti_param: dict[str, Any] = {}
self.fixed_eauto_hours = self.config.prediction.hours - self.config.optimization.hours self.fixed_eauto_hours = self.config.prediction_hours - self.config.optimization_hours
self.possible_charge_values = self.config.optimization.ev_available_charge_rates_percent self.possible_charge_values = self.config.optimization_ev_available_charge_rates_percent
self.verbose = verbose self.verbose = verbose
self.fix_seed = fixed_seed self.fix_seed = fixed_seed
self.optimize_ev = True self.optimize_ev = True
@@ -118,8 +123,8 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
# Set a fixed seed for random operations if provided or in debug mode # Set a fixed seed for random operations if provided or in debug mode
if self.fix_seed is not None: if self.fix_seed is not None:
random.seed(self.fix_seed) random.seed(self.fix_seed)
elif logger.level == "DEBUG": elif logger.level == logging.DEBUG:
self.fix_seed = random.randint(1, 100000000000) # noqa: S311 self.fix_seed = random.randint(1, 100000000000)
random.seed(self.fix_seed) random.seed(self.fix_seed)
def decode_charge_discharge( def decode_charge_discharge(
@@ -175,23 +180,23 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
total_states = 3 * len_ac total_states = 3 * len_ac
# 1. Mutating the charge_discharge part # 1. Mutating the charge_discharge part
charge_discharge_part = individual[: self.config.prediction.hours] charge_discharge_part = individual[: self.config.prediction_hours]
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part) (charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
# Instead of a fixed clamping to 0..8 or 0..6 dynamically: # Instead of a fixed clamping to 0..8 or 0..6 dynamically:
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1) charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1)
individual[: self.config.prediction.hours] = charge_discharge_mutated individual[: self.config.prediction_hours] = charge_discharge_mutated
# 2. Mutating the EV charge part, if active # 2. Mutating the EV charge part, if active
if self.optimize_ev: if self.optimize_ev:
ev_charge_part = individual[ ev_charge_part = individual[
self.config.prediction.hours : self.config.prediction.hours * 2 self.config.prediction_hours : self.config.prediction_hours * 2
] ]
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part) (ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
ev_charge_part_mutated[self.config.prediction.hours - self.fixed_eauto_hours :] = [ ev_charge_part_mutated[self.config.prediction_hours - self.fixed_eauto_hours :] = [
0 0
] * self.fixed_eauto_hours ] * self.fixed_eauto_hours
individual[self.config.prediction.hours : self.config.prediction.hours * 2] = ( individual[self.config.prediction_hours : self.config.prediction_hours * 2] = (
ev_charge_part_mutated ev_charge_part_mutated
) )
@@ -207,13 +212,13 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
def create_individual(self) -> list[int]: def create_individual(self) -> list[int]:
# Start with discharge states for the individual # Start with discharge states for the individual
individual_components = [ individual_components = [
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction.hours) self.toolbox.attr_discharge_state() for _ in range(self.config.prediction_hours)
] ]
# Add EV charge index values if optimize_ev is True # Add EV charge index values if optimize_ev is True
if self.optimize_ev: if self.optimize_ev:
individual_components += [ individual_components += [
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction.hours) self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction_hours)
] ]
# Add the start time of the household appliance if it's being optimized # Add the start time of the household appliance if it's being optimized
@@ -246,7 +251,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
individual.extend(eautocharge_hours_index.tolist()) individual.extend(eautocharge_hours_index.tolist())
elif self.optimize_ev: elif self.optimize_ev:
# Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu # Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu
individual.extend([0] * self.config.prediction.hours) individual.extend([0] * self.config.prediction_hours)
# Add dishwasher start time if applicable # Add dishwasher start time if applicable
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None: if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None:
@@ -268,13 +273,12 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
3. Dishwasher start time (integer if applicable). 3. Dishwasher start time (integer if applicable).
""" """
# Discharge hours as a NumPy array of ints # Discharge hours as a NumPy array of ints
discharge_hours_bin = np.array(individual[: self.config.prediction.hours], dtype=int) discharge_hours_bin = np.array(individual[: self.config.prediction_hours], dtype=int)
# EV charge hours as a NumPy array of ints (if optimize_ev is True) # EV charge hours as a NumPy array of ints (if optimize_ev is True)
eautocharge_hours_index = ( eautocharge_hours_index = (
# append ev charging states to individual
np.array( np.array(
individual[self.config.prediction.hours : self.config.prediction.hours * 2], individual[self.config.prediction_hours : self.config.prediction_hours * 2],
dtype=int, dtype=int,
) )
if self.optimize_ev if self.optimize_ev
@@ -386,7 +390,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
) )
self.ems.set_ev_charge_hours(eautocharge_hours_float) self.ems.set_ev_charge_hours(eautocharge_hours_float)
else: else:
self.ems.set_ev_charge_hours(np.full(self.config.prediction.hours, 0)) self.ems.set_ev_charge_hours(np.full(self.config.prediction_hours, 0))
return self.ems.simulate(self.ems.start_datetime.hour) return self.ems.simulate(self.ems.start_datetime.hour)
@@ -448,7 +452,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
# min_length = min(battery_soc_per_hour.size, discharge_hours_bin.size) # min_length = min(battery_soc_per_hour.size, discharge_hours_bin.size)
# battery_soc_per_hour_tail = battery_soc_per_hour[-min_length:] # battery_soc_per_hour_tail = battery_soc_per_hour[-min_length:]
# discharge_hours_bin_tail = discharge_hours_bin[-min_length:] # discharge_hours_bin_tail = discharge_hours_bin[-min_length:]
# len_ac = len(self.config.optimization.ev_available_charge_rates_percent) # len_ac = len(self.config.optimization_ev_available_charge_rates_percent)
# # # Find hours where battery SoC is 0 # # # Find hours where battery SoC is 0
# # zero_soc_mask = battery_soc_per_hour_tail == 0 # # zero_soc_mask = battery_soc_per_hour_tail == 0
@@ -497,7 +501,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
if parameters.eauto and self.ems.ev if parameters.eauto and self.ems.ev
else 0 else 0
) )
* self.config.optimization.penalty, * self.config.optimization_penalty,
) )
return (gesamtbilanz,) return (gesamtbilanz,)
@@ -565,26 +569,30 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
start_hour = self.ems.start_datetime.hour start_hour = self.ems.start_datetime.hour
einspeiseverguetung_euro_pro_wh = np.full( einspeiseverguetung_euro_pro_wh = np.full(
self.config.prediction.hours, parameters.ems.einspeiseverguetung_euro_pro_wh self.config.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
) )
# TODO: Refactor device setup phase out # 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
self.devices.reset() sc = SelfConsumptionProbabilityInterpolator(
Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
)
# Initialize PV and EV batteries # Initialize PV and EV batteries
akku: Optional[Battery] = None akku: Optional[Battery] = None
if parameters.pv_akku: if parameters.pv_akku:
akku = Battery(parameters.pv_akku) akku = Battery(
self.devices.add_device(akku) parameters.pv_akku,
akku.set_charge_per_hour(np.full(self.config.prediction.hours, 1)) hours=self.config.prediction_hours,
)
akku.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
eauto: Optional[Battery] = None eauto: Optional[Battery] = None
if parameters.eauto: if parameters.eauto:
eauto = Battery( eauto = Battery(
parameters.eauto, parameters.eauto,
hours=self.config.prediction_hours,
) )
self.devices.add_device(eauto) eauto.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
eauto.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
self.optimize_ev = ( self.optimize_ev = (
parameters.eauto.min_soc_percentage - parameters.eauto.initial_soc_percentage >= 0 parameters.eauto.min_soc_percentage - parameters.eauto.initial_soc_percentage >= 0
) )
@@ -595,22 +603,20 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
dishwasher = ( dishwasher = (
HomeAppliance( HomeAppliance(
parameters=parameters.dishwasher, parameters=parameters.dishwasher,
hours=self.config.prediction_hours,
) )
if parameters.dishwasher is not None if parameters.dishwasher is not None
else None else None
) )
self.devices.add_device(dishwasher)
# Initialize the inverter and energy management system # Initialize the inverter and energy management system
inverter: Optional[Inverter] = None inverter: Optional[Inverter] = None
if parameters.inverter: if parameters.inverter:
inverter = Inverter( inverter = Inverter(
sc,
parameters.inverter, parameters.inverter,
akku,
) )
self.devices.add_device(inverter)
self.devices.post_setup()
self.ems.set_parameters( self.ems.set_parameters(
parameters.ems, parameters.ems,
inverter=inverter, inverter=inverter,

View File

@@ -3,22 +3,27 @@ from typing import List, Optional
from pydantic import Field from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
logger = get_logger(__name__)
class OptimizationCommonSettings(SettingsBaseModel): class OptimizationCommonSettings(SettingsBaseModel):
"""General Optimization Configuration. """Base configuration for optimization settings.
Attributes: Attributes:
hours (int): Number of hours for optimizations. optimization_hours (int): Number of hours for optimizations.
""" """
hours: Optional[int] = Field( optimization_hours: Optional[int] = Field(
default=48, ge=0, description="Number of hours into the future for optimizations." default=24, ge=0, description="Number of hours into the future for optimizations."
) )
penalty: Optional[int] = Field(default=10, description="Penalty factor used in optimization.") optimization_penalty: Optional[int] = Field(
default=10, description="Penalty factor used in optimization."
)
ev_available_charge_rates_percent: Optional[List[float]] = Field( optimization_ev_available_charge_rates_percent: Optional[List[float]] = Field(
default=[ default=[
0.0, 0.0,
6.0 / 16.0, 6.0 / 16.0,

View File

@@ -3,8 +3,11 @@
from pydantic import ConfigDict from pydantic import ConfigDict
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel from akkudoktoreos.core.pydantic import PydanticBaseModel
logger = get_logger(__name__)
class OptimizationBase(ConfigMixin, PredictionMixin, PydanticBaseModel): class OptimizationBase(ConfigMixin, PredictionMixin, PydanticBaseModel):
"""Base class for handling optimization data. """Base class for handling optimization data.

View File

@@ -1,50 +1,14 @@
from typing import Optional from typing import Optional
from pydantic import Field, field_validator from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
from akkudoktoreos.prediction.prediction import get_prediction
prediction_eos = get_prediction()
# Valid elecprice providers
elecprice_providers = [
provider.provider_id()
for provider in prediction_eos.providers
if isinstance(provider, ElecPriceProvider)
]
class ElecPriceCommonSettings(SettingsBaseModel): class ElecPriceCommonSettings(SettingsBaseModel):
"""Electricity Price Prediction Configuration.""" elecprice_provider: Optional[str] = Field(
default=None, description="Electricity price provider id of provider to be used."
provider: Optional[str] = Field(
default=None,
description="Electricity price provider id of provider to be used.",
examples=["ElecPriceAkkudoktor"],
) )
charges_kwh: Optional[float] = Field( elecprice_charges_kwh: Optional[float] = Field(
default=None, ge=0, description="Electricity price charges (€/kWh).", examples=[0.21] default=None, ge=0, description="Electricity price charges (€/kWh)."
)
vat_rate: Optional[float] = Field(
default=1.19,
ge=0,
description="VAT rate factor applied to electricity price when charges are used.",
examples=[1.19],
)
provider_settings: Optional[ElecPriceImportCommonSettings] = Field(
default=None, description="Provider settings", examples=[None]
)
# Validators
@field_validator("provider", mode="after")
@classmethod
def validate_provider(cls, value: Optional[str]) -> Optional[str]:
if value is None or value in elecprice_providers:
return value
raise ValueError(
f"Provider '{value}' is not a valid electricity price provider: {elecprice_providers}."
) )

View File

@@ -9,8 +9,11 @@ from typing import List, Optional
from pydantic import Field, computed_field from pydantic import Field, computed_field
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord
logger = get_logger(__name__)
class ElecPriceDataRecord(PredictionRecord): class ElecPriceDataRecord(PredictionRecord):
"""Represents a electricity price data record containing various price attributes at a specific datetime. """Represents a electricity price data record containing various price attributes at a specific datetime.
@@ -46,15 +49,15 @@ class ElecPriceProvider(PredictionProvider):
electricity price_provider (str): Prediction provider for electricity price. electricity price_provider (str): Prediction provider for electricity price.
Attributes: Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated. prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90. latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180. longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified. start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range, end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`. calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`. based on `start_datetime` and `prediction_historic_hours`.
""" """
# overload # overload
@@ -68,4 +71,4 @@ class ElecPriceProvider(PredictionProvider):
return "ElecPriceProvider" return "ElecPriceProvider"
def enabled(self) -> bool: def enabled(self) -> bool:
return self.provider_id() == self.config.elecprice.provider return self.provider_id() == self.config.elecprice_provider

View File

@@ -11,15 +11,17 @@ from typing import Any, List, Optional, Union
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import requests import requests
from loguru import logger
from pydantic import ValidationError from pydantic import ValidationError
from statsmodels.tsa.holtwinters import ExponentialSmoothing from statsmodels.tsa.holtwinters import ExponentialSmoothing
from akkudoktoreos.core.cache import cache_in_file from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
logger = get_logger(__name__)
class AkkudoktorElecPriceMeta(PydanticBaseModel): class AkkudoktorElecPriceMeta(PydanticBaseModel):
start_timestamp: str start_timestamp: str
@@ -52,11 +54,11 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
of hours into the future and retains historical data. of hours into the future and retains historical data.
Attributes: Attributes:
hours (int, optional): Number of hours in the future for the forecast. prediction_hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data. prediction_historic_hours (int, optional): Number of past hours for retaining data.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime. start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`. end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`. keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods: Methods:
provider_id(): Returns a unique identifier for the provider. provider_id(): Returns a unique identifier for the provider.
@@ -102,18 +104,17 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
- add the file cache again. - add the file cache again.
""" """
source = "https://api.akkudoktor.net" source = "https://api.akkudoktor.net"
if not self.start_datetime: assert self.start_datetime # mypy fix
raise ValueError(f"Start DateTime not set: {self.start_datetime}")
# Try to take data from 5 weeks back for prediction # Try to take data from 5 weeks back for prediction
date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD") date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD")
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD") last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.general.timezone}" url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.timezone}"
response = requests.get(url, timeout=10) response = requests.get(url)
logger.debug(f"Response from {url}: {response}") logger.debug(f"Response from {url}: {response}")
response.raise_for_status() # Raise an error for bad responses response.raise_for_status() # Raise an error for bad responses
akkudoktor_data = self._validate_data(response.content) akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time # We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone) self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return akkudoktor_data return akkudoktor_data
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray: def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
@@ -124,16 +125,18 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
capped_data = data.clip(min=lower_bound, max=upper_bound) capped_data = data.clip(min=lower_bound, max=upper_bound)
return capped_data return capped_data
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray: def _predict_ets(
self, history: np.ndarray, seasonal_periods: int, prediction_hours: int
) -> np.ndarray:
clean_history = self._cap_outliers(history) clean_history = self._cap_outliers(history)
model = ExponentialSmoothing( model = ExponentialSmoothing(
clean_history, seasonal="add", seasonal_periods=seasonal_periods clean_history, seasonal="add", seasonal_periods=seasonal_periods
).fit() ).fit()
return model.forecast(hours) return model.forecast(prediction_hours)
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray: def _predict_median(self, history: np.ndarray, prediction_hours: int) -> np.ndarray:
clean_history = self._cap_outliers(history) clean_history = self._cap_outliers(history)
return np.full(hours, np.median(clean_history)) return np.full(prediction_hours, np.median(clean_history))
def _update_data( def _update_data(
self, force_update: Optional[bool] = False self, force_update: Optional[bool] = False
@@ -147,20 +150,19 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
""" """
# Get Akkudoktor electricity price data # Get Akkudoktor electricity price data
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
if not self.start_datetime: assert self.start_datetime # mypy fix
raise ValueError(f"Start DateTime not set: {self.start_datetime}")
# Assumption that all lists are the same length and are ordered chronologically # Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps. # in ascending order and have the same timestamps.
# Get charges_kwh in wh # Get elecprice_charges_kwh in wh
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000 charges_wh = (self.config.elecprice_charges_kwh or 0) / 1000
highest_orig_datetime = None # newest datetime from the api after that we want to update. highest_orig_datetime = None # newest datetime from the api after that we want to update.
series_data = pd.Series(dtype=float) # Initialize an empty series series_data = pd.Series(dtype=float) # Initialize an empty series
for value in akkudoktor_data.values: for value in akkudoktor_data.values:
orig_datetime = to_datetime(value.start, in_timezone=self.config.general.timezone) orig_datetime = to_datetime(value.start, in_timezone=self.config.timezone)
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime: if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
highest_orig_datetime = orig_datetime highest_orig_datetime = orig_datetime
@@ -178,29 +180,30 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
) )
amount_datasets = len(self.records) amount_datasets = len(self.records)
if not highest_orig_datetime: # mypy fix assert highest_orig_datetime # mypy fix
error_msg = f"Highest original datetime not available: {highest_orig_datetime}"
logger.error(error_msg)
raise ValueError(error_msg)
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours # some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
needed_hours = int( needed_prediction_hours = int(
self.config.prediction.hours self.config.prediction_hours
- ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600) - ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
) )
if needed_hours <= 0: if needed_prediction_hours <= 0:
logger.warning( logger.warning(
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}" f"No prediction needed. needed_prediction_hours={needed_prediction_hours}, prediction_hours={self.config.prediction_hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records ) # this might keep data longer than self.start_datetime + self.config.prediction_hours in the records
return return
if amount_datasets > 800: # we do the full ets with seasons of 1 week if amount_datasets > 800: # we do the full ets with seasons of 1 week
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours) prediction = self._predict_ets(
history, seasonal_periods=168, prediction_hours=needed_prediction_hours
)
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours) prediction = self._predict_ets(
history, seasonal_periods=24, prediction_hours=needed_prediction_hours
)
elif amount_datasets > 0: # not enough data for ets, do median elif amount_datasets > 0: # not enough data for ets, do median
prediction = self._predict_median(history, hours=needed_hours) prediction = self._predict_median(history, prediction_hours=needed_prediction_hours)
else: else:
logger.error("No data available for prediction") logger.error("No data available for prediction")
raise ValueError("No data available") raise ValueError("No data available")

View File

@@ -1,257 +0,0 @@
"""Retrieves and processes electricity price forecast data from Energy-Charts.
This module provides classes and mappings to manage electricity price data obtained from the
Energy-Charts API, including support for various electricity price attributes such as temperature,
humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPriceDataRecord`
format, enabling consistent access to forecasted and historical electricity price attributes.
"""
from datetime import datetime
from typing import Any, List, Optional, Union
import numpy as np
import pandas as pd
import requests
from loguru import logger
from pydantic import ValidationError
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from akkudoktoreos.core.cache import cache_in_file
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
class EnergyChartsElecPrice(PydanticBaseModel):
license_info: str
unix_seconds: List[int]
price: List[float]
unit: str
deprecated: bool
class ElecPriceEnergyCharts(ElecPriceProvider):
"""Fetch and process electricity price forecast data from Energy-Charts.
ElecPriceEnergyCharts is a singleton-based class that retrieves electricity price forecast data
from the Energy-Charts API and maps it to `ElecPriceDataRecord` fields, applying
any necessary scaling or unit corrections. It manages the forecast over a range
of hours into the future and retains historical data.
Attributes:
hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
_request_forecast(): Fetches the forecast from the Energy-Charts API.
_update_data(): Processes and updates forecast data from Energy-Charts in ElecPriceDataRecord format.
"""
highest_orig_datetime: Optional[datetime] = None
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the Energy-Charts provider."""
return "ElecPriceEnergyCharts"
@classmethod
def _validate_data(cls, json_str: Union[bytes, Any]) -> EnergyChartsElecPrice:
"""Validate Energy-Charts Electricity Price forecast data."""
try:
energy_charts_data = EnergyChartsElecPrice.model_validate_json(json_str)
except ValidationError as e:
error_msg = ""
for error in e.errors():
field = " -> ".join(str(x) for x in error["loc"])
message = error["msg"]
error_type = error["type"]
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
logger.error(f"Energy-Charts schema change: {error_msg}")
raise ValueError(error_msg)
return energy_charts_data
@cache_in_file(with_ttl="1 hour")
def _request_forecast(self, start_date: Optional[str] = None) -> EnergyChartsElecPrice:
"""Fetch electricity price forecast data from Energy-Charts API.
This method sends a request to Energy-Charts API to retrieve forecast data for a specified
date range. The response data is parsed and returned as JSON for further processing.
Returns:
dict: The parsed JSON response from Energy-Charts API containing forecast data.
Raises:
ValueError: If the API response does not include expected `electricity price` data.
"""
source = "https://api.energy-charts.info"
if start_date is None:
# Try to take data from 5 weeks back for prediction
start_date = to_datetime(
self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD"
)
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
url = f"{source}/price?bzn=DE-LU&start={start_date}&end={last_date}"
response = requests.get(url, timeout=30)
logger.debug(f"Response from {url}: {response}")
response.raise_for_status() # Raise an error for bad responses
energy_charts_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
return energy_charts_data
def _parse_data(self, energy_charts_data: EnergyChartsElecPrice) -> pd.Series:
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
# Get charges_kwh in wh
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000
# Initialize
highest_orig_datetime = None # newest datetime from the api after that we want to update.
series_data = pd.Series(dtype=float) # Initialize an empty series
# Iterate over timestamps and prices together
for unix_sec, price_eur_per_mwh in zip(
energy_charts_data.unix_seconds, energy_charts_data.price
):
orig_datetime = to_datetime(unix_sec, in_timezone=self.config.general.timezone)
# Track the latest datetime
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
highest_orig_datetime = orig_datetime
# Convert EUR/MWh to EUR/Wh, apply charges and VAT if charges > 0
if charges_wh > 0:
vat_rate = self.config.elecprice.vat_rate or 1.19
price_wh = ((price_eur_per_mwh / 1_000_000) + charges_wh) * vat_rate
else:
price_wh = price_eur_per_mwh / 1_000_000
# Store in series
series_data.at[orig_datetime] = price_wh
return series_data
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
mean = data.mean()
std = data.std()
lower_bound = mean - sigma * std
upper_bound = mean + sigma * std
capped_data = data.clip(min=lower_bound, max=upper_bound)
return capped_data
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray:
clean_history = self._cap_outliers(history)
model = ExponentialSmoothing(
clean_history, seasonal="add", seasonal_periods=seasonal_periods
).fit()
return model.forecast(hours)
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray:
clean_history = self._cap_outliers(history)
return np.full(hours, np.median(clean_history))
def _update_data(
self, force_update: Optional[bool] = False
) -> None: # tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Update forecast data in the ElecPriceDataRecord format.
Retrieves data from Energy-Charts, maps each Energy-Charts field to the corresponding
`ElecPriceDataRecord` and applies any necessary scaling.
The final mapped and processed data is inserted into the sequence as `ElecPriceDataRecord`.
"""
# New prices are available every day at 14:00
now = pd.Timestamp.now(tz=self.config.general.timezone)
midnight = now.normalize()
hours_ahead = 23 if now.time() < pd.Timestamp("14:00").time() else 47
end = midnight + pd.Timedelta(hours=hours_ahead)
if not self.start_datetime:
raise ValueError(f"Start DateTime not set: {self.start_datetime}")
# Determine if update is needed and how many days
past_days = 35
if self.highest_orig_datetime:
history_series = self.key_to_series(
key="elecprice_marketprice_wh", start_datetime=self.start_datetime
)
# If history lower, then start_datetime
if history_series.index.min() <= self.start_datetime:
past_days = 0
needs_update = end > self.highest_orig_datetime
else:
needs_update = True
if needs_update:
logger.info(
f"Update ElecPriceEnergyCharts is needed, last in history: {self.highest_orig_datetime}"
)
# Set start_date try to take data from 5 weeks back for prediction
start_date = to_datetime(
self.start_datetime - to_duration(f"{past_days} days"), as_string="YYYY-MM-DD"
)
# Get Energy-Charts electricity price data
energy_charts_data = self._request_forecast(
start_date=start_date, force_update=force_update
) # type: ignore
# Parse and store data
series_data = self._parse_data(energy_charts_data)
self.highest_orig_datetime = series_data.index.max()
self.key_from_series("elecprice_marketprice_wh", series_data)
else:
logger.info(
f"No Update ElecPriceEnergyCharts is needed, last in history: {self.highest_orig_datetime}"
)
# Generate history array for prediction
history = self.key_to_array(
key="elecprice_marketprice_wh",
end_datetime=self.highest_orig_datetime,
fill_method="linear",
)
amount_datasets = len(self.records)
if not self.highest_orig_datetime: # mypy fix
error_msg = f"Highest original datetime not available: {self.highest_orig_datetime}"
logger.error(error_msg)
raise ValueError(error_msg)
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
needed_hours = int(
self.config.prediction.hours
- ((self.highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
)
if needed_hours <= 0:
logger.warning(
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {self.highest_orig_datetime}, start_datetime {self.start_datetime}"
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records
return
if amount_datasets > 800: # we do the full ets with seasons of 1 week
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours)
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours)
elif amount_datasets > 0: # not enough data for ets, do median
prediction = self._predict_median(history, hours=needed_hours)
else:
logger.error("No data available for prediction")
raise ValueError("No data available")
# write predictions into the records, update if exist.
prediction_series = pd.Series(
data=prediction,
index=[
self.highest_orig_datetime + to_duration(f"{i + 1} hours")
for i in range(len(prediction))
],
)
self.key_from_series("elecprice_marketprice_wh", prediction_series)

View File

@@ -9,33 +9,34 @@ format, enabling consistent access to forecasted and historical elecprice attrib
from pathlib import Path from pathlib import Path
from typing import Optional, Union from typing import Optional, Union
from loguru import logger
from pydantic import Field, field_validator from pydantic import Field, field_validator
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
from akkudoktoreos.prediction.predictionabc import PredictionImportProvider from akkudoktoreos.prediction.predictionabc import PredictionImportProvider
logger = get_logger(__name__)
class ElecPriceImportCommonSettings(SettingsBaseModel): class ElecPriceImportCommonSettings(SettingsBaseModel):
"""Common settings for elecprice data import from file or JSON String.""" """Common settings for elecprice data import from file or JSON String."""
import_file_path: Optional[Union[str, Path]] = Field( elecpriceimport_file_path: Optional[Union[str, Path]] = Field(
default=None, default=None, description="Path to the file to import elecprice data from."
description="Path to the file to import elecprice data from.",
examples=[None, "/path/to/prices.json"],
) )
import_json: Optional[str] = Field( elecpriceimport_json: Optional[str] = Field(
default=None, default=None,
description="JSON string, dictionary of electricity price forecast value lists.", description="JSON string, dictionary of electricity price forecast value lists.",
examples=['{"elecprice_marketprice_wh": [0.0003384, 0.0003318, 0.0003284]}'],
) )
# Validators # Validators
@field_validator("import_file_path", mode="after") @field_validator("elecpriceimport_file_path", mode="after")
@classmethod @classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]: def validate_elecpriceimport_file_path(
cls, value: Optional[Union[str, Path]]
) -> Optional[Path]:
if value is None: if value is None:
return None return None
if isinstance(value, str): if isinstance(value, str):
@@ -61,15 +62,7 @@ class ElecPriceImport(ElecPriceProvider, PredictionImportProvider):
return "ElecPriceImport" return "ElecPriceImport"
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.elecprice.provider_settings is None: if self.config.elecpriceimport_file_path is not None:
logger.debug(f"{self.provider_id()} data update without provider settings.") self.import_from_file(self.config.elecpriceimport_file_path, key_prefix="elecprice")
return if self.config.elecpriceimport_json is not None:
if self.config.elecprice.provider_settings.import_file_path: self.import_from_json(self.config.elecpriceimport_json, key_prefix="elecprice")
self.import_from_file(
self.config.elecprice.provider_settings.import_file_path,
key_prefix="elecprice",
)
if self.config.elecprice.provider_settings.import_json:
self.import_from_json(
self.config.elecprice.provider_settings.import_json, key_prefix="elecprice"
)

View File

@@ -6,15 +6,13 @@ from pathlib import Path
import numpy as np import numpy as np
from scipy.interpolate import RegularGridInterpolator from scipy.interpolate import RegularGridInterpolator
from akkudoktoreos.core.coreabc import SingletonMixin
class SelfConsumptionProbabilityInterpolator: class SelfConsumptionProbabilityInterpolator:
def __init__(self, filepath: str | Path): def __init__(self, filepath: str | Path):
self.filepath = filepath self.filepath = filepath
# Load the RegularGridInterpolator # Load the RegularGridInterpolator
with open(self.filepath, "rb") as file: with open(self.filepath, "rb") as file:
self.interpolator: RegularGridInterpolator = pickle.load(file) # noqa: S301 self.interpolator: RegularGridInterpolator = pickle.load(file)
@lru_cache(maxsize=128) @lru_cache(maxsize=128)
def generate_points( def generate_points(
@@ -69,17 +67,5 @@ class SelfConsumptionProbabilityInterpolator:
# return self_consumption_rate # return self_consumption_rate
class EOSLoadInterpolator(SelfConsumptionProbabilityInterpolator, SingletonMixin): # Test the function
def __init__(self) -> None: # print(calculate_self_consumption(1000, 1200))
if hasattr(self, "_initialized"):
return
filename = Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
super().__init__(filename)
# Initialize the Energy Management System, it is a singleton.
eos_load_interpolator = EOSLoadInterpolator()
def get_eos_load_interpolator() -> EOSLoadInterpolator:
return eos_load_interpolator

View File

@@ -1,43 +1,18 @@
"""Load forecast module for load predictions.""" """Load forecast module for load predictions."""
from typing import Optional, Union from typing import Optional
from pydantic import Field, field_validator from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.loadabc import LoadProvider from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
from akkudoktoreos.prediction.loadvrm import LoadVrmCommonSettings
from akkudoktoreos.prediction.prediction import get_prediction
prediction_eos = get_prediction() logger = get_logger(__name__)
# Valid load providers
load_providers = [
provider.provider_id()
for provider in prediction_eos.providers
if isinstance(provider, LoadProvider)
]
class LoadCommonSettings(SettingsBaseModel): class LoadCommonSettings(SettingsBaseModel):
"""Load Prediction Configuration.""" """Common settings for loaod forecast providers."""
provider: Optional[str] = Field( load_provider: Optional[str] = Field(
default=None, default=None, description="Load provider id of provider to be used."
description="Load provider id of provider to be used.",
examples=["LoadAkkudoktor"],
) )
provider_settings: Optional[
Union[LoadAkkudoktorCommonSettings, LoadVrmCommonSettings, LoadImportCommonSettings]
] = Field(default=None, description="Provider settings", examples=[None])
# Validators
@field_validator("provider", mode="after")
@classmethod
def validate_provider(cls, value: Optional[str]) -> Optional[str]:
if value is None or value in load_providers:
return value
raise ValueError(f"Provider '{value}' is not a valid load provider: {load_providers}.")

View File

@@ -9,8 +9,11 @@ from typing import List, Optional
from pydantic import Field from pydantic import Field
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord
logger = get_logger(__name__)
class LoadDataRecord(PredictionRecord): class LoadDataRecord(PredictionRecord):
"""Represents a load data record containing various load attributes at a specific datetime.""" """Represents a load data record containing various load attributes at a specific datetime."""
@@ -30,18 +33,18 @@ class LoadProvider(PredictionProvider):
LoadProvider is a thread-safe singleton, ensuring only one instance of this class is created. LoadProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables: Configuration variables:
provider (str): Prediction provider for load. load_provider (str): Prediction provider for load.
Attributes: Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated. prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90. latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180. longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified. start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range, end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`. calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`. based on `start_datetime` and `prediction_historic_hours`.
""" """
# overload # overload
@@ -55,4 +58,4 @@ class LoadProvider(PredictionProvider):
return "LoadProvider" return "LoadProvider"
def enabled(self) -> bool: def enabled(self) -> bool:
return self.provider_id() == self.config.load.provider return self.provider_id() == self.config.load_provider

View File

@@ -3,19 +3,21 @@
from typing import Optional from typing import Optional
import numpy as np import numpy as np
from loguru import logger
from pydantic import Field from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadabc import LoadProvider from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
logger = get_logger(__name__)
class LoadAkkudoktorCommonSettings(SettingsBaseModel): class LoadAkkudoktorCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file.""" """Common settings for load data import from file."""
loadakkudoktor_year_energy: Optional[float] = Field( loadakkudoktor_year_energy: Optional[float] = Field(
default=None, description="Yearly energy consumption (kWh).", examples=[40421] default=None, description="Yearly energy consumption (kWh)."
) )
@@ -89,9 +91,7 @@ class LoadAkkudoktor(LoadProvider):
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"])) list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
) )
# Calculate values in W by relative profile data and yearly consumption given in kWh # Calculate values in W by relative profile data and yearly consumption given in kWh
data_year_energy = ( data_year_energy = profile_data * self.config.loadakkudoktor_year_energy * 1000
profile_data * self.config.load.provider_settings.loadakkudoktor_year_energy * 1000
)
except FileNotFoundError: except FileNotFoundError:
error_msg = f"Error: File {load_file} not found." error_msg = f"Error: File {load_file} not found."
logger.error(error_msg) logger.error(error_msg)
@@ -109,7 +109,7 @@ class LoadAkkudoktor(LoadProvider):
# We provide prediction starting at start of day, to be compatible to old system. # We provide prediction starting at start of day, to be compatible to old system.
# End date for prediction is prediction hours from now. # End date for prediction is prediction hours from now.
date = self.start_datetime.start_of("day") date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours) end_date = self.start_datetime.add(hours=self.config.prediction_hours)
while compare_datetimes(date, end_date).lt: while compare_datetimes(date, end_date).lt:
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour # Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that # Day indexing starts at 0, -1 because of that
@@ -120,12 +120,11 @@ class LoadAkkudoktor(LoadProvider):
} }
if date.day_of_week < 5: if date.day_of_week < 5:
# Monday to Friday (0..4) # Monday to Friday (0..4)
value_adjusted = hourly_stats[0] + weekday_adjust[date.hour] values["load_mean_adjusted"] = hourly_stats[0] + weekday_adjust[date.hour]
else: else:
# Saturday, Sunday (5, 6) # Saturday, Sunday (5, 6)
value_adjusted = hourly_stats[0] + weekend_adjust[date.hour] values["load_mean_adjusted"] = hourly_stats[0] + weekend_adjust[date.hour]
values["load_mean_adjusted"] = max(0, value_adjusted)
self.update_value(date, values) self.update_value(date, values)
date += to_duration("1 hour") date += to_duration("1 hour")
# We are working on fresh data (no cache), report update time # We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone) self.update_datetime = to_datetime(in_timezone=self.config.timezone)

View File

@@ -9,30 +9,28 @@ format, enabling consistent access to forecasted and historical load attributes.
from pathlib import Path from pathlib import Path
from typing import Optional, Union from typing import Optional, Union
from loguru import logger
from pydantic import Field, field_validator from pydantic import Field, field_validator
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadabc import LoadProvider from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.prediction.predictionabc import PredictionImportProvider from akkudoktoreos.prediction.predictionabc import PredictionImportProvider
logger = get_logger(__name__)
class LoadImportCommonSettings(SettingsBaseModel): class LoadImportCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file or JSON string.""" """Common settings for load data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field( load_import_file_path: Optional[Union[str, Path]] = Field(
default=None, default=None, description="Path to the file to import load data from."
description="Path to the file to import load data from.",
examples=[None, "/path/to/yearly_load.json"],
) )
import_json: Optional[str] = Field( load_import_json: Optional[str] = Field(
default=None, default=None, description="JSON string, dictionary of load forecast value lists."
description="JSON string, dictionary of load forecast value lists.",
examples=['{"load0_mean": [676.71, 876.19, 527.13]}'],
) )
# Validators # Validators
@field_validator("import_file_path", mode="after") @field_validator("load_import_file_path", mode="after")
@classmethod @classmethod
def validate_loadimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]: def validate_loadimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
if value is None: if value is None:
@@ -60,10 +58,7 @@ class LoadImport(LoadProvider, PredictionImportProvider):
return "LoadImport" return "LoadImport"
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.load.provider_settings is None: if self.config.load_import_file_path is not None:
logger.debug(f"{self.provider_id()} data update without provider settings.") self.import_from_file(self.config.load_import_file_path, key_prefix="load")
return if self.config.load_import_json is not None:
if self.config.load.provider_settings.import_file_path: self.import_from_json(self.config.load_import_json, key_prefix="load")
self.import_from_file(self.config.provider_settings.import_file_path, key_prefix="load")
if self.config.load.provider_settings.import_json:
self.import_from_json(self.config.load.provider_settings.import_json, key_prefix="load")

View File

@@ -1,109 +0,0 @@
"""Retrieves load forecast data from VRM API."""
from typing import Any, Optional, Union
import requests
from loguru import logger
from pendulum import DateTime
from pydantic import Field, ValidationError
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.utils.datetimeutil import to_datetime
class VrmForecastRecords(PydanticBaseModel):
vrm_consumption_fc: list[tuple[int, float]]
solar_yield_forecast: list[tuple[int, float]]
class VrmForecastResponse(PydanticBaseModel):
success: bool
records: VrmForecastRecords
totals: dict
class LoadVrmCommonSettings(SettingsBaseModel):
"""Common settings for VRM API."""
load_vrm_token: str = Field(
default="your-token", description="Token for Connecting VRM API", examples=["your-token"]
)
load_vrm_idsite: int = Field(default=12345, description="VRM-Installation-ID", examples=[12345])
class LoadVrm(LoadProvider):
"""Fetch Load forecast data from VRM API."""
@classmethod
def provider_id(cls) -> str:
return "LoadVrm"
@classmethod
def _validate_data(cls, json_str: Union[bytes, Any]) -> VrmForecastResponse:
"""Validate the VRM API load forecast response."""
try:
return VrmForecastResponse.model_validate_json(json_str)
except ValidationError as e:
error_msg = "\n".join(
f"Field: {' -> '.join(str(x) for x in err['loc'])}\n"
f"Error: {err['msg']}\nType: {err['type']}"
for err in e.errors()
)
logger.error(f"VRM-API schema validation failed:\n{error_msg}")
raise ValueError(error_msg)
def _request_forecast(self, start_ts: int, end_ts: int) -> VrmForecastResponse:
"""Fetch forecast data from Victron VRM API."""
base_url = "https://vrmapi.victronenergy.com/v2/installations"
installation_id = self.config.load.provider_settings.load_vrm_idsite
api_token = self.config.load.provider_settings.load_vrm_token
url = f"{base_url}/{installation_id}/stats?type=forecast&start={start_ts}&end={end_ts}&interval=hours"
headers = {"X-Authorization": f"Token {api_token}", "Content-Type": "application/json"}
logger.debug(f"Requesting VRM load forecast: {url}")
try:
response = requests.get(url, headers=headers, timeout=30)
response.raise_for_status()
except requests.RequestException as e:
logger.error(f"Error during VRM API request: {e}")
raise RuntimeError("Failed to fetch load forecast from VRM API") from e
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
return self._validate_data(response.content)
def _ts_to_datetime(self, timestamp: int) -> DateTime:
"""Convert UNIX ms timestamp to timezone-aware datetime."""
return to_datetime(timestamp / 1000, in_timezone=self.config.general.timezone)
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Fetch and store VRM load forecast as load_mean and related values."""
start_date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
start_ts = int(start_date.timestamp())
end_ts = int(end_date.timestamp())
logger.info(f"Updating Load forecast from VRM: {start_date} to {end_date}")
vrm_forecast_data = self._request_forecast(start_ts, end_ts)
load_mean_data = []
for timestamp, value in vrm_forecast_data.records.vrm_consumption_fc:
date = self._ts_to_datetime(timestamp)
rounded_value = round(value, 2)
self.update_value(
date,
{"load_mean": rounded_value, "load_std": 0.0, "load_mean_adjusted": rounded_value},
)
load_mean_data.append((date, rounded_value))
logger.debug(f"Updated load_mean with {len(load_mean_data)} entries.")
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
if __name__ == "__main__":
lv = LoadVrm()
lv._update_data()

View File

@@ -28,50 +28,78 @@ Attributes:
from typing import List, Optional, Union from typing import List, Optional, Union
from pydantic import Field from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.elecpriceakkudoktor import ElecPriceAkkudoktor from akkudoktoreos.prediction.elecpriceakkudoktor import ElecPriceAkkudoktor
from akkudoktoreos.prediction.elecpriceenergycharts import ElecPriceEnergyCharts
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImport from akkudoktoreos.prediction.elecpriceimport import ElecPriceImport
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktor from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktor
from akkudoktoreos.prediction.loadimport import LoadImport from akkudoktoreos.prediction.loadimport import LoadImport
from akkudoktoreos.prediction.loadvrm import LoadVrm
from akkudoktoreos.prediction.predictionabc import PredictionContainer from akkudoktoreos.prediction.predictionabc import PredictionContainer
from akkudoktoreos.prediction.pvforecastakkudoktor import PVForecastAkkudoktor from akkudoktoreos.prediction.pvforecastakkudoktor import PVForecastAkkudoktor
from akkudoktoreos.prediction.pvforecastimport import PVForecastImport from akkudoktoreos.prediction.pvforecastimport import PVForecastImport
from akkudoktoreos.prediction.pvforecastvrm import PVForecastVrm
from akkudoktoreos.prediction.weatherbrightsky import WeatherBrightSky from akkudoktoreos.prediction.weatherbrightsky import WeatherBrightSky
from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside
from akkudoktoreos.prediction.weatherimport import WeatherImport from akkudoktoreos.prediction.weatherimport import WeatherImport
from akkudoktoreos.utils.datetimeutil import to_timezone
class PredictionCommonSettings(SettingsBaseModel): class PredictionCommonSettings(SettingsBaseModel):
"""General Prediction Configuration. """Base configuration for prediction settings, including forecast duration, geographic location, and time zone.
This class provides configuration for prediction settings, allowing users to specify This class provides configuration for prediction settings, allowing users to specify
parameters such as the forecast duration (in hours). parameters such as the forecast duration (in hours) and location (latitude and longitude).
Validators ensure each parameter is within a specified range. Validators ensure each parameter is within a specified range. A computed property, `timezone`,
determines the time zone based on latitude and longitude.
Attributes: Attributes:
hours (Optional[int]): Number of hours into the future for predictions. prediction_hours (Optional[int]): Number of hours into the future for predictions.
Must be non-negative. Must be non-negative.
historic_hours (Optional[int]): Number of hours into the past for historical data. prediction_historic_hours (Optional[int]): Number of hours into the past for historical data.
Must be non-negative. Must be non-negative.
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
Properties:
timezone (Optional[str]): Computed time zone string based on the specified latitude
and longitude.
Validators: Validators:
validate_hours (int): Ensures `hours` is a non-negative integer. validate_prediction_hours (int): Ensures `prediction_hours` is a non-negative integer.
validate_historic_hours (int): Ensures `historic_hours` is a non-negative integer. validate_prediction_historic_hours (int): Ensures `prediction_historic_hours` is a non-negative integer.
validate_latitude (float): Ensures `latitude` is within the range -90 to 90.
validate_longitude (float): Ensures `longitude` is within the range -180 to 180.
""" """
hours: Optional[int] = Field( prediction_hours: Optional[int] = Field(
default=48, ge=0, description="Number of hours into the future for predictions" default=48, ge=0, description="Number of hours into the future for predictions"
) )
historic_hours: Optional[int] = Field( prediction_historic_hours: Optional[int] = Field(
default=48, default=48,
ge=0, ge=0,
description="Number of hours into the past for historical predictions data", description="Number of hours into the past for historical predictions data",
) )
latitude: Optional[float] = Field(
default=None,
ge=-90.0,
le=90.0,
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
)
longitude: Optional[float] = Field(
default=None,
ge=-180.0,
le=180.0,
description="Longitude in decimal degrees, within -180 to 180 (°)",
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def timezone(self) -> Optional[str]:
"""Compute timezone based on latitude and longitude."""
if self.latitude and self.longitude:
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
return None
class Prediction(PredictionContainer): class Prediction(PredictionContainer):
@@ -86,13 +114,10 @@ class Prediction(PredictionContainer):
providers: List[ providers: List[
Union[ Union[
ElecPriceAkkudoktor, ElecPriceAkkudoktor,
ElecPriceEnergyCharts,
ElecPriceImport, ElecPriceImport,
LoadAkkudoktor, LoadAkkudoktor,
LoadVrm,
LoadImport, LoadImport,
PVForecastAkkudoktor, PVForecastAkkudoktor,
PVForecastVrm,
PVForecastImport, PVForecastImport,
WeatherBrightSky, WeatherBrightSky,
WeatherClearOutside, WeatherClearOutside,
@@ -103,13 +128,10 @@ class Prediction(PredictionContainer):
# Initialize forecast providers, all are singletons. # Initialize forecast providers, all are singletons.
elecprice_akkudoktor = ElecPriceAkkudoktor() elecprice_akkudoktor = ElecPriceAkkudoktor()
elecprice_energy_charts = ElecPriceEnergyCharts()
elecprice_import = ElecPriceImport() elecprice_import = ElecPriceImport()
load_akkudoktor = LoadAkkudoktor() load_akkudoktor = LoadAkkudoktor()
load_vrm = LoadVrm()
load_import = LoadImport() load_import = LoadImport()
pvforecast_akkudoktor = PVForecastAkkudoktor() pvforecast_akkudoktor = PVForecastAkkudoktor()
pvforecast_vrm = PVForecastVrm()
pvforecast_import = PVForecastImport() pvforecast_import = PVForecastImport()
weather_brightsky = WeatherBrightSky() weather_brightsky = WeatherBrightSky()
weather_clearoutside = WeatherClearOutside() weather_clearoutside = WeatherClearOutside()
@@ -123,13 +145,10 @@ def get_prediction() -> Prediction:
prediction = Prediction( prediction = Prediction(
providers=[ providers=[
elecprice_akkudoktor, elecprice_akkudoktor,
elecprice_energy_charts,
elecprice_import, elecprice_import,
load_akkudoktor, load_akkudoktor,
load_vrm,
load_import, load_import,
pvforecast_akkudoktor, pvforecast_akkudoktor,
pvforecast_vrm,
pvforecast_import, pvforecast_import,
weather_brightsky, weather_brightsky,
weather_clearoutside, weather_clearoutside,

View File

@@ -10,7 +10,6 @@ and manipulation of configuration and prediction data in a clear, scalable, and
from typing import List, Optional from typing import List, Optional
from loguru import logger
from pendulum import DateTime from pendulum import DateTime
from pydantic import Field, computed_field from pydantic import Field, computed_field
@@ -23,8 +22,11 @@ from akkudoktoreos.core.dataabc import (
DataRecord, DataRecord,
DataSequence, DataSequence,
) )
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.utils.datetimeutil import to_duration from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class PredictionBase(DataBase, MeasurementMixin): class PredictionBase(DataBase, MeasurementMixin):
"""Base class for handling prediction data. """Base class for handling prediction data.
@@ -112,16 +114,16 @@ class PredictionStartEndKeepMixin(PredictionBase):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def end_datetime(self) -> Optional[DateTime]: def end_datetime(self) -> Optional[DateTime]:
"""Compute the end datetime based on the `start_datetime` and `hours`. """Compute the end datetime based on the `start_datetime` and `prediction_hours`.
Ajusts the calculated end time if DST transitions occur within the prediction window. Ajusts the calculated end time if DST transitions occur within the prediction window.
Returns: Returns:
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing. Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
""" """
if self.start_datetime and self.config.prediction.hours: if self.start_datetime and self.config.prediction_hours:
end_datetime = self.start_datetime + to_duration( end_datetime = self.start_datetime + to_duration(
f"{self.config.prediction.hours} hours" f"{self.config.prediction_hours} hours"
) )
dst_change = end_datetime.offset_hours - self.start_datetime.offset_hours dst_change = end_datetime.offset_hours - self.start_datetime.offset_hours
logger.debug(f"Pre: {self.start_datetime}..{end_datetime}: DST change: {dst_change}") logger.debug(f"Pre: {self.start_datetime}..{end_datetime}: DST change: {dst_change}")
@@ -145,10 +147,10 @@ class PredictionStartEndKeepMixin(PredictionBase):
return None return None
historic_hours = self.historic_hours_min() historic_hours = self.historic_hours_min()
if ( if (
self.config.prediction.historic_hours self.config.prediction_historic_hours
and self.config.prediction.historic_hours > historic_hours and self.config.prediction_historic_hours > historic_hours
): ):
historic_hours = int(self.config.prediction.historic_hours) historic_hours = int(self.config.prediction_historic_hours)
return self.start_datetime - to_duration(f"{historic_hours} hours") return self.start_datetime - to_duration(f"{historic_hours} hours")
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@@ -204,6 +206,9 @@ class PredictionProvider(PredictionStartEndKeepMixin, DataProvider):
force_enable (bool, optional): If True, forces the update even if the provider is disabled. force_enable (bool, optional): If True, forces the update even if the provider is disabled.
force_update (bool, optional): If True, forces the provider to update the data even if still cached. force_update (bool, optional): If True, forces the provider to update the data even if still cached.
""" """
# Update prediction configuration
self.config.update()
# Check after configuration is updated. # Check after configuration is updated.
if not force_enable and not self.enabled(): if not force_enable and not self.enabled():
return return

View File

@@ -1,176 +1,397 @@
"""PV forecast module for PV power predictions.""" """PV forecast module for PV power predictions."""
from typing import Any, List, Optional, Self, Union from typing import Any, ClassVar, List, Optional
from pydantic import Field, computed_field, field_validator, model_validator from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.prediction import get_prediction from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.pvforecastabc import PVForecastProvider
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
from akkudoktoreos.prediction.pvforecastvrm import PVforecastVrmCommonSettings
from akkudoktoreos.utils.docs import get_model_structure_from_examples
prediction_eos = get_prediction() logger = get_logger(__name__)
# Valid PV forecast providers
pvforecast_providers = [
provider.provider_id()
for provider in prediction_eos.providers
if isinstance(provider, PVForecastProvider)
]
class PVForecastPlaneSetting(SettingsBaseModel):
"""PV Forecast Plane Configuration."""
# latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
surface_tilt: Optional[float] = Field(
default=30.0,
ge=0.0,
le=90.0,
description="Tilt angle from horizontal plane. Ignored for two-axis tracking.",
examples=[10.0, 20.0],
)
surface_azimuth: Optional[float] = Field(
default=180.0,
ge=0.0,
le=360.0,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
examples=[180.0, 90.0],
)
userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
examples=[[10.0, 20.0, 30.0], [5.0, 15.0, 25.0]],
)
peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW.", examples=[5.0, 3.5]
)
pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
loss: Optional[float] = Field(default=14.0, description="Sum of PV system losses in percent")
trackingtype: Optional[int] = Field(
default=None,
ge=0,
le=5,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
examples=[0, 1, 2, 3, 4, 5],
)
optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
examples=[False],
)
optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
examples=[False],
)
albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
examples=[None],
)
module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane.", examples=[None]
)
inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane.", examples=[None]
)
inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter [W].", examples=[6000, 4000]
)
modules_per_string: Optional[int] = Field(
default=None,
description="Number of the PV modules of the strings of this plane.",
examples=[20],
)
strings_per_inverter: Optional[int] = Field(
default=None,
description="Number of the strings of the inverter of this plane.",
examples=[2],
)
@model_validator(mode="after")
def validate_list_length(self) -> Self:
# Check if either attribute is set and add to active planes
if self.trackingtype == 2:
# Tilt angle from horizontal plane is ignored for two-axis tracking.
if self.surface_azimuth is None:
raise ValueError("If trackingtype is set, azimuth must be set as well.")
elif self.surface_tilt is None or self.surface_azimuth is None:
raise ValueError("surface_tilt and surface_azimuth must be set.")
return self
@field_validator("mountingplace")
def validate_mountingplace(cls, mountingplace: Optional[str]) -> Optional[str]:
if mountingplace is not None and mountingplace not in ["free", "building"]:
raise ValueError(f"Invalid mountingplace: {mountingplace}")
return mountingplace
@field_validator("pvtechchoice")
def validate_pvtechchoice(cls, pvtechchoice: Optional[str]) -> Optional[str]:
if pvtechchoice is not None and pvtechchoice not in ["crystSi", "CIS", "CdTe", "Unknown"]:
raise ValueError(f"Invalid pvtechchoice: {pvtechchoice}")
return pvtechchoice
class PVForecastCommonSettings(SettingsBaseModel): class PVForecastCommonSettings(SettingsBaseModel):
"""PV Forecast Configuration."""
# General plane parameters # General plane parameters
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html # https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html
# Inverter Parameters # Inverter Parameters
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/inverter.html # https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/inverter.html
provider: Optional[str] = Field( pvforecast_provider: Optional[str] = Field(
default=None, description="PVForecast provider id of provider to be used."
)
# pvforecast0_latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
# Plane 0
pvforecast0_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast0_surface_azimuth: Optional[float] = Field(
default=None, default=None,
description="PVForecast provider id of provider to be used.", description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
examples=["PVForecastAkkudoktor"],
) )
pvforecast0_userhorizon: Optional[List[float]] = Field(
provider_settings: Optional[
Union[PVForecastImportCommonSettings, PVforecastVrmCommonSettings]
] = Field(default=None, description="Provider settings", examples=[None])
planes: Optional[list[PVForecastPlaneSetting]] = Field(
default=None, default=None,
description="Plane configuration.", description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
examples=[get_model_structure_from_examples(PVForecastPlaneSetting, True)], )
pvforecast0_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast0_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast0_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast0_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast0_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast0_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast0_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast0_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast0_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast0_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast0_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast0_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast0_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 1
pvforecast1_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast1_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast1_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast1_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast1_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast1_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast1_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast1_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast1_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast1_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast1_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast1_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast1_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast1_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast1_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast1_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 2
pvforecast2_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast2_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast2_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast2_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast2_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast2_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast2_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast2_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast2_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast2_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast2_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast2_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast2_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast2_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast2_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast2_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 3
pvforecast3_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast3_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast3_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast3_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast3_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast3_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast3_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast3_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast3_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast3_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast3_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast3_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast3_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast3_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast3_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast3_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 4
pvforecast4_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast4_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast4_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast4_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast4_pvtechchoice: Optional[str] = Field(
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast4_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast4_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast4_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast4_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast4_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast4_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast4_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast4_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast4_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast4_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast4_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 5
pvforecast5_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast5_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast5_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast5_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast5_pvtechchoice: Optional[str] = Field(
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast5_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast5_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast5_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast5_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast5_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast5_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast5_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast5_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast5_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast5_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast5_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
) )
max_planes: Optional[int] = Field( pvforecast_max_planes: ClassVar[int] = 6 # Maximum number of planes that can be set
default=0,
ge=0,
description="Maximum number of planes that can be set",
)
# Validators # Computed fields
@field_validator("provider", mode="after")
@classmethod
def validate_provider(cls, value: Optional[str]) -> Optional[str]:
if value is None or value in pvforecast_providers:
return value
raise ValueError(
f"Provider '{value}' is not a valid PV forecast provider: {pvforecast_providers}."
)
## Computed fields
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def planes_peakpower(self) -> List[float]: def pvforecast_planes(self) -> List[str]:
"""Compute a list of active planes."""
active_planes = []
# Loop through pvforecast0 to pvforecast4
for i in range(self.pvforecast_max_planes):
plane = f"pvforecast{i}"
tackingtype_attr = f"{plane}_trackingtype"
tilt_attr = f"{plane}_surface_tilt"
azimuth_attr = f"{plane}_surface_azimuth"
# Check if either attribute is set and add to active planes
if getattr(self, tackingtype_attr, None) == 2:
# Tilt angle from horizontal plane is gnored for two-axis tracking.
if getattr(self, azimuth_attr, None) is not None:
active_planes.append(f"pvforecast{i}")
elif getattr(self, tilt_attr, None) and getattr(self, azimuth_attr, None):
active_planes.append(f"pvforecast{i}")
return active_planes
@computed_field # type: ignore[prop-decorator]
@property
def pvforecast_planes_peakpower(self) -> List[float]:
"""Compute a list of the peak power per active planes.""" """Compute a list of the peak power per active planes."""
planes_peakpower = [] planes_peakpower = []
if self.planes: for plane in self.pvforecast_planes:
for plane in self.planes: peakpower_attr = f"{plane}_peakpower"
peakpower = plane.peakpower peakpower = getattr(self, peakpower_attr, None)
if peakpower is None: if peakpower is None:
# TODO calculate peak power from modules/strings # TODO calculate peak power from modules/strings
planes_peakpower.append(float(5000)) planes_peakpower.append(float(5000))
@@ -181,13 +402,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def planes_azimuth(self) -> List[float]: def pvforecast_planes_azimuth(self) -> List[float]:
"""Compute a list of the azimuths per active planes.""" """Compute a list of the azimuths per active planes."""
planes_azimuth = [] planes_azimuth = []
if self.planes: for plane in self.pvforecast_planes:
for plane in self.planes: azimuth_attr = f"{plane}_surface_azimuth"
azimuth = plane.surface_azimuth azimuth = getattr(self, azimuth_attr, None)
if azimuth is None: if azimuth is None:
# TODO Use default # TODO Use default
planes_azimuth.append(float(180)) planes_azimuth.append(float(180))
@@ -198,13 +419,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def planes_tilt(self) -> List[float]: def pvforecast_planes_tilt(self) -> List[float]:
"""Compute a list of the tilts per active planes.""" """Compute a list of the tilts per active planes."""
planes_tilt = [] planes_tilt = []
if self.planes: for plane in self.pvforecast_planes:
for plane in self.planes: tilt_attr = f"{plane}_surface_tilt"
tilt = plane.surface_tilt tilt = getattr(self, tilt_attr, None)
if tilt is None: if tilt is None:
# TODO Use default # TODO Use default
planes_tilt.append(float(30)) planes_tilt.append(float(30))
@@ -215,13 +436,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def planes_userhorizon(self) -> Any: def pvforecast_planes_userhorizon(self) -> Any:
"""Compute a list of the user horizon per active planes.""" """Compute a list of the user horizon per active planes."""
planes_userhorizon = [] planes_userhorizon = []
if self.planes: for plane in self.pvforecast_planes:
for plane in self.planes: userhorizon_attr = f"{plane}_userhorizon"
userhorizon = plane.userhorizon userhorizon = getattr(self, userhorizon_attr, None)
if userhorizon is None: if userhorizon is None:
# TODO Use default # TODO Use default
planes_userhorizon.append([float(0), float(0)]) planes_userhorizon.append([float(0), float(0)])
@@ -232,13 +453,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator] @computed_field # type: ignore[prop-decorator]
@property @property
def planes_inverter_paco(self) -> Any: def pvforecast_planes_inverter_paco(self) -> Any:
"""Compute a list of the maximum power rating of the inverter per active planes.""" """Compute a list of the maximum power rating of the inverter per active planes."""
planes_inverter_paco = [] planes_inverter_paco = []
if self.planes: for plane in self.pvforecast_planes:
for plane in self.planes: inverter_paco_attr = f"{plane}_inverter_paco"
inverter_paco = plane.inverter_paco inverter_paco = getattr(self, inverter_paco_attr, None)
if inverter_paco is None: if inverter_paco is None:
# TODO Use default - no clipping # TODO Use default - no clipping
planes_inverter_paco.append(25000.0) planes_inverter_paco.append(25000.0)

View File

@@ -7,11 +7,13 @@ Notes:
from abc import abstractmethod from abc import abstractmethod
from typing import List, Optional from typing import List, Optional
from loguru import logger
from pydantic import Field from pydantic import Field
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord
logger = get_logger(__name__)
class PVForecastDataRecord(PredictionRecord): class PVForecastDataRecord(PredictionRecord):
"""Represents a pvforecast data record containing various pvforecast attributes at a specific datetime.""" """Represents a pvforecast data record containing various pvforecast attributes at a specific datetime."""
@@ -26,18 +28,18 @@ class PVForecastProvider(PredictionProvider):
PVForecastProvider is a thread-safe singleton, ensuring only one instance of this class is created. PVForecastProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables: Configuration variables:
provider (str): Prediction provider for pvforecast. pvforecast_provider (str): Prediction provider for pvforecast.
Attributes: Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated. prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90. latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180. longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions (inlcusive), defaults to the current datetime if unspecified. start_datetime (datetime, optional): The starting datetime for predictions (inlcusive), defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range (exclusive), end_datetime (datetime, computed): The datetime representing the end of the prediction range (exclusive),
calculated based on `start_datetime` and `hours`. calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data (inclusive), calculated keep_datetime (datetime, computed): The earliest datetime for retaining historical data (inclusive), calculated
based on `start_datetime` and `historic_hours`. based on `start_datetime` and `prediction_historic_hours`.
""" """
# overload # overload
@@ -52,6 +54,6 @@ class PVForecastProvider(PredictionProvider):
def enabled(self) -> bool: def enabled(self) -> bool:
logger.debug( logger.debug(
f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast.provider}" f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast_provider}"
) )
return self.provider_id() == self.config.pvforecast.provider return self.provider_id() == self.config.pvforecast_provider

View File

@@ -14,33 +14,21 @@ Classes:
Example: Example:
# Set up the configuration with necessary fields for URL generation # Set up the configuration with necessary fields for URL generation
settings_data = { settings_data = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
}, "pvforecast_provider": "Akkudoktor",
"prediction": { "pvforecast0_peakpower": 5.0,
"hours": 48, "pvforecast0_surface_azimuth": -10,
"historic_hours": 24, "pvforecast0_surface_tilt": 7,
}, "pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast": { "pvforecast0_inverter_paco": 10000,
"provider": "PVForecastAkkudoktor", "pvforecast1_peakpower": 4.8,
"planes": [ "pvforecast1_surface_azimuth": -90,
{ "pvforecast1_surface_tilt": 7,
"peakpower": 5.0, "pvforecast1_userhorizon": [30, 30, 30, 50],
"surface_azimuth": 170, "pvforecast1_inverter_paco": 10000,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": 90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
}
]
}
} }
# Create the config instance from the provided data # Create the config instance from the provided data
@@ -59,12 +47,12 @@ Example:
print(forecast.report_ac_power_and_measurement()) print(forecast.report_ac_power_and_measurement())
Attributes: Attributes:
hours (int): Number of hours into the future to forecast. Default is 48. prediction_hours (int): Number of hours into the future to forecast. Default is 48.
historic_hours (int): Number of past hours to retain for analysis. Default is 24. prediction_historic_hours (int): Number of past hours to retain for analysis. Default is 24.
latitude (float): Latitude for the forecast location. latitude (float): Latitude for the forecast location.
longitude (float): Longitude for the forecast location. longitude (float): Longitude for the forecast location.
start_datetime (datetime): Start time for the forecast, defaulting to current datetime. start_datetime (datetime): Start time for the forecast, defaulting to current datetime.
end_datetime (datetime): Computed end datetime based on `start_datetime` and `hours`. end_datetime (datetime): Computed end datetime based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime): Computed threshold datetime for retaining historical data. keep_datetime (datetime): Computed threshold datetime for retaining historical data.
Methods: Methods:
@@ -78,22 +66,24 @@ Methods:
from typing import Any, List, Optional, Union from typing import Any, List, Optional, Union
import requests import requests
from loguru import logger from pydantic import Field, ValidationError, computed_field
from pydantic import Field, ValidationError, computed_field, field_validator
from akkudoktoreos.core.cache import cache_in_file from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.pvforecastabc import ( from akkudoktoreos.prediction.pvforecastabc import (
PVForecastDataRecord, PVForecastDataRecord,
PVForecastProvider, PVForecastProvider,
) )
from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
logger = get_logger(__name__)
class AkkudoktorForecastHorizon(PydanticBaseModel): class AkkudoktorForecastHorizon(PydanticBaseModel):
altitude: int altitude: int
azimuthFrom: float azimuthFrom: int
azimuthTo: float azimuthTo: int
class AkkudoktorForecastMeta(PydanticBaseModel): class AkkudoktorForecastMeta(PydanticBaseModel):
@@ -112,30 +102,6 @@ class AkkudoktorForecastMeta(PydanticBaseModel):
horizont: List[List[AkkudoktorForecastHorizon]] horizont: List[List[AkkudoktorForecastHorizon]]
horizontString: List[str] horizontString: List[str]
@field_validator("power", "azimuth", "tilt", "powerInverter", mode="before")
@classmethod
def ensure_list(cls, v: Any) -> List[int]:
return v if isinstance(v, list) else [v]
@field_validator("horizont", mode="before")
@classmethod
def normalize_horizont(cls, v: Any) -> List[List[AkkudoktorForecastHorizon]]:
if isinstance(v, list):
# Case: flat list of dicts
if v and isinstance(v[0], dict):
return [v]
# Already in correct nested form
if v and isinstance(v[0], list):
return v
return v
@field_validator("horizontString", mode="before")
@classmethod
def parse_horizont_string(cls, v: Any) -> List[str]:
if isinstance(v, str):
return [s.strip() for s in v.split(",")]
return v
class AkkudoktorForecastValue(PydanticBaseModel): class AkkudoktorForecastValue(PydanticBaseModel):
datetime: str datetime: str
@@ -193,13 +159,13 @@ class PVForecastAkkudoktor(PVForecastProvider):
of hours into the future and retains historical data. of hours into the future and retains historical data.
Attributes: Attributes:
hours (int, optional): Number of hours in the future for the forecast. prediction_hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data. prediction_historic_hours (int, optional): Number of past hours for retaining data.
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90. latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180. longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime. start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`. end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`. keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods: Methods:
provider_id(): Returns a unique identifier for the provider. provider_id(): Returns a unique identifier for the provider.
@@ -237,24 +203,19 @@ class PVForecastAkkudoktor(PVForecastProvider):
"""Build akkudoktor.net API request URL.""" """Build akkudoktor.net API request URL."""
base_url = "https://api.akkudoktor.net/forecast" base_url = "https://api.akkudoktor.net/forecast"
query_params = [ query_params = [
f"lat={self.config.general.latitude}", f"lat={self.config.latitude}",
f"lon={self.config.general.longitude}", f"lon={self.config.longitude}",
] ]
for i in range(len(self.config.pvforecast.planes)): for i in range(len(self.config.pvforecast_planes)):
query_params.append(f"power={int(self.config.pvforecast.planes_peakpower[i] * 1000)}") query_params.append(f"power={int(self.config.pvforecast_planes_peakpower[i] * 1000)}")
# EOS orientation of of pv modules in azimuth in degree: query_params.append(f"azimuth={int(self.config.pvforecast_planes_azimuth[i])}")
# north=0, east=90, south=180, west=270 query_params.append(f"tilt={int(self.config.pvforecast_planes_tilt[i])}")
# Akkudoktor orientation of pv modules in azimuth in degree:
# north=+-180, east=-90, south=0, west=90
azimuth_akkudoktor = int(self.config.pvforecast.planes_azimuth[i]) - 180
query_params.append(f"azimuth={azimuth_akkudoktor}")
query_params.append(f"tilt={int(self.config.pvforecast.planes_tilt[i])}")
query_params.append( query_params.append(
f"powerInverter={int(self.config.pvforecast.planes_inverter_paco[i])}" f"powerInverter={int(self.config.pvforecast_planes_inverter_paco[i])}"
) )
horizon_values = ",".join( horizon_values = ",".join(
str(round(h)) for h in self.config.pvforecast.planes_userhorizon[i] str(int(h)) for h in self.config.pvforecast_planes_userhorizon[i]
) )
query_params.append(f"horizont={horizon_values}") query_params.append(f"horizont={horizon_values}")
@@ -265,7 +226,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
"cellCoEff=-0.36", "cellCoEff=-0.36",
"inverterEfficiency=0.8", "inverterEfficiency=0.8",
"albedo=0.25", "albedo=0.25",
f"timezone={self.config.general.timezone}", f"timezone={self.config.timezone}",
"hourly=relativehumidity_2m%2Cwindspeed_10m", "hourly=relativehumidity_2m%2Cwindspeed_10m",
] ]
) )
@@ -289,12 +250,12 @@ class PVForecastAkkudoktor(PVForecastProvider):
Raises: Raises:
ValueError: If the API response does not include expected `meta` data. ValueError: If the API response does not include expected `meta` data.
""" """
response = requests.get(self._url(), timeout=10) response = requests.get(self._url())
response.raise_for_status() # Raise an error for bad responses response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {self._url()}: {response}") logger.debug(f"Response from {self._url()}: {response}")
akkudoktor_data = self._validate_data(response.content) akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time # We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return akkudoktor_data return akkudoktor_data
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
@@ -304,7 +265,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
`PVForecastAkkudoktorDataRecord`. `PVForecastAkkudoktorDataRecord`.
""" """
# Assure we have something to request PV power for. # Assure we have something to request PV power for.
if not self.config.pvforecast.planes: if not self.config.pvforecast_planes:
# No planes for PV # No planes for PV
error_msg = "Requested PV forecast, but no planes configured." error_msg = "Requested PV forecast, but no planes configured."
logger.error(f"Configuration error: {error_msg}") logger.error(f"Configuration error: {error_msg}")
@@ -314,29 +275,28 @@ class PVForecastAkkudoktor(PVForecastProvider):
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
# Timezone of the PV system # Timezone of the PV system
if self.config.general.timezone != akkudoktor_data.meta.timezone: if self.config.timezone != akkudoktor_data.meta.timezone:
error_msg = f"Configured timezone '{self.config.general.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'." error_msg = f"Configured timezone '{self.config.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'."
logger.error(f"Akkudoktor schema change: {error_msg}") logger.error(f"Akkudoktor schema change: {error_msg}")
raise ValueError(error_msg) raise ValueError(error_msg)
# Assumption that all lists are the same length and are ordered chronologically # Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps. # in ascending order and have the same timestamps.
if len(akkudoktor_data.values[0]) < self.config.prediction.hours: if len(akkudoktor_data.values[0]) < self.config.prediction_hours:
# Expect one value set per prediction hour # Expect one value set per prediction hour
error_msg = ( error_msg = (
f"The forecast must cover at least {self.config.prediction.hours} hours, " f"The forecast must cover at least {self.config.prediction_hours} hours, "
f"but only {len(akkudoktor_data.values[0])} data sets are given in forecast data." f"but only {len(akkudoktor_data.values[0])} data sets are given in forecast data."
) )
logger.error(f"Akkudoktor schema change: {error_msg}") logger.error(f"Akkudoktor schema change: {error_msg}")
raise ValueError(error_msg) raise ValueError(error_msg)
if not self.start_datetime: assert self.start_datetime # mypy fix
raise ValueError(f"Start DateTime not set: {self.start_datetime}")
# Iterate over forecast data points # Iterate over forecast data points
for forecast_values in zip(*akkudoktor_data.values): for forecast_values in zip(*akkudoktor_data.values):
original_datetime = forecast_values[0].datetime original_datetime = forecast_values[0].datetime
dt = to_datetime(original_datetime, in_timezone=self.config.general.timezone) dt = to_datetime(original_datetime, in_timezone=self.config.timezone)
# Skip outdated forecast data # Skip outdated forecast data
if compare_datetimes(dt, self.start_datetime.start_of("day")).lt: if compare_datetimes(dt, self.start_datetime.start_of("day")).lt:
@@ -354,9 +314,9 @@ class PVForecastAkkudoktor(PVForecastProvider):
self.update_value(dt, data) self.update_value(dt, data)
if len(self) < self.config.prediction.hours: if len(self) < self.config.prediction_hours:
raise ValueError( raise ValueError(
f"The forecast must cover at least {self.config.prediction.hours} hours, " f"The forecast must cover at least {self.config.prediction_hours} hours, "
f"but only {len(self)} hours starting from {self.start_datetime} " f"but only {len(self)} hours starting from {self.start_datetime} "
f"were predicted." f"were predicted."
) )
@@ -405,47 +365,31 @@ if __name__ == "__main__":
""" """
# Set up the configuration with necessary fields for URL generation # Set up the configuration with necessary fields for URL generation
settings_data = { settings_data = {
"general": { "prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52, "latitude": 52.52,
"longitude": 13.405, "longitude": 13.405,
}, "pvforecast_provider": "PVForecastAkkudoktor",
"prediction": { "pvforecast0_peakpower": 5.0,
"hours": 48, "pvforecast0_surface_azimuth": -10,
"historic_hours": 24, "pvforecast0_surface_tilt": 7,
}, "pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast": { "pvforecast0_inverter_paco": 10000,
"provider": "PVForecastAkkudoktor", "pvforecast1_peakpower": 4.8,
"planes": [ "pvforecast1_surface_azimuth": -90,
{ "pvforecast1_surface_tilt": 7,
"peakpower": 5.0, "pvforecast1_userhorizon": [30, 30, 30, 50],
"surface_azimuth": 170, "pvforecast1_inverter_paco": 10000,
"surface_tilt": 7, "pvforecast2_peakpower": 1.4,
"userhorizon": [20, 27, 22, 20], "pvforecast2_surface_azimuth": -40,
"inverter_paco": 10000, "pvforecast2_surface_tilt": 60,
}, "pvforecast2_userhorizon": [60, 30, 0, 30],
{ "pvforecast2_inverter_paco": 2000,
"peakpower": 4.8, "pvforecast3_peakpower": 1.6,
"surface_azimuth": 90, "pvforecast3_surface_azimuth": 5,
"surface_tilt": 7, "pvforecast3_surface_tilt": 45,
"userhorizon": [30, 30, 30, 50], "pvforecast3_userhorizon": [45, 25, 30, 60],
"inverter_paco": 10000, "pvforecast3_inverter_paco": 1400,
},
{
"peakpower": 1.4,
"surface_azimuth": 140,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 185,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
} }
# Initialize the forecast object with the generated configuration # Initialize the forecast object with the generated configuration

View File

@@ -9,33 +9,34 @@ format, enabling consistent access to forecasted and historical pvforecast attri
from pathlib import Path from pathlib import Path
from typing import Optional, Union from typing import Optional, Union
from loguru import logger
from pydantic import Field, field_validator from pydantic import Field, field_validator
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionImportProvider from akkudoktoreos.prediction.predictionabc import PredictionImportProvider
from akkudoktoreos.prediction.pvforecastabc import PVForecastProvider from akkudoktoreos.prediction.pvforecastabc import PVForecastProvider
logger = get_logger(__name__)
class PVForecastImportCommonSettings(SettingsBaseModel): class PVForecastImportCommonSettings(SettingsBaseModel):
"""Common settings for pvforecast data import from file or JSON string.""" """Common settings for pvforecast data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field( pvforecastimport_file_path: Optional[Union[str, Path]] = Field(
default=None, default=None, description="Path to the file to import PV forecast data from."
description="Path to the file to import PV forecast data from.",
examples=[None, "/path/to/pvforecast.json"],
) )
import_json: Optional[str] = Field( pvforecastimport_json: Optional[str] = Field(
default=None, default=None,
description="JSON string, dictionary of PV forecast value lists.", description="JSON string, dictionary of PV forecast value lists.",
examples=['{"pvforecast_ac_power": [0, 8.05, 352.91]}'],
) )
# Validators # Validators
@field_validator("import_file_path", mode="after") @field_validator("pvforecastimport_file_path", mode="after")
@classmethod @classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]: def validate_pvforecastimport_file_path(
cls, value: Optional[Union[str, Path]]
) -> Optional[Path]:
if value is None: if value is None:
return None return None
if isinstance(value, str): if isinstance(value, str):
@@ -61,16 +62,7 @@ class PVForecastImport(PVForecastProvider, PredictionImportProvider):
return "PVForecastImport" return "PVForecastImport"
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.pvforecast.provider_settings is None: if self.config.pvforecastimport_file_path is not None:
logger.debug(f"{self.provider_id()} data update without provider settings.") self.import_from_file(self.config.pvforecastimport_file_path, key_prefix="pvforecast")
return if self.config.pvforecastimport_json is not None:
if self.config.pvforecast.provider_settings.import_file_path is not None: self.import_from_json(self.config.pvforecastimport_json, key_prefix="pvforecast")
self.import_from_file(
self.config.pvforecast.provider_settings.import_file_path,
key_prefix="pvforecast",
)
if self.config.pvforecast.provider_settings.import_json is not None:
self.import_from_json(
self.config.pvforecast.provider_settings.import_json,
key_prefix="pvforecast",
)

View File

@@ -1,110 +0,0 @@
"""Retrieves pvforecast data from VRM API."""
from typing import Any, Optional, Union
import requests
from loguru import logger
from pendulum import DateTime
from pydantic import Field, ValidationError
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.pvforecastabc import PVForecastProvider
from akkudoktoreos.utils.datetimeutil import to_datetime
class VrmForecastRecords(PydanticBaseModel):
vrm_consumption_fc: list[tuple[int, float]]
solar_yield_forecast: list[tuple[int, float]]
class VrmForecastResponse(PydanticBaseModel):
success: bool
records: VrmForecastRecords
totals: dict
class PVforecastVrmCommonSettings(SettingsBaseModel):
"""Common settings for VRM API."""
pvforecast_vrm_token: str = Field(
default="your-token", description="Token for Connecting VRM API", examples=["your-token"]
)
pvforecast_vrm_idsite: int = Field(
default=12345, description="VRM-Installation-ID", examples=[12345]
)
class PVForecastVrm(PVForecastProvider):
"""Fetch and process PV forecast data from VRM API."""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the PV-Forecast-Provider."""
return "PVForecastVrm"
@classmethod
def _validate_data(cls, json_str: Union[bytes, Any]) -> VrmForecastResponse:
"""Validate the VRM forecast response data against the expected schema."""
try:
return VrmForecastResponse.model_validate_json(json_str)
except ValidationError as e:
error_msg = "\n".join(
f"Field: {' -> '.join(str(x) for x in err['loc'])}\n"
f"Error: {err['msg']}\nType: {err['type']}"
for err in e.errors()
)
logger.error(f"VRM-API schema change:\n{error_msg}")
raise ValueError(error_msg)
def _request_forecast(self, start_ts: int, end_ts: int) -> VrmForecastResponse:
"""Fetch forecast data from Victron VRM API."""
source = "https://vrmapi.victronenergy.com/v2/installations"
id_site = self.config.pvforecast.provider_settings.pvforecast_vrm_idsite
api_token = self.config.pvforecast.provider_settings.pvforecast_vrm_token
headers = {"X-Authorization": f"Token {api_token}", "Content-Type": "application/json"}
url = f"{source}/{id_site}/stats?type=forecast&start={start_ts}&end={end_ts}&interval=hours"
logger.debug(f"Requesting VRM forecast: {url}")
try:
response = requests.get(url, headers=headers, timeout=30)
response.raise_for_status()
except requests.RequestException as e:
logger.error(f"Failed to fetch pvforecast: {e}")
raise RuntimeError("Failed to fetch pvforecast from VRM API") from e
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
return self._validate_data(response.content)
def _ts_to_datetime(self, timestamp: int) -> DateTime:
"""Convert UNIX ms timestamp to timezone-aware datetime."""
return to_datetime(timestamp / 1000, in_timezone=self.config.general.timezone)
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Update forecast data in the PVForecastDataRecord format."""
start_date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
start_ts = int(start_date.timestamp())
end_ts = int(end_date.timestamp())
logger.info(f"Updating PV forecast from VRM: {start_date} to {end_date}")
vrm_forecast_data = self._request_forecast(start_ts, end_ts)
pv_forecast = []
for timestamp, value in vrm_forecast_data.records.solar_yield_forecast:
date = self._ts_to_datetime(timestamp)
dc_power = round(value, 2)
ac_power = round(dc_power * 0.96, 2)
self.update_value(
date, {"pvforecast_dc_power": dc_power, "pvforecast_ac_power": ac_power}
)
pv_forecast.append((date, dc_power))
logger.debug(f"Updated pvforecast_dc_power with {len(pv_forecast)} entries.")
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
# Example usage
if __name__ == "__main__":
pv = PVForecastVrm()
pv._update_data()

View File

@@ -2,42 +2,12 @@
from typing import Optional from typing import Optional
from pydantic import Field, field_validator from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.prediction import get_prediction
from akkudoktoreos.prediction.weatherabc import WeatherProvider
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
prediction_eos = get_prediction()
# Valid weather providers
weather_providers = [
provider.provider_id()
for provider in prediction_eos.providers
if isinstance(provider, WeatherProvider)
]
class WeatherCommonSettings(SettingsBaseModel): class WeatherCommonSettings(SettingsBaseModel):
"""Weather Forecast Configuration.""" weather_provider: Optional[str] = Field(
default=None, description="Weather provider id of provider to be used."
provider: Optional[str] = Field(
default=None,
description="Weather provider id of provider to be used.",
examples=["WeatherImport"],
)
provider_settings: Optional[WeatherImportCommonSettings] = Field(
default=None, description="Provider settings", examples=[None]
)
# Validators
@field_validator("provider", mode="after")
@classmethod
def validate_provider(cls, value: Optional[str]) -> Optional[str]:
if value is None or value in weather_providers:
return value
raise ValueError(
f"Provider '{value}' is not a valid weather provider: {weather_providers}."
) )

View File

@@ -14,8 +14,11 @@ import pandas as pd
import pvlib import pvlib
from pydantic import Field from pydantic import Field
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord
logger = get_logger(__name__)
class WeatherDataRecord(PredictionRecord): class WeatherDataRecord(PredictionRecord):
"""Represents a weather data record containing various weather attributes at a specific datetime. """Represents a weather data record containing various weather attributes at a specific datetime.
@@ -98,18 +101,18 @@ class WeatherProvider(PredictionProvider):
WeatherProvider is a thread-safe singleton, ensuring only one instance of this class is created. WeatherProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables: Configuration variables:
provider (str): Prediction provider for weather. weather_provider (str): Prediction provider for weather.
Attributes: Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated. prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90. latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180. longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified. start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range, end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`. calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`. based on `start_datetime` and `prediction_historic_hours`.
""" """
# overload # overload
@@ -123,7 +126,7 @@ class WeatherProvider(PredictionProvider):
return "WeatherProvider" return "WeatherProvider"
def enabled(self) -> bool: def enabled(self) -> bool:
return self.provider_id() == self.config.weather.provider return self.provider_id() == self.config.weather_provider
@classmethod @classmethod
def estimate_irradiance_from_cloud_cover( def estimate_irradiance_from_cloud_cover(

View File

@@ -7,21 +7,23 @@ format, enabling consistent access to forecasted and historical weather attribut
""" """
import json import json
from typing import Dict, List, Optional, Tuple, Union from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd import pandas as pd
import pvlib import pvlib
import requests import requests
from loguru import logger
from akkudoktoreos.core.cache import cache_in_file from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import to_datetime
WheaterDataBrightSkyMapping: List[Tuple[str, Optional[str], Optional[Union[str, float]]]] = [ logger = get_logger(__name__)
WheaterDataBrightSkyMapping: List[Tuple[str, Optional[str], Optional[float]]] = [
# brightsky_key, description, corr_factor # brightsky_key, description, corr_factor
("timestamp", "DateTime", "to datetime in timezone"), ("timestamp", "DateTime", None),
("precipitation", "Precipitation Amount (mm)", 1), ("precipitation", "Precipitation Amount (mm)", 1),
("pressure_msl", "Pressure (mb)", 1), ("pressure_msl", "Pressure (mb)", 1),
("sunshine", None, None), ("sunshine", None, None),
@@ -60,13 +62,13 @@ class WeatherBrightSky(WeatherProvider):
of hours into the future and retains historical data. of hours into the future and retains historical data.
Attributes: Attributes:
hours (int, optional): Number of hours in the future for the forecast. prediction_hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data. prediction_historic_hours (int, optional): Number of past hours for retaining data.
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90. latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180. longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime. start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`. end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`. keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods: Methods:
provider_id(): Returns a unique identifier for the provider. provider_id(): Returns a unique identifier for the provider.
@@ -94,11 +96,10 @@ class WeatherBrightSky(WeatherProvider):
ValueError: If the API response does not include expected `weather` data. ValueError: If the API response does not include expected `weather` data.
""" """
source = "https://api.brightsky.dev" source = "https://api.brightsky.dev"
date = to_datetime(self.start_datetime, as_string=True) date = to_datetime(self.start_datetime, as_string="YYYY-MM-DD")
last_date = to_datetime(self.end_datetime, as_string=True) last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
response = requests.get( response = requests.get(
f"{source}/weather?lat={self.config.general.latitude}&lon={self.config.general.longitude}&date={date}&last_date={last_date}&tz={self.config.general.timezone}", f"{source}/weather?lat={self.config.latitude}&lon={self.config.longitude}&date={date}&last_date={last_date}&tz={self.config.timezone}"
timeout=10,
) )
response.raise_for_status() # Raise an error for bad responses response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {source}: {response}") logger.debug(f"Response from {source}: {response}")
@@ -108,7 +109,7 @@ class WeatherBrightSky(WeatherProvider):
logger.error(error_msg) logger.error(error_msg)
raise ValueError(error_msg) raise ValueError(error_msg)
# We are working on fresh data (no cache), report update time # We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone) self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return brightsky_data return brightsky_data
def _description_to_series(self, description: str) -> pd.Series: def _description_to_series(self, description: str) -> pd.Series:
@@ -132,8 +133,7 @@ class WeatherBrightSky(WeatherProvider):
error_msg = f"No WeatherDataRecord key for '{description}'" error_msg = f"No WeatherDataRecord key for '{description}'"
logger.error(error_msg) logger.error(error_msg)
raise ValueError(error_msg) raise ValueError(error_msg)
series = self.key_to_series(key) return self.key_to_series(key)
return series
def _description_from_series(self, description: str, data: pd.Series) -> None: def _description_from_series(self, description: str, data: pd.Series) -> None:
"""Update a weather data with a pandas Series based on its description. """Update a weather data with a pandas Series based on its description.
@@ -170,7 +170,7 @@ class WeatherBrightSky(WeatherProvider):
brightsky_data = self._request_forecast(force_update=force_update) # type: ignore brightsky_data = self._request_forecast(force_update=force_update) # type: ignore
# Get key mapping from description # Get key mapping from description
brightsky_key_mapping: Dict[str, Tuple[Optional[str], Optional[Union[str, float]]]] = {} brightsky_key_mapping: Dict[str, Tuple[Optional[str], Optional[float]]] = {}
for brightsky_key, description, corr_factor in WheaterDataBrightSkyMapping: for brightsky_key, description, corr_factor in WheaterDataBrightSkyMapping:
if description is None: if description is None:
brightsky_key_mapping[brightsky_key] = (None, None) brightsky_key_mapping[brightsky_key] = (None, None)
@@ -192,9 +192,6 @@ class WeatherBrightSky(WeatherProvider):
value = brightsky_record[brightsky_key] value = brightsky_record[brightsky_key]
corr_factor = item[1] corr_factor = item[1]
if value and corr_factor: if value and corr_factor:
if corr_factor == "to datetime in timezone":
value = to_datetime(value, in_timezone=self.config.general.timezone)
else:
value = value * corr_factor value = value * corr_factor
setattr(weather_record, key, value) setattr(weather_record, key, value)
self.insert_by_datetime(weather_record) self.insert_by_datetime(weather_record)
@@ -203,7 +200,7 @@ class WeatherBrightSky(WeatherProvider):
description = "Total Clouds (% Sky Obscured)" description = "Total Clouds (% Sky Obscured)"
cloud_cover = self._description_to_series(description) cloud_cover = self._description_to_series(description)
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover( ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
self.config.general.latitude, self.config.general.longitude, cloud_cover self.config.latitude, self.config.longitude, cloud_cover
) )
description = "Global Horizontal Irradiance (W/m2)" description = "Global Horizontal Irradiance (W/m2)"
@@ -219,40 +216,14 @@ class WeatherBrightSky(WeatherProvider):
self._description_from_series(description, dhi) self._description_from_series(description, dhi)
# Add Preciptable Water (PWAT) with a PVLib method. # Add Preciptable Water (PWAT) with a PVLib method.
key = WeatherDataRecord.key_from_description("Temperature (°C)") description = "Temperature (°C)"
assert key # noqa: S101 temperature = self._description_to_series(description)
temperature = self.key_to_array(
key=key, description = "Relative Humidity (%)"
start_datetime=self.start_datetime, humidity = self._description_to_series(description)
end_datetime=self.end_datetime,
interval=to_duration("1 hour"),
)
if any(x is None or isinstance(x, float) and np.isnan(x) for x in temperature):
# We can not calculate PWAT
debug_msg = f"Innvalid temperature '{temperature}'"
logger.debug(debug_msg)
return
key = WeatherDataRecord.key_from_description("Relative Humidity (%)")
assert key # noqa: S101
humidity = self.key_to_array(
key=key,
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=to_duration("1 hour"),
)
if any(x is None or isinstance(x, float) and np.isnan(x) for x in humidity):
# We can not calculate PWAT
debug_msg = f"Innvalid humidity '{humidity}'"
logger.debug(debug_msg)
return
data = pvlib.atmosphere.gueymard94_pw(temperature, humidity)
pwat = pd.Series( pwat = pd.Series(
data=data, data=pvlib.atmosphere.gueymard94_pw(temperature, humidity), index=temperature.index
index=pd.DatetimeIndex(
pd.date_range(
start=self.start_datetime, end=self.end_datetime, freq="1h", inclusive="left"
)
),
) )
description = "Preciptable Water (cm)" description = "Preciptable Water (cm)"
self._description_from_series(description, pwat) self._description_from_series(description, pwat)

View File

@@ -18,12 +18,15 @@ from typing import Dict, List, Optional, Tuple
import pandas as pd import pandas as pd
import requests import requests
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
from loguru import logger
from akkudoktoreos.core.cache import cache_in_file from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider
from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration, to_timezone from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration, to_timezone
logger = get_logger(__name__)
WheaterDataClearOutsideMapping: List[Tuple[str, Optional[str], Optional[float]]] = [ WheaterDataClearOutsideMapping: List[Tuple[str, Optional[str], Optional[float]]] = [
# clearoutside_key, description, corr_factor # clearoutside_key, description, corr_factor
("DateTime", "DateTime", None), ("DateTime", "DateTime", None),
@@ -65,15 +68,15 @@ class WeatherClearOutside(WeatherProvider):
WeatherClearOutside is a thread-safe singleton, ensuring only one instance of this class is created. WeatherClearOutside is a thread-safe singleton, ensuring only one instance of this class is created.
Attributes: Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated. prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90. latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180. longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified. start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range, end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`. calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`. based on `start_datetime` and `prediction_historic_hours`.
""" """
@classmethod @classmethod
@@ -85,16 +88,16 @@ class WeatherClearOutside(WeatherProvider):
"""Requests weather forecast from ClearOutside. """Requests weather forecast from ClearOutside.
Returns: Returns:
response: Weather forecast request response from ClearOutside. response: Weather forecast request reponse from ClearOutside.
""" """
source = "https://clearoutside.com/forecast" source = "https://clearoutside.com/forecast"
latitude = round(self.config.general.latitude, 2) latitude = round(self.config.latitude, 2)
longitude = round(self.config.general.longitude, 2) longitude = round(self.config.longitude, 2)
response = requests.get(f"{source}/{latitude}/{longitude}?desktop=true", timeout=10) response = requests.get(f"{source}/{latitude}/{longitude}?desktop=true")
response.raise_for_status() # Raise an error for bad responses response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {source}: {response}") logger.debug(f"Response from {source}: {response}")
# We are working on fresh data (no cache), report update time # We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone) self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return response return response
def _update_data(self, force_update: Optional[bool] = None) -> None: def _update_data(self, force_update: Optional[bool] = None) -> None:
@@ -304,7 +307,7 @@ class WeatherClearOutside(WeatherProvider):
data=clearout_data["Total Clouds (% Sky Obscured)"], index=clearout_data["DateTime"] data=clearout_data["Total Clouds (% Sky Obscured)"], index=clearout_data["DateTime"]
) )
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover( ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
self.config.general.latitude, self.config.general.longitude, cloud_cover self.config.latitude, self.config.longitude, cloud_cover
) )
# Add GHI, DNI, DHI to clearout data # Add GHI, DNI, DHI to clearout data

View File

@@ -9,33 +9,31 @@ format, enabling consistent access to forecasted and historical weather attribut
from pathlib import Path from pathlib import Path
from typing import Optional, Union from typing import Optional, Union
from loguru import logger
from pydantic import Field, field_validator from pydantic import Field, field_validator
from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.predictionabc import PredictionImportProvider from akkudoktoreos.prediction.predictionabc import PredictionImportProvider
from akkudoktoreos.prediction.weatherabc import WeatherProvider from akkudoktoreos.prediction.weatherabc import WeatherProvider
logger = get_logger(__name__)
class WeatherImportCommonSettings(SettingsBaseModel): class WeatherImportCommonSettings(SettingsBaseModel):
"""Common settings for weather data import from file or JSON string.""" """Common settings for weather data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field( weatherimport_file_path: Optional[Union[str, Path]] = Field(
default=None, default=None, description="Path to the file to import weather data from."
description="Path to the file to import weather data from.",
examples=[None, "/path/to/weather_data.json"],
) )
import_json: Optional[str] = Field( weatherimport_json: Optional[str] = Field(
default=None, default=None, description="JSON string, dictionary of weather forecast value lists."
description="JSON string, dictionary of weather forecast value lists.",
examples=['{"weather_temp_air": [18.3, 17.8, 16.9]}'],
) )
# Validators # Validators
@field_validator("import_file_path", mode="after") @field_validator("weatherimport_file_path", mode="after")
@classmethod @classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]: def validate_weatherimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
if value is None: if value is None:
return None return None
if isinstance(value, str): if isinstance(value, str):
@@ -61,14 +59,7 @@ class WeatherImport(WeatherProvider, PredictionImportProvider):
return "WeatherImport" return "WeatherImport"
def _update_data(self, force_update: Optional[bool] = False) -> None: def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.weather.provider_settings is None: if self.config.weatherimport_file_path is not None:
logger.debug(f"{self.provider_id()} data update without provider settings.") self.import_from_file(self.config.weatherimport_file_path, key_prefix="weather")
return if self.config.weatherimport_json is not None:
if self.config.weather.provider_settings.import_file_path: self.import_from_json(self.config.weatherimport_json, key_prefix="weather")
self.import_from_file(
self.config.weather.provider_settings.import_file_path, key_prefix="weather"
)
if self.config.weather.provider_settings.import_json:
self.import_from_json(
self.config.weather.provider_settings.import_json, key_prefix="weather"
)

View File

@@ -1,297 +0,0 @@
"""Admin UI components for EOS Dashboard.
This module provides functions to generate administrative UI components
for the EOS dashboard.
"""
import json
from pathlib import Path
from typing import Any, Optional, Union
import requests
from fasthtml.common import Select
from loguru import logger
from monsterui.foundations import stringify
from monsterui.franken import ( # Select, TODO: Select from FrankenUI does not work - using Select from FastHTML instead
H3,
Button,
ButtonT,
Card,
Details,
Div,
DivHStacked,
DividerLine,
Grid,
Input,
Options,
P,
Summary,
UkIcon,
)
from platformdirs import user_config_dir
from akkudoktoreos.server.dash.components import Error, Success
from akkudoktoreos.server.dash.configuration import get_nested_value
from akkudoktoreos.utils.datetimeutil import to_datetime
# Directory to export files to, or to import files from
export_import_directory = Path(user_config_dir("net.akkudoktor.eosdash", "akkudoktor"))
def AdminButton(*c: Any, cls: Optional[Union[str, tuple]] = None, **kwargs: Any) -> Button:
"""Creates a styled button for administrative actions.
Args:
*c (Any): Positional arguments representing the button's content.
cls (Optional[Union[str, tuple]]): Additional CSS classes for styling. Defaults to None.
**kwargs (Any): Additional keyword arguments passed to the `Button`.
Returns:
Button: A styled `Button` component for admin actions.
"""
new_cls = f"{ButtonT.primary}"
if cls:
new_cls += f" {stringify(cls)}"
kwargs["cls"] = new_cls
return Button(*c, submit=False, **kwargs)
def AdminConfig(
eos_host: str, eos_port: Union[str, int], data: Optional[dict], config: Optional[dict[str, Any]]
) -> tuple[str, Union[Card, list[Card]]]:
"""Creates a configuration management card with save-to-file functionality.
Args:
eos_host (str): The hostname of the EOS server.
eos_port (Union[str, int]): The port of the EOS server.
data (Optional[dict]): Incoming data containing action and category for processing.
Returns:
tuple[str, Union[Card, list[Card]]]: A tuple containing the configuration category label and the `Card` UI component.
"""
server = f"http://{eos_host}:{eos_port}"
eos_hostname = "EOS server"
eosdash_hostname = "EOSdash server"
category = "configuration"
# save config file
status = (None,)
config_file_path = "<unknown>"
try:
if config:
config_file_path = get_nested_value(config, ["general", "config_file_path"])
except Exception as e:
logger.debug(f"general.config_file_path: {e}")
# export config file
export_to_file_next_tag = to_datetime(as_string="YYYYMMDDHHmmss")
export_to_file_status = (None,)
# import config file
import_from_file_status = (None,)
if data and data.get("category", None) == category:
# This data is for us
if data["action"] == "save_to_file":
# Safe current configuration to file
try:
result = requests.put(f"{server}/v1/config/file", timeout=10)
result.raise_for_status()
config_file_path = result.json()["general"]["config_file_path"]
status = Success(f"Saved to '{config_file_path}' on '{eos_hostname}'")
except requests.exceptions.HTTPError as e:
detail = result.json()["detail"]
status = Error(
f"Can not save actual config to file on '{eos_hostname}': {e}, {detail}"
)
except Exception as e:
status = Error(f"Can not save actual config to file on '{eos_hostname}': {e}")
elif data["action"] == "export_to_file":
# Export current configuration to file
export_to_file_tag = data.get("export_to_file_tag", export_to_file_next_tag)
export_to_file_path = export_import_directory.joinpath(
f"eos_config_{export_to_file_tag}.json"
)
try:
if not config:
raise ValueError(f"No config from '{eos_hostname}'")
export_to_file_path.parent.mkdir(parents=True, exist_ok=True)
with export_to_file_path.open("w", encoding="utf-8", newline="\n") as fd:
json.dump(config, fd, indent=4, sort_keys=True)
export_to_file_status = Success(
f"Exported to '{export_to_file_path}' on '{eosdash_hostname}'"
)
except requests.exceptions.HTTPError as e:
detail = result.json()["detail"]
export_to_file_status = Error(
f"Can not export actual config to '{export_to_file_path}' on '{eosdash_hostname}': {e}, {detail}"
)
except Exception as e:
export_to_file_status = Error(
f"Can not export actual config to '{export_to_file_path}' on '{eosdash_hostname}': {e}"
)
elif data["action"] == "import_from_file":
import_file_name = data.get("import_file_name", None)
import_from_file_pathes = list(
export_import_directory.glob("*.json")
) # expand generator object
import_file_path = None
for f in import_from_file_pathes:
if f.name == import_file_name:
import_file_path = f
if import_file_path:
try:
with import_file_path.open("r", encoding="utf-8", newline=None) as fd:
import_config = json.load(fd)
result = requests.put(f"{server}/v1/config", json=import_config, timeout=10)
result.raise_for_status()
import_from_file_status = Success(
f"Config imported from '{import_file_path}' on '{eosdash_hostname}'"
)
except requests.exceptions.HTTPError as e:
detail = result.json()["detail"]
import_from_file_status = Error(
f"Can not import config from '{import_file_name}' on '{eosdash_hostname}' {e}, {detail}"
)
except Exception as e:
import_from_file_status = Error(
f"Can not import config from '{import_file_name}' on '{eosdash_hostname}' {e}"
)
else:
import_from_file_status = Error(
f"Can not import config from '{import_file_name}', not found in '{export_import_directory}' on '{eosdash_hostname}'"
)
# Update for display, in case we added a new file before
import_from_file_names = [f.name for f in list(export_import_directory.glob("*.json"))]
return (
category,
[
Card(
Details(
Summary(
Grid(
DivHStacked(
UkIcon(icon="play"),
AdminButton(
"Save to file",
hx_post="/eosdash/admin",
hx_target="#page-content",
hx_swap="innerHTML",
hx_vals='{"category": "configuration", "action": "save_to_file"}',
),
P(f"'{config_file_path}' on '{eos_hostname}'"),
),
status,
),
cls="list-none",
),
P(f"Safe actual configuration to '{config_file_path}' on '{eos_hostname}'."),
),
),
Card(
Details(
Summary(
Grid(
DivHStacked(
UkIcon(icon="play"),
AdminButton(
"Export to file",
hx_post="/eosdash/admin",
hx_target="#page-content",
hx_swap="innerHTML",
hx_vals='js:{"category": "configuration", "action": "export_to_file", "export_to_file_tag": document.querySelector("[name=\'chosen_export_file_tag\']").value }',
),
P("'eos_config_"),
Input(
id="export_file_tag",
name="chosen_export_file_tag",
value=export_to_file_next_tag,
),
P(".json'"),
),
export_to_file_status,
),
cls="list-none",
),
P(
f"Export actual configuration to 'eos_config_{export_to_file_next_tag}.json' on '{eosdash_hostname}'."
),
),
),
Card(
Details(
Summary(
Grid(
DivHStacked(
UkIcon(icon="play"),
AdminButton(
"Import from file",
hx_post="/eosdash/admin",
hx_target="#page-content",
hx_swap="innerHTML",
hx_vals='js:{ "category": "configuration", "action": "import_from_file", "import_file_name": document.querySelector("[name=\'selected_import_file_name\']").value }',
),
Select(
*Options(*import_from_file_names),
id="import_file_name",
name="selected_import_file_name", # Name of hidden input field with selected value
placeholder="Select file",
),
),
import_from_file_status,
),
cls="list-none",
),
P(f"Import configuration from config file on '{eosdash_hostname}'."),
),
),
],
)
def Admin(eos_host: str, eos_port: Union[str, int], data: Optional[dict] = None) -> Div:
"""Generates the administrative dashboard layout.
This includes configuration management and other administrative tools.
Args:
eos_host (str): The hostname of the EOS server.
eos_port (Union[str, int]): The port of the EOS server.
data (Optional[dict], optional): Incoming data to trigger admin actions. Defaults to None.
Returns:
Div: A `Div` component containing the assembled admin interface.
"""
# Get current configuration from server
server = f"http://{eos_host}:{eos_port}"
try:
result = requests.get(f"{server}/v1/config", timeout=10)
result.raise_for_status()
config = result.json()
except requests.exceptions.HTTPError as e:
config = {}
detail = result.json()["detail"]
warning_msg = f"Can not retrieve configuration from {server}: {e}, {detail}"
logger.warning(warning_msg)
return Error(warning_msg)
except Exception as e:
warning_msg = f"Can not retrieve configuration from {server}: {e}"
logger.warning(warning_msg)
return Error(warning_msg)
rows = []
last_category = ""
for category, admin in [
AdminConfig(eos_host, eos_port, data, config),
]:
if category != last_category:
rows.append(H3(category))
rows.append(DividerLine())
last_category = category
if isinstance(admin, list):
for card in admin:
rows.append(card)
else:
rows.append(admin)
return Div(*rows, cls="space-y-4")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 724 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -1 +0,0 @@
{"name":"","short_name":"","icons":[{"src":"/android-chrome-192x192.png","sizes":"192x192","type":"image/png"},{"src":"/android-chrome-512x512.png","sizes":"512x512","type":"image/png"}],"theme_color":"#ffffff","background_color":"#ffffff","display":"standalone"}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1,38 +0,0 @@
# Module taken from https://github.com/koaning/fh-altair
# MIT license
from typing import Optional
from bokeh.embed import components
from bokeh.models import Plot
from monsterui.franken import H4, Card, NotStr, Script
BokehJS = [
Script(src="https://cdn.bokeh.org/bokeh/release/bokeh-3.7.0.min.js", crossorigin="anonymous"),
Script(
src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.7.0.min.js",
crossorigin="anonymous",
),
Script(
src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.7.0.min.js", crossorigin="anonymous"
),
Script(
src="https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.7.0.min.js", crossorigin="anonymous"
),
Script(
src="https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.7.0.min.js",
crossorigin="anonymous",
),
]
def Bokeh(plot: Plot, header: Optional[str] = None) -> Card:
"""Converts an Bokeh plot to a FastHTML FT component."""
script, div = components(plot)
if header:
header = H4(header, cls="mt-2")
return Card(
NotStr(div),
NotStr(script),
header=header,
)

View File

@@ -1,317 +0,0 @@
from typing import Any, Optional, Union
from fasthtml.common import H1, Div, Li
from monsterui.daisy import (
Alert,
AlertT,
)
from monsterui.foundations import stringify
from monsterui.franken import (
H3,
Button,
ButtonT,
Card,
Container,
ContainerT,
Details,
DivLAligned,
DivRAligned,
Form,
Grid,
Input,
P,
Summary,
TabContainer,
UkIcon,
)
scrollbar_viewport_styles = (
"scrollbar-width: none; -ms-overflow-style: none; -webkit-overflow-scrolling: touch;"
)
scrollbar_cls = "flex touch-none select-none transition-colors p-[1px]"
def ScrollArea(
*c: Any, cls: Optional[Union[str, tuple]] = None, orientation: str = "vertical", **kwargs: Any
) -> Div:
"""Creates a styled scroll area.
Args:
orientation (str): The orientation of the scroll area. Defaults to vertical.
"""
new_cls = "relative overflow-hidden"
if cls:
new_cls += f" {stringify(cls)}"
kwargs["cls"] = new_cls
content = Div(
Div(*c, style="min-width:100%;display:table;"),
style=f"overflow: {'hidden scroll' if orientation == 'vertical' else 'scroll'}; {scrollbar_viewport_styles}",
cls="w-full h-full rounded-[inherit]",
data_ref="viewport",
)
scrollbar = Div(
Div(cls="bg-border rounded-full hidden relative flex-1", data_ref="thumb"),
cls=f"{scrollbar_cls} flex-col h-2.5 w-full border-t border-t-transparent"
if orientation == "horizontal"
else f"{scrollbar_cls} w-2.5 h-full border-l border-l-transparent",
data_ref="scrollbar",
style=f"position: absolute;{'right:0; top:0;' if orientation == 'vertical' else 'bottom:0; left:0;'}",
)
return Div(
content,
scrollbar,
role="region",
tabindex="0",
data_orientation=orientation,
data_ref_scrollarea=True,
aria_label="Scrollable content",
**kwargs,
)
def Success(*c: Any) -> Alert:
return Alert(
DivLAligned(
UkIcon("check"),
P(*c),
),
cls=AlertT.success,
)
def Error(*c: Any) -> Alert:
return Alert(
DivLAligned(
UkIcon("triangle-alert"),
P(*c),
),
cls=AlertT.error,
)
def ConfigCard(
config_name: str,
config_type: str,
read_only: str,
value: str,
default: str,
description: str,
deprecated: Optional[Union[str, bool]],
update_error: Optional[str],
update_value: Optional[str],
update_open: Optional[bool],
) -> Card:
"""Creates a styled configuration card for displaying configuration details.
This function generates a configuration card that is displayed in the UI with
various sections such as configuration name, type, description, default value,
current value, and error details. It supports both read-only and editable modes.
Args:
config_name (str): The name of the configuration.
config_type (str): The type of the configuration.
read_only (str): Indicates if the configuration is read-only ("rw" for read-write,
any other value indicates read-only).
value (str): The current value of the configuration.
default (str): The default value of the configuration.
description (str): A description of the configuration.
deprecated (Optional[Union[str, bool]]): The deprecated marker of the configuration.
update_error (Optional[str]): The error message, if any, during the update process.
update_value (Optional[str]): The value to be updated, if different from the current value.
update_open (Optional[bool]): A flag indicating whether the update section of the card
should be initially expanded.
Returns:
Card: A styled Card component containing the configuration details.
"""
config_id = config_name.replace(".", "-")
if not update_value:
update_value = value
if not update_open:
update_open = False
if deprecated:
if isinstance(deprecated, bool):
deprecated = "Deprecated"
return Card(
Details(
Summary(
Grid(
Grid(
DivLAligned(
UkIcon(icon="play"),
P(config_name),
),
DivRAligned(
P(read_only),
),
),
P(value),
),
cls="list-none",
),
Grid(
P(description),
P(config_type),
)
if not deprecated
else None,
Grid(
P(deprecated),
P("DEPRECATED!"),
)
if deprecated
else None,
# Default
Grid(
DivRAligned(P("default")),
P(default),
)
if read_only == "rw" and not deprecated
else None,
# Set value
Grid(
DivRAligned(P("update")),
Grid(
Form(
Input(value=config_name, type="hidden", id="key"),
Input(value=update_value, type="text", id="value"),
hx_put="/eosdash/configuration",
hx_target="#page-content",
hx_swap="innerHTML",
),
),
)
if read_only == "rw" and not deprecated
else None,
# Last error
Grid(
DivRAligned(P("update error")),
P(update_error),
)
if update_error
else None,
cls="space-y-4 gap-4",
open=update_open,
),
cls="w-full",
)
def DashboardHeader(title: Optional[str]) -> Div:
"""Creates a styled header with a title.
Args:
title (Optional[str]): The title text for the header.
Returns:
Div: A styled `Div` element containing the header.
"""
if title is None:
return Div("", cls="header")
return Div(H1(title, cls="text-2xl font-bold mb-4"), cls="header")
def DashboardFooter(*c: Any, path: str) -> Card:
"""Creates a styled footer with the provided information.
The footer content is reloaded every 5 seconds from path.
Args:
path (str): Path to reload footer content from
Returns:
Card: A styled `Card` element containing the footer.
"""
return Card(
Container(*c, id="footer-content"),
hx_get=f"{path}",
hx_trigger="every 5s",
hx_target="#footer-content",
hx_swap="innerHTML",
)
def DashboardTrigger(*c: Any, cls: Optional[Union[str, tuple]] = None, **kwargs: Any) -> Button:
"""Creates a styled button for the dashboard trigger.
Args:
*c: Positional arguments to pass to the button.
cls (Optional[str]): Additional CSS classes for styling. Defaults to None.
**kwargs: Additional keyword arguments for the button.
Returns:
Button: A styled `Button` component.
"""
new_cls = f"{ButtonT.primary}"
if cls:
new_cls += f" {stringify(cls)}"
kwargs["cls"] = new_cls
return Button(*c, submit=False, **kwargs)
def DashboardTabs(dashboard_items: dict[str, str]) -> Card:
"""Creates a dashboard tab with dynamic dashboard items.
Args:
dashboard_items (dict[str, str]): A dictionary of dashboard items where keys are item names
and values are paths for navigation.
Returns:
Card: A styled `Card` component containing the dashboard tabs.
"""
dash_items = [
Li(
DashboardTrigger(
H3(menu),
hx_get=f"{path}",
hx_target="#page-content",
hx_swap="innerHTML",
),
)
for menu, path in dashboard_items.items()
]
return Card(TabContainer(*dash_items, cls="gap-4"), alt=True)
def DashboardContent(content: Any) -> Card:
"""Creates a content section within a styled card.
Args:
content (Any): The content to display.
Returns:
Card: A styled `Card` element containing the content.
"""
return Card(ScrollArea(Container(content, id="page-content"), cls="h-[75vh] w-full rounded-md"))
def Page(
title: Optional[str],
dashboard_items: dict[str, str],
content: Any,
footer_content: Any,
footer_path: str,
) -> Div:
"""Generates a full-page layout with a header, dashboard items, content, and footer.
Args:
title (Optional[str]): The page title.
dashboard_items (dict[str, str]): A dictionary of dashboard items.
content (Any): The main content for the page.
footer_content (Any): Footer content.
footer_path (Any): Path to reload footer content from.
Returns:
Div: A `Div` element representing the entire page layout.
"""
return Container(
DashboardHeader(title),
DashboardTabs(dashboard_items),
DashboardContent(content),
DashboardFooter(footer_content, path=footer_path),
cls=("bg-background text-foreground w-screen p-4 space-y-4", ContainerT.xl),
)

View File

@@ -1,549 +0,0 @@
import json
from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union
import requests
from loguru import logger
from monsterui.franken import (
H3,
H4,
Card,
Details,
Div,
DividerLine,
DivLAligned,
DivRAligned,
Form,
Grid,
Input,
P,
Summary,
UkIcon,
)
from pydantic.fields import ComputedFieldInfo, FieldInfo
from pydantic_core import PydanticUndefined
from akkudoktoreos.config.config import ConfigEOS
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.pvforecast import PVForecastPlaneSetting
from akkudoktoreos.server.dash.components import ConfigCard
T = TypeVar("T")
# Latest configuration update results
# Dictionary of config names and associated dictionary with keys "value", "result", "error", "open".
config_update_latest: dict[str, dict[str, Optional[Union[str, bool]]]] = {}
def get_nested_value(
dictionary: Union[Dict[str, Any], List[Any]],
keys: Sequence[Union[str, int]],
default: Optional[T] = None,
) -> Union[Any, T]:
"""Retrieve a nested value from a dictionary or list using a sequence of keys.
Args:
dictionary (Union[Dict[str, Any], List[Any]]): The nested dictionary or list to search.
keys (Sequence[Union[str, int]]): A sequence of keys or indices representing the path to the desired value.
default (Optional[T]): A value to return if the path is not found.
Returns:
Union[Any, T]: The value at the specified nested path, or the default value if not found.
Raises:
TypeError: If the input is not a dictionary or list, or if keys are not a sequence.
KeyError: If a key is not found in a dictionary.
IndexError: If an index is out of range in a list.
"""
if not isinstance(dictionary, (dict, list)):
raise TypeError("The first argument must be a dictionary or list")
if not isinstance(keys, Sequence):
raise TypeError("Keys must be provided as a sequence (e.g., list, tuple)")
if not keys:
return dictionary
try:
# Traverse the structure
current = dictionary
for key in keys:
if isinstance(current, dict):
current = current[str(key)]
elif isinstance(current, list):
current = current[int(key)]
else:
raise KeyError(f"Invalid key or index: {key}")
return current
except (KeyError, IndexError, TypeError):
return default
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
"""Retrieve the default value of a field.
Args:
field_info (Union[FieldInfo, ComputedFieldInfo]): The field metadata from Pydantic.
regular_field (bool): Indicates if the field is a regular field.
Returns:
Any: The default value of the field or "N/A" if not a regular field.
"""
default_value = ""
if regular_field:
if (val := field_info.default) is not PydanticUndefined:
default_value = val
else:
default_value = "N/A"
return default_value
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
"""Resolve nested types within a field and return their structure.
Args:
field_type (Any): The type of the field to resolve.
parent_types (List[str]): A list of parent type names.
Returns:
List[tuple[Any, List[str]]]: A list of tuples containing resolved types and their parent hierarchy.
"""
resolved_types: list[tuple[Any, list[str]]] = []
origin = getattr(field_type, "__origin__", field_type)
if origin is Union:
for arg in getattr(field_type, "__args__", []):
if arg is not type(None):
resolved_types.extend(resolve_nested_types(arg, parent_types))
else:
resolved_types.append((field_type, parent_types))
return resolved_types
def configuration(
model: type[PydanticBaseModel], values: dict, values_prefix: list[str] = []
) -> list[dict]:
"""Generate configuration details based on provided values and model metadata.
Args:
model (type[PydanticBaseModel]): The Pydantic model to extract configuration from.
values (dict): A dictionary containing the current configuration values.
values_prefix (list[str]): A list of parent type names that prefixes the model values in the values.
Returns:
list[dict]: A sorted list of configuration details, each represented as a dictionary.
"""
configs = []
inner_types: set[type[PydanticBaseModel]] = set()
for field_name, field_info in list(model.model_fields.items()) + list(
model.model_computed_fields.items()
):
def extract_nested_models(
subfield_info: Union[ComputedFieldInfo, FieldInfo], parent_types: list[str]
) -> None:
"""Extract nested models from the given subfield information.
Args:
subfield_info (Union[ComputedFieldInfo, FieldInfo]): Field metadata from Pydantic.
parent_types (list[str]): A list of parent type names for hierarchical representation.
"""
nonlocal values, values_prefix
regular_field = isinstance(subfield_info, FieldInfo)
subtype = subfield_info.annotation if regular_field else subfield_info.return_type
if subtype in inner_types:
return
nested_types = resolve_nested_types(subtype, [])
found_basic = False
for nested_type, nested_parent_types in nested_types:
if not isinstance(nested_type, type) or not issubclass(
nested_type, PydanticBaseModel
):
if found_basic:
continue
config: dict[str, Optional[Any]] = {}
config["name"] = ".".join(values_prefix + parent_types)
config["value"] = json.dumps(
get_nested_value(values, values_prefix + parent_types, "<unknown>")
)
config["default"] = json.dumps(get_default_value(subfield_info, regular_field))
config["description"] = (
subfield_info.description if subfield_info.description else ""
)
config["deprecated"] = (
subfield_info.deprecated if subfield_info.deprecated else None
)
if isinstance(subfield_info, ComputedFieldInfo):
config["read-only"] = "ro"
type_description = str(subfield_info.return_type)
else:
config["read-only"] = "rw"
type_description = str(subfield_info.annotation)
config["type"] = (
type_description.replace("typing.", "")
.replace("pathlib.", "")
.replace("NoneType", "None")
.replace("<class 'float'>", "float")
)
configs.append(config)
found_basic = True
else:
new_parent_types = parent_types + nested_parent_types
inner_types.add(nested_type)
for nested_field_name, nested_field_info in list(
nested_type.model_fields.items()
) + list(nested_type.model_computed_fields.items()):
extract_nested_models(
nested_field_info,
new_parent_types + [nested_field_name],
)
extract_nested_models(field_info, [field_name])
return sorted(configs, key=lambda x: x["name"])
def get_configuration(eos_host: str, eos_port: Union[str, int]) -> list[dict]:
"""Fetch and process configuration data from the specified EOS server.
Args:
eos_host (str): The hostname of the EOS server.
eos_port (Union[str, int]): The port of the EOS server.
Returns:
List[dict]: A list of processed configuration entries.
"""
server = f"http://{eos_host}:{eos_port}"
# Get current configuration from server
try:
result = requests.get(f"{server}/v1/config", timeout=10)
result.raise_for_status()
config = result.json()
except requests.exceptions.HTTPError as e:
config = {}
detail = result.json()["detail"]
warning_msg = f"Can not retrieve configuration from {server}: {e}, {detail}"
logger.warning(warning_msg)
return configuration(ConfigEOS, config)
def ConfigPlanesCard(
config_name: str,
config_type: str,
read_only: str,
value: str,
default: str,
description: str,
max_planes: int,
update_error: Optional[str],
update_value: Optional[str],
update_open: Optional[bool],
) -> Card:
"""Creates a styled configuration card for PV planes.
This function generates a configuration card that is displayed in the UI with
various sections such as configuration name, type, description, default value,
current value, and error details. It supports both read-only and editable modes.
Args:
config_name (str): The name of the PV planes configuration.
config_type (str): The type of the PV planes configuration.
read_only (str): Indicates if the PV planes configuration is read-only ("rw" for read-write,
any other value indicates read-only).
value (str): The current value of the PV planes configuration.
default (str): The default value of the PV planes configuration.
description (str): A description of the PV planes configuration.
max_planes (int): Maximum number of planes that can be set
update_error (Optional[str]): The error message, if any, during the update process.
update_value (Optional[str]): The value to be updated, if different from the current value.
update_open (Optional[bool]): A flag indicating whether the update section of the card
should be initially expanded.
Returns:
Card: A styled Card component containing the PV planes configuration details.
"""
config_id = config_name.replace(".", "-")
# Remember overall planes update status
planes_update_error = update_error
planes_update_value = update_value
if not planes_update_value:
planes_update_value = value
planes_update_open = update_open
if not planes_update_open:
planes_update_open = False
# Create EOS planes configuration
eos_planes = json.loads(value)
eos_planes_config = {
"pvforecast": {
"planes": eos_planes,
},
}
# Create cards for all planes
rows = []
for i in range(0, max_planes):
plane_config = configuration(
PVForecastPlaneSetting(),
eos_planes_config,
values_prefix=["pvforecast", "planes", str(i)],
)
plane_rows = []
plane_update_open = False
if eos_planes and len(eos_planes) > i:
plane_value = json.dumps(eos_planes[i])
else:
plane_value = json.dumps(None)
for config in plane_config:
update_error = config_update_latest.get(config["name"], {}).get("error") # type: ignore
update_value = config_update_latest.get(config["name"], {}).get("value") # type: ignore
update_open = config_update_latest.get(config["name"], {}).get("open") # type: ignore
if update_open:
planes_update_open = True
plane_update_open = True
# Make mypy happy - should never trigger
if (
not isinstance(update_error, (str, type(None)))
or not isinstance(update_value, (str, type(None)))
or not isinstance(update_open, (bool, type(None)))
):
error_msg = "update_error or update_value or update_open of wrong type."
logger.error(error_msg)
raise TypeError(error_msg)
plane_rows.append(
ConfigCard(
config["name"],
config["type"],
config["read-only"],
config["value"],
config["default"],
config["description"],
config["deprecated"],
update_error,
update_value,
update_open,
)
)
rows.append(
Card(
Details(
Summary(
Grid(
Grid(
DivLAligned(
UkIcon(icon="play"),
H4(f"pvforecast.planes.{i}"),
),
DivRAligned(
P(read_only),
),
),
P(plane_value),
),
cls="list-none",
),
*plane_rows,
cls="space-y-4 gap-4",
open=plane_update_open,
),
cls="w-full",
)
)
return Card(
Details(
Summary(
Grid(
Grid(
DivLAligned(
UkIcon(icon="play"),
P(config_name),
),
DivRAligned(
P(read_only),
),
),
P(value),
),
cls="list-none",
),
Grid(
P(description),
P(config_type),
),
# Default
Grid(
DivRAligned(P("default")),
P(default),
)
if read_only == "rw"
else None,
# Set value
Grid(
DivRAligned(P("update")),
Grid(
Form(
Input(value=config_name, type="hidden", id="key"),
Input(value=planes_update_value, type="text", id="value"),
hx_put="/eosdash/configuration",
hx_target="#page-content",
hx_swap="innerHTML",
),
),
)
if read_only == "rw"
else None,
# Last error
Grid(
DivRAligned(P("update error")),
P(planes_update_error),
)
if planes_update_error
else None,
# Now come the single element configs
*rows,
cls="space-y-4 gap-4",
open=planes_update_open,
),
cls="w-full",
)
def Configuration(
eos_host: str, eos_port: Union[str, int], configuration: Optional[list[dict]] = None
) -> Div:
"""Create a visual representation of the configuration.
Args:
eos_host (str): The hostname of the EOS server.
eos_port (Union[str, int]): The port of the EOS server.
configuration (Optional[list[dict]]): Optional configuration. If not provided it will be
retrievd from EOS.
Returns:
rows: Rows of configuration details.
"""
if not configuration:
configuration = get_configuration(eos_host, eos_port)
rows = []
last_category = ""
# find some special configuration values
max_planes = 0
for config in configuration:
if config["name"] == "pvforecast.max_planes":
try:
max_planes = int(config["value"])
except:
max_planes = 0
# build visual representation
for config in configuration:
category = config["name"].split(".")[0]
if category != last_category:
rows.append(H3(category))
rows.append(DividerLine())
last_category = category
update_error = config_update_latest.get(config["name"], {}).get("error")
update_value = config_update_latest.get(config["name"], {}).get("value")
update_open = config_update_latest.get(config["name"], {}).get("open")
# Make mypy happy - should never trigger
if (
not isinstance(update_error, (str, type(None)))
or not isinstance(update_value, (str, type(None)))
or not isinstance(update_open, (bool, type(None)))
):
error_msg = "update_error or update_value or update_open of wrong type."
logger.error(error_msg)
raise TypeError(error_msg)
if (
config["type"]
== "Optional[list[akkudoktoreos.prediction.pvforecast.PVForecastPlaneSetting]]"
and not config["deprecated"]
):
# Special configuration for PV planes
rows.append(
ConfigPlanesCard(
config["name"],
config["type"],
config["read-only"],
config["value"],
config["default"],
config["description"],
max_planes,
update_error,
update_value,
update_open,
)
)
else:
rows.append(
ConfigCard(
config["name"],
config["type"],
config["read-only"],
config["value"],
config["default"],
config["description"],
config["deprecated"],
update_error,
update_value,
update_open,
)
)
return Div(*rows, cls="space-y-4")
def ConfigKeyUpdate(eos_host: str, eos_port: Union[str, int], key: str, value: str) -> P:
"""Update configuration key and create a visual representation of the configuration.
Args:
eos_host (str): The hostname of the EOS server.
eos_port (Union[str, int]): The port of the EOS server.
key (str): configuration key in dot notation
value (str): configuration value as json string
Returns:
rows: Rows of configuration details.
"""
server = f"http://{eos_host}:{eos_port}"
path = key.replace(".", "/")
try:
data = json.loads(value)
except:
if value in ("None", "none", "Null", "null"):
data = None
else:
data = value
error = None
config = None
try:
response = requests.put(f"{server}/v1/config/{path}", json=data, timeout=10)
response.raise_for_status()
config = response.json()
except requests.exceptions.HTTPError as err:
try:
# Try to get 'detail' from the JSON response
detail = response.json().get(
"detail", f"No error details for data '{data}' '{response.text}'"
)
except ValueError:
# Response is not JSON
detail = f"No error details for data '{data}' '{response.text}'"
error = f"Can not set {key} on {server}: {err}, {detail}"
# Mark all updates as closed
for k in config_update_latest:
config_update_latest[k]["open"] = False
# Remember this update as latest one
config_update_latest[key] = {
"error": error,
"result": config,
"value": value,
"open": True,
}
if error or config is None:
# Reread configuration to be shure we display actual data
return Configuration(eos_host, eos_port)
# Use configuration already provided
return Configuration(eos_host, eos_port, configuration(ConfigEOS, config))

View File

@@ -1,86 +0,0 @@
{
"elecprice": {
"charges_kwh": 0.21,
"provider": "ElecPriceAkkudoktor"
},
"general": {
"latitude": 52.5,
"longitude": 13.4
},
"prediction": {
"historic_hours": 48,
"hours": 48
},
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"loadakkudoktor_year_energy": 20000
}
},
"optimization": {
"hours": 48
},
"pvforecast": {
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": 170,
"surface_tilt": 7,
"userhorizon": [
20,
27,
22,
20
],
"inverter_paco": 10000
},
{
"peakpower": 4.8,
"surface_azimuth": 90,
"surface_tilt": 7,
"userhorizon": [
30,
30,
30,
50
],
"inverter_paco": 10000
},
{
"peakpower": 1.4,
"surface_azimuth": 140,
"surface_tilt": 60,
"userhorizon": [
60,
30,
0,
30
],
"inverter_paco": 2000
},
{
"peakpower": 1.6,
"surface_azimuth": 185,
"surface_tilt": 45,
"userhorizon": [
45,
25,
30,
60
],
"inverter_paco": 1400
}
],
"provider": "PVForecastAkkudoktor"
},
"server": {
"startup_eosdash": true,
"host": "127.0.0.1",
"port": 8503,
"eosdash_host": "127.0.0.1",
"eosdash_port": 8504
},
"weather": {
"provider": "BrightSky"
}
}

View File

@@ -1,280 +0,0 @@
import json
from pathlib import Path
from typing import Union
import pandas as pd
import requests
from bokeh.models import ColumnDataSource, LinearAxis, Range1d
from bokeh.plotting import figure
from monsterui.franken import FT, Grid, P
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
from akkudoktoreos.server.dash.bokeh import Bokeh
DIR_DEMODATA = Path(__file__).absolute().parent.joinpath("data")
FILE_DEMOCONFIG = DIR_DEMODATA.joinpath("democonfig.json")
if not FILE_DEMOCONFIG.exists():
raise ValueError(f"File does not exist: {FILE_DEMOCONFIG}")
# bar width for 1 hour bars (time given in millseconds)
BAR_WIDTH_1HOUR = 1000 * 60 * 60
def DemoPVForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["pvforecast"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"PV Power Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Power [W]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="pvforecast_ac_power",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="AC Power",
color="lightblue",
)
return Bokeh(plot)
def DemoElectricityPriceForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["elecprice"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["elecprice_marketprice_kwh"].min() - 0.1,
predictions["elecprice_marketprice_kwh"].max() + 0.1,
),
title=f"Electricity Price Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Price [€/kWh]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="elecprice_marketprice_kwh",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="Market Price",
color="lightblue",
)
return Bokeh(plot)
def DemoWeatherTempAirHumidity(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Air Temperature and Humidity Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Temperature [°C]",
sizing_mode="stretch_width",
height=400,
)
# Add secondary y-axis for humidity
plot.extra_y_ranges["humidity"] = Range1d(start=-5, end=105)
y2_axis = LinearAxis(y_range_name="humidity", axis_label="Relative Humidity [%]")
y2_axis.axis_label_text_color = "green"
plot.add_layout(y2_axis, "left")
plot.line(
"date_time", "weather_temp_air", source=source, legend_label="Air Temperature", color="blue"
)
plot.line(
"date_time",
"weather_relative_humidity",
source=source,
legend_label="Relative Humidity [%]",
color="green",
y_range_name="humidity",
)
return Bokeh(plot)
def DemoWeatherIrradiance(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Irradiance Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Irradiance [W/m2]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time",
"weather_ghi",
source=source,
legend_label="Global Horizontal Irradiance",
color="red",
)
plot.line(
"date_time",
"weather_dni",
source=source,
legend_label="Direct Normal Irradiance",
color="green",
)
plot.line(
"date_time",
"weather_dhi",
source=source,
legend_label="Diffuse Horizontal Irradiance",
color="blue",
)
return Bokeh(plot)
def DemoLoad(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["load"]["provider"]
if provider == "LoadAkkudoktor":
year_energy = config["load"]["provider_settings"]["loadakkudoktor_year_energy"]
provider = f"{provider}, {year_energy} kWh"
plot = figure(
x_axis_type="datetime",
title=f"Load Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Load [W]",
sizing_mode="stretch_width",
height=400,
)
# Add secondary y-axis for stddev
stddev_min = predictions["load_std"].min()
stddev_max = predictions["load_std"].max()
plot.extra_y_ranges["stddev"] = Range1d(start=stddev_min - 5, end=stddev_max + 5)
y2_axis = LinearAxis(y_range_name="stddev", axis_label="Load Standard Deviation [W]")
y2_axis.axis_label_text_color = "green"
plot.add_layout(y2_axis, "left")
plot.line(
"date_time",
"load_mean",
source=source,
legend_label="Load mean value",
color="red",
)
plot.line(
"date_time",
"load_mean_adjusted",
source=source,
legend_label="Load adjusted by measurement",
color="blue",
)
plot.line(
"date_time",
"load_std",
source=source,
legend_label="Load standard deviation",
color="green",
y_range_name="stddev",
)
return Bokeh(plot)
def Demo(eos_host: str, eos_port: Union[str, int]) -> str:
server = f"http://{eos_host}:{eos_port}"
# Get current configuration from server
try:
result = requests.get(f"{server}/v1/config", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve configuration from {server}: {err}, {detail}",
cls="text-center",
)
config = result.json()
# Set demo configuration
with FILE_DEMOCONFIG.open("r", encoding="utf-8") as fd:
democonfig = json.load(fd)
try:
result = requests.put(f"{server}/v1/config", json=democonfig, timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not set demo configuration on {server}: {err}, {detail}",
cls="text-center",
)
# Update all predictions
try:
result = requests.post(f"{server}/v1/prediction/update", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not update predictions on {server}: {err}, {detail}",
cls="text-center",
)
# Get Forecasts
try:
params = {
"keys": [
"pvforecast_ac_power",
"elecprice_marketprice_kwh",
"weather_relative_humidity",
"weather_temp_air",
"weather_ghi",
"weather_dni",
"weather_dhi",
"load_mean",
"load_std",
"load_mean_adjusted",
],
}
result = requests.get(f"{server}/v1/prediction/dataframe", params=params, timeout=10)
result.raise_for_status()
predictions = PydanticDateTimeDataFrame(**result.json()).to_dataframe()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve predictions from {server}: {err}, {detail}",
cls="text-center",
)
except Exception as err:
return P(
f"Can not retrieve predictions from {server}: {err}",
cls="text-center",
)
# Reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return Grid(
DemoPVForecast(predictions, democonfig),
DemoElectricityPriceForecast(predictions, democonfig),
DemoWeatherTempAirHumidity(predictions, democonfig),
DemoWeatherIrradiance(predictions, democonfig),
DemoLoad(predictions, democonfig),
cols_max=2,
)

View File

@@ -1,91 +0,0 @@
from typing import Optional, Union
import requests
from loguru import logger
from monsterui.daisy import Loading, LoadingT
from monsterui.franken import A, ButtonT, DivFullySpaced, P
from requests.exceptions import RequestException
from akkudoktoreos.config.config import get_config
config_eos = get_config()
def get_alive(eos_host: str, eos_port: Union[str, int]) -> str:
"""Fetch alive information from the specified EOS server.
Args:
eos_host (str): The hostname of the server.
eos_port (Union[str, int]): The port of the server.
Returns:
str: Alive data.
"""
result = requests.Response()
try:
result = requests.get(f"http://{eos_host}:{eos_port}/v1/health", timeout=10)
if result.status_code == 200:
alive = result.json()["status"]
else:
alive = f"Server responded with status code: {result.status_code}"
except RequestException as e:
warning_msg = f"{e}"
logger.warning(warning_msg)
alive = warning_msg
return alive
def Footer(eos_host: Optional[str], eos_port: Optional[Union[str, int]]) -> str:
if eos_host is None:
eos_host = config_eos.server.host
if eos_port is None:
eos_port = config_eos.server.port
alive_icon = None
if eos_host is None or eos_port is None:
alive = "EOS server not given: {eos_host}:{eos_port}"
else:
alive = get_alive(eos_host, eos_port)
if alive == "alive":
alive_icon = Loading(
cls=(
LoadingT.ring,
LoadingT.sm,
),
)
alive = f"EOS {eos_host}:{eos_port}"
if alive_icon:
alive_cls = f"{ButtonT.primary} uk-link rounded-md"
else:
alive_cls = f"{ButtonT.secondary} uk-link rounded-md"
return DivFullySpaced(
P(
alive_icon,
A(alive, href=f"http://{eos_host}:{eos_port}/docs", target="_blank", cls=alive_cls),
),
P(
A(
"Documentation",
href="https://akkudoktor-eos.readthedocs.io/en/latest/",
target="_blank",
cls="uk-link",
),
),
P(
A(
"Issues",
href="https://github.com/Akkudoktor-EOS/EOS/issues",
target="_blank",
cls="uk-link",
),
),
P(
A(
"GitHub",
href="https://github.com/Akkudoktor-EOS/EOS/",
target="_blank",
cls="uk-link",
),
),
cls="uk-padding-remove-top uk-padding-remove-botton",
)

Some files were not shown because too many files have changed in this diff Show More