"""Retrieves and processes electricity price forecast data from Akkudoktor. This module provides classes and mappings to manage electricity price data obtained from the Akkudoktor API, including support for various electricity price attributes such as temperature, humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPriceDataRecord` format, enabling consistent access to forecasted and historical electricity price attributes. """ from typing import Any, List, Optional, Union import requests from pydantic import ValidationError from akkudoktoreos.core.pydantic import PydanticBaseModel from akkudoktoreos.prediction.elecpriceabc import ElecPriceDataRecord, ElecPriceProvider from akkudoktoreos.utils.cacheutil import cache_in_file from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime from akkudoktoreos.utils.logutil import get_logger logger = get_logger(__name__) class AkkudoktorElecPriceMeta(PydanticBaseModel): start_timestamp: int end_timestamp: int start: str end: str class AkkudoktorElecPriceValue(PydanticBaseModel): start_timestamp: int end_timestamp: int start: str end: str marketprice: float unit: str marketpriceEurocentPerKWh: float class AkkudoktorElecPrice(PydanticBaseModel): meta: AkkudoktorElecPriceMeta values: List[AkkudoktorElecPriceValue] class ElecPriceAkkudoktor(ElecPriceProvider): """Fetch and process electricity price forecast data from Akkudoktor. ElecPriceAkkudoktor is a singleton-based class that retrieves electricity price forecast data from the Akkudoktor API and maps it to `ElecPriceDataRecord` fields, applying any necessary scaling or unit corrections. It manages the forecast over a range of hours into the future and retains historical data. Attributes: prediction_hours (int, optional): Number of hours in the future for the forecast. prediction_historic_hours (int, optional): Number of past hours for retaining data. start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime. end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`. keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`. Methods: provider_id(): Returns a unique identifier for the provider. _request_forecast(): Fetches the forecast from the Akkudoktor API. _update_data(): Processes and updates forecast data from Akkudoktor in ElecPriceDataRecord format. """ @classmethod def provider_id(cls) -> str: """Return the unique identifier for the Akkudoktor provider.""" return "Akkudoktor" @classmethod def _validate_data(cls, json_str: Union[bytes, Any]) -> AkkudoktorElecPrice: """Validate Akkudoktor Electricity Price forecast data.""" try: akkudoktor_data = AkkudoktorElecPrice.model_validate_json(json_str) except ValidationError as e: error_msg = "" for error in e.errors(): field = " -> ".join(str(x) for x in error["loc"]) message = error["msg"] error_type = error["type"] error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n" logger.error(f"Akkudoktor schema change: {error_msg}") raise ValueError(error_msg) return akkudoktor_data @cache_in_file(with_ttl="1 hour") def _request_forecast(self) -> AkkudoktorElecPrice: """Fetch electricity price forecast data from Akkudoktor API. This method sends a request to Akkudoktor's API to retrieve forecast data for a specified date range. The response data is parsed and returned as JSON for further processing. Returns: dict: The parsed JSON response from Akkudoktor API containing forecast data. Raises: ValueError: If the API response does not include expected `electricity price` data. """ source = "https://api.akkudoktor.net" date = to_datetime(self.start_datetime, as_string="%Y-%m-%d") last_date = to_datetime(self.end_datetime, as_string="%Y-%m-%d") response = requests.get( f"{source}/prices?date={date}&last_date={last_date}&tz={self.config.timezone}" ) response.raise_for_status() # Raise an error for bad responses logger.debug(f"Response from {source}: {response}") akkudoktor_data = self._validate_data(response.content) # We are working on fresh data (no cache), report update time self.update_datetime = to_datetime(in_timezone=self.config.timezone) return akkudoktor_data def _update_data(self, force_update: Optional[bool] = False) -> None: """Update forecast data in the ElecPriceDataRecord format. Retrieves data from Akkudoktor, maps each Akkudoktor field to the corresponding `ElecPriceDataRecord` and applies any necessary scaling. The final mapped and processed data is inserted into the sequence as `ElecPriceDataRecord`. """ # Get Akkudoktor electricity price data akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore # Assumption that all lists are the same length and are ordered chronologically # in ascending order and have the same timestamps. values_len = len(akkudoktor_data.values) if values_len < 1: # Expect one value set per prediction hour raise ValueError( f"The forecast must have at least one dataset, " f"but only {values_len} data sets are given in forecast data." ) previous_price = akkudoktor_data.values[0].marketpriceEurocentPerKWh for i in range(values_len): original_datetime = akkudoktor_data.values[i].start dt = to_datetime(original_datetime, in_timezone=self.config.timezone) if compare_datetimes(dt, self.start_datetime).le: # forecast data is too old previous_price = akkudoktor_data.values[i].marketpriceEurocentPerKWh continue record = ElecPriceDataRecord( date_time=dt, elecprice_marketprice=akkudoktor_data.values[i].marketpriceEurocentPerKWh, ) self.append(record) # Assure price starts at start_time if compare_datetimes(self[0].date_time, self.start_datetime).gt: record = ElecPriceDataRecord( date_time=self.start_datetime, elecprice_marketprice=previous_price, ) self.insert(0, record) # Assure price ends at end_time if compare_datetimes(self[-1].date_time, self.end_datetime).lt: record = ElecPriceDataRecord( date_time=self.end_datetime, elecprice_marketprice=self[-1].elecprice_marketprice, ) self.append(record) # If some of the hourly values are missing, they will be interpolated when using # `key_to_array`.