from typing import Optional, Union from pydantic import Field, computed_field, model_validator from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.core.pydantic import ( PydanticBaseModel, PydanticDateTimeDataFrame, ) from akkudoktoreos.utils.datetimeutil import DateTime class GeneticCommonSettings(SettingsBaseModel): """General Genetic Optimization Algorithm Configuration.""" individuals: Optional[int] = Field( default=300, ge=10, json_schema_extra={ "description": "Number of individuals (solutions) to generate for the (initial) generation [>= 10]. Defaults to 300.", "examples": [300], }, ) generations: Optional[int] = Field( default=400, ge=10, json_schema_extra={ "description": "Number of generations to evaluate the optimal solution [>= 10]. Defaults to 400.", "examples": [400], }, ) seed: Optional[int] = Field( default=None, ge=0, json_schema_extra={ "description": "Fixed seed for genetic algorithm. Defaults to 'None' which means random seed.", "examples": [None], }, ) penalties: Optional[dict[str, Union[float, int, str]]] = Field( default=None, json_schema_extra={ "description": "A dictionary of penalty function parameters consisting of a penalty function parameter name and the associated value.", "examples": [ {"ev_soc_miss": 10}, ], }, ) class OptimizationCommonSettings(SettingsBaseModel): """General Optimization Configuration.""" horizon_hours: Optional[int] = Field( default=24, ge=0, json_schema_extra={ "description": "The general time window within which the energy optimization goal shall be achieved [h]. Defaults to 24 hours.", "examples": [24], }, ) interval: Optional[int] = Field( default=3600, ge=15 * 60, le=60 * 60, json_schema_extra={ "description": "The optimization interval [sec].", "examples": [60 * 60, 15 * 60], }, ) algorithm: Optional[str] = Field( default="GENETIC", json_schema_extra={"description": "The optimization algorithm.", "examples": ["GENETIC"]}, ) genetic: Optional[GeneticCommonSettings] = Field( default=None, json_schema_extra={ "description": "Genetic optimization algorithm configuration.", "examples": [{"individuals": 400, "seed": None, "penalties": {"ev_soc_miss": 10}}], }, ) # Computed fields @computed_field # type: ignore[prop-decorator] @property def keys(self) -> list[str]: """The keys of the solution.""" from akkudoktoreos.core.ems import get_ems key_list = [] optimization_solution = get_ems().optimization_solution() if optimization_solution: # Prepare mapping df = optimization_solution.solution.to_dataframe() key_list = df.columns.tolist() return sorted(set(key_list)) # Validators @model_validator(mode="after") def _enforce_algorithm_configuration(self) -> "OptimizationCommonSettings": """Ensure algorithm default configuration is set.""" if self.algorithm is not None: if self.algorithm.lower() == "genetic" and self.genetic is None: self.genetic = GeneticCommonSettings() return self class OptimizationSolution(PydanticBaseModel): """General Optimization Solution.""" id: str = Field( ..., json_schema_extra={"description": "Unique ID for the optimization solution."} ) generated_at: DateTime = Field( ..., json_schema_extra={"description": "Timestamp when the solution was generated."} ) comment: Optional[str] = Field( default=None, json_schema_extra={"description": "Optional comment or annotation for the solution."}, ) valid_from: Optional[DateTime] = Field( default=None, json_schema_extra={"description": "Start time of the optimization solution."} ) valid_until: Optional[DateTime] = Field( default=None, json_schema_extra={"description": "End time of the optimization solution."} ) total_losses_energy_wh: float = Field( json_schema_extra={"description": "The total losses in watt-hours over the entire period."} ) total_revenues_amt: float = Field( json_schema_extra={"description": "The total revenues [money amount]."} ) total_costs_amt: float = Field( json_schema_extra={"description": "The total costs [money amount]."} ) fitness_score: set[float] = Field( json_schema_extra={"description": "The fitness score as a set of fitness values."} ) prediction: PydanticDateTimeDataFrame = Field( json_schema_extra={ "description": ( "Datetime data frame with time series prediction data per optimization interval:" "- pv_energy_wh: PV energy prediction (positive) in wh" "- elec_price_amt_kwh: Electricity price prediction in money per kwh" "- feed_in_tariff_amt_kwh: Feed in tariff prediction in money per kwh" "- weather_temp_air_celcius: Temperature in °C" "- loadforecast_energy_wh: Load mean energy prediction in wh" "- loadakkudoktor_std_energy_wh: Load energy standard deviation prediction in wh" "- loadakkudoktor_mean_energy_wh: Load mean energy prediction in wh" ) } ) solution: PydanticDateTimeDataFrame = Field( json_schema_extra={ "description": ( "Datetime data frame with time series solution data per optimization interval:" "- load_energy_wh: Load of all energy consumers in wh" "- grid_energy_wh: Grid energy feed in (negative) or consumption (positive) in wh" "- costs_amt: Costs in money amount" "- revenue_amt: Revenue in money amount" "- losses_energy_wh: Energy losses in wh" "- _operation_mode_id: Operation mode id of the device." "- _operation_mode_factor: Operation mode factor of the device." "- _soc_factor: State of charge of a battery/ electric vehicle device as factor of total capacity." "- _energy_wh: Energy consumption (positive) of a device in wh." ) } )