"""Retrieves load forecast data from Akkudoktor load profiles.""" from pathlib import Path from typing import Optional import numpy as np from pydantic import Field from akkudoktoreos.config.configabc import SettingsBaseModel from akkudoktoreos.prediction.loadabc import LoadProvider from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration from akkudoktoreos.utils.logutil import get_logger logger = get_logger(__name__) class LoadAkkudoktorCommonSettings(SettingsBaseModel): """Common settings for load data import from file.""" loadakkudoktor_year_energy: Optional[float] = Field( default=None, description="Yearly energy consumption (kWh)." ) class LoadAkkudoktor(LoadProvider): """Fetch Load forecast data from Akkudoktor load profiles.""" @classmethod def provider_id(cls) -> str: """Return the unique identifier for the LoadAkkudoktor provider.""" return "LoadAkkudoktor" def load_data(self) -> np.ndarray: """Loads data from the Akkudoktor load file.""" load_file = Path(__file__).parent.parent.joinpath("data/load_profiles.npz") data_year_energy = None try: file_data = np.load(load_file) profile_data = np.array( list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"])) ) data_year_energy = profile_data * self.config.loadakkudoktor_year_energy # pprint(self.data_year_energy) except FileNotFoundError: error_msg = f"Error: File {load_file} not found." logger.error(error_msg) raise FileNotFoundError(error_msg) except Exception as e: error_msg = f"An error occurred while loading data: {e}" logger.error(error_msg) raise ValueError(error_msg) return data_year_energy def _update_data(self, force_update: Optional[bool] = False) -> None: """Adds the load means and standard deviations.""" data_year_energy = self.load_data() for load in self.loads(): attr_load_mean = f"{load}_mean" attr_load_std = f"{load}_std" date = self.start_datetime for i in range(self.config.prediction_hours): # Extract mean and standard deviation for the given day and hour # Day indexing starts at 0, -1 because of that hourly_stats = data_year_energy[date.day_of_year - 1, :, date.hour] self.update_value(date, attr_load_mean, hourly_stats[0]) self.update_value(date, attr_load_std, hourly_stats[1]) date += to_duration("1 hour") # We are working on fresh data (no cache), report update time self.update_datetime = to_datetime(in_timezone=self.config.timezone)