from pathlib import Path import numpy as np import pytest from akkudoktoreos.config import AppConfig from akkudoktoreos.devices.battery import EAutoParameters, PVAkku, PVAkkuParameters from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters from akkudoktoreos.devices.inverter import Wechselrichter, WechselrichterParameters from akkudoktoreos.prediction.ems import ( EnergieManagementSystem, EnergieManagementSystemParameters, ) from akkudoktoreos.prediction.self_consumption_probability import ( self_consumption_probability_interpolator, ) prediction_hours = 48 optimization_hours = 24 start_hour = 0 # Example initialization of necessary components @pytest.fixture def create_ems_instance(tmp_config: AppConfig) -> EnergieManagementSystem: """Fixture to create an EnergieManagementSystem instance with given test parameters.""" # Initialize the battery and the inverter akku = PVAkku( PVAkkuParameters(kapazitaet_wh=5000, start_soc_prozent=80, min_soc_prozent=10), hours=prediction_hours, ) # 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate sc = self_consumption_probability_interpolator( Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl" ) akku.reset() wechselrichter = Wechselrichter( WechselrichterParameters(max_leistung_wh=10000), akku, self_consumption_predictor=sc ) # Household device (currently not used, set to None) home_appliance = HomeAppliance( HomeApplianceParameters( consumption_wh=2000, duration_h=2, ), hours=prediction_hours, ) home_appliance.set_starting_time(2) # Example initialization of electric car battery eauto = PVAkku( EAutoParameters(kapazitaet_wh=26400, start_soc_prozent=100, min_soc_prozent=100), hours=prediction_hours, ) # Parameters based on previous example data pv_prognose_wh = [0.0] * prediction_hours pv_prognose_wh[10] = 5000.0 pv_prognose_wh[11] = 5000.0 strompreis_euro_pro_wh = [0.001] * prediction_hours strompreis_euro_pro_wh[0:10] = [0.00001] * 10 strompreis_euro_pro_wh[11:15] = [0.00005] * 4 strompreis_euro_pro_wh[20] = 0.00001 einspeiseverguetung_euro_pro_wh = [0.00007] * len(strompreis_euro_pro_wh) gesamtlast = [ 676.71, 876.19, 527.13, 468.88, 531.38, 517.95, 483.15, 472.28, 1011.68, 995.00, 1053.07, 1063.91, 1320.56, 1132.03, 1163.67, 1176.82, 1216.22, 1103.78, 1129.12, 1178.71, 1050.98, 988.56, 912.38, 704.61, 516.37, 868.05, 694.34, 608.79, 556.31, 488.89, 506.91, 804.89, 1141.98, 1056.97, 992.46, 1155.99, 827.01, 1257.98, 1232.67, 871.26, 860.88, 1158.03, 1222.72, 1221.04, 949.99, 987.01, 733.99, 592.97, ] # Initialize the energy management system with the respective parameters ems = EnergieManagementSystem( tmp_config.eos, EnergieManagementSystemParameters( pv_prognose_wh=pv_prognose_wh, strompreis_euro_pro_wh=strompreis_euro_pro_wh, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, preis_euro_pro_wh_akku=0, gesamtlast=gesamtlast, ), wechselrichter=wechselrichter, eauto=eauto, home_appliance=home_appliance, ) ac = np.full(prediction_hours, 0) ac[20] = 1 ems.set_akku_ac_charge_hours(ac) dc = np.full(prediction_hours, 0) dc[11] = 1 ems.set_akku_dc_charge_hours(dc) return ems def test_simulation(create_ems_instance): """Test the EnergieManagementSystem simulation method.""" ems = create_ems_instance # Simulate starting from hour 0 (this value can be adjusted) result = ems.simuliere(start_stunde=start_hour) # --- Pls do not remove! --- # visualisiere_ergebnisse( # ems.gesamtlast, # ems.pv_prognose_wh, # ems.strompreis_euro_pro_wh, # result, # ems.akku.discharge_array+ems.akku.charge_array, # None, # ems.pv_prognose_wh, # start_hour, # 48, # np.full(48, 0.0), # filename="visualization_results.pdf", # extra_data=None, # ) # Assertions to validate results assert result is not None, "Result should not be None" assert isinstance(result, dict), "Result should be a dictionary" assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'" """ Check the result of the simulation based on expected values. """ # Example result returned from the simulation (used for assertions) assert result is not None, "Result should not be None." # Check that the result is a dictionary assert isinstance(result, dict), "Result should be a dictionary." # Verify that the expected keys are present in the result expected_keys = [ "Last_Wh_pro_Stunde", "Netzeinspeisung_Wh_pro_Stunde", "Netzbezug_Wh_pro_Stunde", "Kosten_Euro_pro_Stunde", "akku_soc_pro_stunde", "Einnahmen_Euro_pro_Stunde", "Gesamtbilanz_Euro", "EAuto_SoC_pro_Stunde", "Gesamteinnahmen_Euro", "Gesamtkosten_Euro", "Verluste_Pro_Stunde", "Gesamt_Verluste", "Home_appliance_wh_per_hour", ] for key in expected_keys: assert key in result, f"The key '{key}' should be present in the result." # Check the length of the main arrays assert ( len(result["Last_Wh_pro_Stunde"]) == 48 ), "The length of 'Last_Wh_pro_Stunde' should be 48." assert ( len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 48 ), "The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48." assert ( len(result["Netzbezug_Wh_pro_Stunde"]) == 48 ), "The length of 'Netzbezug_Wh_pro_Stunde' should be 48." assert ( len(result["Kosten_Euro_pro_Stunde"]) == 48 ), "The length of 'Kosten_Euro_pro_Stunde' should be 48." assert ( len(result["akku_soc_pro_stunde"]) == 48 ), "The length of 'akku_soc_pro_stunde' should be 48." # Verfify DC and AC Charge Bins assert ( abs(result["akku_soc_pro_stunde"][10] - 10.0) < 1e-5 ), "'akku_soc_pro_stunde[10]' should be 10." assert ( abs(result["akku_soc_pro_stunde"][11] - 79.275184) < 1e-5 ), "'akku_soc_pro_stunde[11]' should be 79.275184." assert ( abs(result["Netzeinspeisung_Wh_pro_Stunde"][10] - 3946.93) < 1e-3 ), "'Netzeinspeisung_Wh_pro_Stunde[11]' should be 4000." assert ( abs(result["Netzeinspeisung_Wh_pro_Stunde"][11] - 0.0) < 1e-3 ), "'Netzeinspeisung_Wh_pro_Stunde[11]' should be 0.0." assert ( abs(result["akku_soc_pro_stunde"][20] - 98) < 1e-5 ), "'akku_soc_pro_stunde[11]' should be 98." assert ( abs(result["Last_Wh_pro_Stunde"][20] - 6050.98) < 1e-3 ), "'Netzeinspeisung_Wh_pro_Stunde[11]' should be 0.0." print("All tests passed successfully.")