"""Abstract and base classes for load predictions. Notes: - Ensure appropriate API keys or configurations are set up if required by external data sources. """ from abc import abstractmethod from typing import List, Optional from pydantic import Field, computed_field from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord from akkudoktoreos.utils.logutil import get_logger logger = get_logger(__name__) class LoadDataRecord(PredictionRecord): """Represents a load data record containing various load attributes at a specific datetime.""" load0_mean: Optional[float] = Field(default=None, description="Load 0 mean value (W)") load0_std: Optional[float] = Field(default=None, description="Load 0 standard deviation (W)") load1_mean: Optional[float] = Field(default=None, description="Load 1 mean value (W)") load1_std: Optional[float] = Field(default=None, description="Load 1 standard deviation (W)") load2_mean: Optional[float] = Field(default=None, description="Load 2 mean value (W)") load2_std: Optional[float] = Field(default=None, description="Load 2 standard deviation (W)") load3_mean: Optional[float] = Field(default=None, description="Load 3 mean value (W)") load3_std: Optional[float] = Field(default=None, description="Load 3 standard deviation (W)") load4_mean: Optional[float] = Field(default=None, description="Load 4 mean value (W)") load4_std: Optional[float] = Field(default=None, description="Load 4 standard deviation (W)") # Computed fields @computed_field # type: ignore[prop-decorator] @property def load_total_mean(self) -> float: """Total load mean value (W).""" total_mean = 0.0 for i in range(5): load_mean_attr = f"load{i}_mean" value = getattr(self, load_mean_attr) if value: total_mean += value return total_mean @computed_field # type: ignore[prop-decorator] @property def load_total_std(self) -> float: """Total load standard deviation (W).""" total_std = 0.0 for i in range(5): load_std_attr = f"load{i}_std" value = getattr(self, load_std_attr) if value: total_std += value return total_std class LoadProvider(PredictionProvider): """Abstract base class for load providers. LoadProvider is a thread-safe singleton, ensuring only one instance of this class is created. Configuration variables: load_provider (str): Prediction provider for load. Attributes: prediction_hours (int, optional): The number of hours into the future for which predictions are generated. prediction_historic_hours (int, optional): The number of past hours for which historical data is retained. latitude (float, optional): The latitude in degrees, must be within -90 to 90. longitude (float, optional): The longitude in degrees, must be within -180 to 180. start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified. end_datetime (datetime, computed): The datetime representing the end of the prediction range, calculated based on `start_datetime` and `prediction_hours`. keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated based on `start_datetime` and `prediction_historic_hours`. """ # overload records: List[LoadDataRecord] = Field( default_factory=list, description="List of LoadDataRecord records" ) @classmethod @abstractmethod def provider_id(cls) -> str: return "LoadProvider" def enabled(self) -> bool: logger.debug( f"LoadProvider ID {self.provider_id()} vs. config {self.config.load_providers}" ) return self.provider_id() == self.config.load_providers def loads(self) -> List[str]: """Returns a list of key prefixes of the loads managed by this provider.""" loads_prefix = [] for i in range(self.config.load_count): load_provider_attr = f"load{i}_provider" value = getattr(self.config, load_provider_attr) if value == self.provider_id(): loads_prefix.append(f"load{i}") return loads_prefix