from flask import Flask, jsonify, request import numpy as np from datetime import datetime from modules.class_load import * from modules.class_ems import * from modules.class_pv_forecast import * from modules.class_akku import * from modules.class_strompreis import * from pprint import pprint import matplotlib.pyplot as plt from modules.visualize import * from deap import base, creator, tools, algorithms import numpy as np import random date = "2024-02-16" akku_size = 1000 # Wh year_energy = 2000*1000 #Wh einspeiseverguetung_cent_pro_wh = np.full(24, 7/1000.0) akku = PVAkku(akku_size) discharge_array = np.full(24,1) # discharge_array[12] = 0 # discharge_array[13] = 0 # discharge_array[14] = 0 # discharge_array[15] = 0 # discharge_array[16] = 0 # discharge_array[17] = 0 # discharge_array[18] = 1 # akku.set_discharge_per_hour(discharge_array) # Load Forecast lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) specific_date_load = lf.get_daily_stats(date)[0,...] # Datum anpassen pprint(specific_date_load.shape) # PV Forecast PVforecast = PVForecast(r'.\test_data\pvprognose.json') pv_forecast = PVforecast.get_forecast_for_date(date) pprint(pv_forecast.shape) # Strompreise filepath = r'.\test_data\strompreis.json' # Pfad zur JSON-Datei anpassen price_forecast = HourlyElectricityPriceForecast(filepath) specific_date_prices = price_forecast.get_prices_for_date(date) # EMS / Stromzähler Bilanz ems = EnergieManagementSystem(akku, specific_date_load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh) o = ems.simuliere() pprint(o["Gesamtbilanz_Euro"]) # Optimierung # Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren) def evaluate(individual): # Hier müssen Sie Ihre Logik einbauen, um die Gesamtbilanz zu berechnen # basierend auf dem gegebenen `individual` (discharge_array) #akku.set_discharge_per_hour(individual) ems.reset() ems.set_akku_discharge_hours(individual) o = ems.simuliere() gesamtbilanz = o["Gesamtbilanz_Euro"] #print(individual, " ",gesamtbilanz) return (gesamtbilanz,) # Werkzeug-Setup creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox = base.Toolbox() toolbox.register("attr_bool", random.randint, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 24) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", evaluate) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) # Genetischer Algorithmus def optimize(): population = toolbox.population(n=100) hof = tools.HallOfFame(1) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", np.mean) stats.register("min", np.min) stats.register("max", np.max) algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=100, stats=stats, halloffame=hof, verbose=True) return hof[0] best_solution = optimize() print("Beste Lösung:", best_solution) ems.set_akku_discharge_hours(best_solution) o = ems.simuliere() pprint(o["Gesamtbilanz_Euro"]) visualisiere_ergebnisse(specific_date_load, pv_forecast, specific_date_prices, o) # for data in forecast.get_forecast_data(): # print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())for data in forecast.get_forecast_data(): # app = Flask(__name__) # @app.route('/getdata', methods=['GET']) # def get_data(): # # Hole das Datum aus den Query-Parametern # date_str = request.args.get('date') # year_energy = request.args.get('year_energy') # try: # # Konvertiere das Datum in ein datetime-Objekt # date_obj = datetime.strptime(date_str, '%Y-%m-%d') # filepath = r'.\load_profiles.npz' # Pfad zur JSON-Datei anpassen # lf = cl.LoadForecast(filepath=filepath, year_energy=float(year_energy)) # specific_date_prices = lf.get_daily_stats('2024-02-16') # # Berechne den Tag des Jahres # #day_of_year = date_obj.timetuple().tm_yday # # Konvertiere den Tag des Jahres in einen String, falls die Schlüssel als Strings gespeichert sind # #day_key = int(day_of_year) # #print(day_key) # # Überprüfe, ob der Tag im Jahr in den Daten vorhanden ist # array_list = lf.get_daily_stats(date_str) # pprint(array_list) # pprint(array_list.shape) # if array_list.shape == (2,24): # #if day_key < len(load_profiles_exp): # # Konvertiere das Array in eine Liste für die JSON-Antwort # #((load_profiles_exp_l[day_key]).tolist(),(load_profiles_std_l)[day_key].tolist()) # return jsonify({date_str: array_list.tolist()}) # else: # return jsonify({"error": "Datum nicht gefunden"}), 404 # except ValueError: # # Wenn das Datum nicht im richtigen Format ist oder ungültig ist # return jsonify({"error": "Ungültiges Datum"}), 400 # if __name__ == '__main__': # app.run(debug=True)