from typing import Optional, Tuple from pydantic import BaseModel, Field from akkudoktoreos.devices.battery import Battery from akkudoktoreos.devices.devicesabc import DeviceBase from akkudoktoreos.utils.logutil import get_logger logger = get_logger(__name__) class InverterParameters(BaseModel): max_power_wh: float = Field(default=10000, gt=0) class Inverter(DeviceBase): def __init__( self, parameters: Optional[InverterParameters] = None, akku: Optional[Battery] = None, provider_id: Optional[str] = None, ): # Configuration initialisation self.provider_id = provider_id self.prefix = "" if self.provider_id == "GenericInverter": self.prefix = "inverter" # Parameter initialisiation self.parameters = parameters if akku is None: # For the moment raise exception # TODO: Make akku configurable by config error_msg = "Battery for PV inverter is mandatory." logger.error(error_msg) raise NotImplementedError(error_msg) self.akku = akku # Connection to a battery object self.initialised = False # Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised. if self.parameters is not None: self.setup() def setup(self) -> None: if self.initialised: return if self.provider_id is not None: # Setup by configuration self.max_power_wh = getattr(self.config, f"{self.prefix}_power_max") elif self.parameters is not None: # Setup by parameters self.max_power_wh = ( self.parameters.max_power_wh # Maximum power that the inverter can handle ) else: error_msg = "Parameters and provider ID missing. Can't instantiate." logger.error(error_msg) raise ValueError(error_msg) def process_energy( self, generation: float, consumption: float, hour: int ) -> Tuple[float, float, float, float]: losses = 0.0 grid_export = 0.0 grid_import = 0.0 self_consumption = 0.0 if generation >= consumption: # Case 1: Sufficient or excess generation actual_consumption = min(consumption, self.max_power_wh) remaining_energy = generation - actual_consumption # Charge battery with excess energy charged_energy, charging_losses = self.akku.charge_energy(remaining_energy, hour) losses += charging_losses # Calculate remaining surplus after battery charge remaining_surplus = remaining_energy - (charged_energy + charging_losses) grid_export = min(remaining_surplus, self.max_power_wh - actual_consumption) # If any remaining surplus can't be fed to the grid, count as losses losses += max(remaining_surplus - grid_export, 0) self_consumption = actual_consumption else: # Case 2: Insufficient generation, cover shortfall shortfall = consumption - generation available_ac_power = max(self.max_power_wh - generation, 0) # Discharge battery to cover shortfall, if possible battery_discharge, discharge_losses = self.akku.discharge_energy( min(shortfall, available_ac_power), hour ) losses += discharge_losses # Draw remaining required power from the grid (discharge_losses are already substraved in the battery) grid_import = shortfall - battery_discharge self_consumption = generation + battery_discharge return grid_export, grid_import, losses, self_consumption