from flask import Flask, jsonify, request import numpy as np from modules.class_load import * from modules.class_ems import * from modules.class_pv_forecast import * from modules.class_akku import * from modules.class_strompreis import * from modules.class_heatpump import * from modules.class_load_container import * from modules.class_sommerzeit import * from modules.visualize import * import os from flask import Flask, send_from_directory from pprint import pprint import matplotlib matplotlib.use('Agg') # Setzt das Backend auf Agg import matplotlib.pyplot as plt import string from datetime import datetime from deap import base, creator, tools, algorithms from modules.class_optimize import * import numpy as np import random import os app = Flask(__name__) opt_class = optimization_problem(prediction_hours=24, strafe=10) @app.route('/optimize', methods=['POST']) def flask_optimize(): if request.method == 'POST': parameter = request.json # Erforderliche Parameter prüfen erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","pvpowernow","haushaltsgeraet_dauer","haushaltsgeraet_wh"] for p in erforderliche_parameter: if p not in parameter: return jsonify({"error": f"Fehlender Parameter: {p}"}), 400 # Simulation durchführen ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=datetime.now().hour) return jsonify(ergebnis) @app.route('/optimize_worst_case', methods=['POST']) def flask_optimize_worst_case(): if request.method == 'POST': parameter = request.json # Erforderliche Parameter prüfen erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","pvpowernow","haushaltsgeraet_dauer","haushaltsgeraet_wh"] for p in erforderliche_parameter: if p not in parameter: return jsonify({"error": f"Fehlender Parameter: {p}"}), 400 # Simulation durchführen ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=datetime.now().hour, worst_case=True) return jsonify(ergebnis) @app.route('/visualisierungsergebnisse.pdf') def get_pdf(): return send_from_directory('', 'visualisierungsergebnisse.pdf') if __name__ == '__main__': app.run(debug=True, host="0.0.0.0")