% SPDX-License-Identifier: Apache-2.0 # `POST /optimize` Optimization ## Introduction The `POST /optimize` API endpoint optimizes your energy management system based on various inputs including electricity prices, battery storage capacity, PV forecast, and temperature data. The `POST /optimize` optimization interface is the "classical" interface developed by Andreas at the start of the projects and used and described in his videos. It allows and requires to define all the optimization paramters on the endpoint request. :::{admonition} Warning :class: warning The `POST /optimize` endpoint interface does not regard configurations set for the parameters passed to the request. You have to set the parameters even if given in the configuration. ::: ## Input Payload ### Sample Request ```json { "ems": { "preis_euro_pro_wh_akku": 0.0001, "einspeiseverguetung_euro_pro_wh": [ 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007, 0.00007 ], "gesamtlast": [ 676.71, 876.19, 527.13, 468.88, 531.38, 517.95, 483.15, 472.28, 1011.68, 995.00, 1053.07, 1063.91, 1320.56, 1132.03, 1163.67, 1176.82, 1216.22, 1103.78, 1129.12, 1178.71, 1050.98, 988.56, 912.38, 704.61, 516.37, 868.05, 694.34, 608.79, 556.31, 488.89, 506.91, 804.89, 1141.98, 1056.97, 992.46, 1155.99, 827.01, 1257.98, 1232.67, 871.26, 860.88, 1158.03, 1222.72, 1221.04, 949.99, 987.01, 733.99, 592.97 ], "pv_prognose_wh": [ 0, 0, 0, 0, 0, 0, 0, 8.05, 352.91, 728.51, 930.28, 1043.25, 1106.74, 1161.69, 6018.82, 5519.07, 3969.88, 3017.96, 1943.07, 1007.17, 319.67, 7.88, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.04, 335.59, 705.32, 1121.12, 1604.79, 2157.38, 1433.25, 5718.49, 4553.96, 3027.55, 2574.46, 1720.4, 963.4, 383.3, 0, 0, 0 ], "strompreis_euro_pro_wh": [ 0.0003384, 0.0003318, 0.0003284, 0.0003283, 0.0003289, 0.0003334, 0.0003290, 0.0003302, 0.0003042, 0.0002430, 0.0002280, 0.0002212, 0.0002093, 0.0001879, 0.0001838, 0.0002004, 0.0002198, 0.0002270, 0.0002997, 0.0003195, 0.0003081, 0.0002969, 0.0002921, 0.0002780, 0.0003384, 0.0003318, 0.0003284, 0.0003283, 0.0003289, 0.0003334, 0.0003290, 0.0003302, 0.0003042, 0.0002430, 0.0002280, 0.0002212, 0.0002093, 0.0001879, 0.0001838, 0.0002004, 0.0002198, 0.0002270, 0.0002997, 0.0003195, 0.0003081, 0.0002969, 0.0002921, 0.0002780 ] }, "pv_akku": { "device_id": "battery1", "capacity_wh": 26400, "max_charge_power_w": 5000, "initial_soc_percentage": 80, "min_soc_percentage": 15 }, "inverter": { "device_id": "inverter1", "max_power_wh": 10000, "battery_id": "battery1" }, "eauto": { "device_id": "ev1", "capacity_wh": 60000, "charging_efficiency": 0.95, "discharging_efficiency": 1.0, "max_charge_power_w": 11040, "initial_soc_percentage": 54, "min_soc_percentage": 0 }, "temperature_forecast": [ 18.3, 17.8, 16.9, 16.2, 15.6, 15.1, 14.6, 14.2, 14.3, 14.8, 15.7, 16.7, 17.4, 18.0, 18.6, 19.2, 19.1, 18.7, 18.5, 17.7, 16.2, 14.6, 13.6, 13.0, 12.6, 12.2, 11.7, 11.6, 11.3, 11.0, 10.7, 10.2, 11.4, 14.4, 16.4, 18.3, 19.5, 20.7, 21.9, 22.7, 23.1, 23.1, 22.8, 21.8, 20.2, 19.1, 18.0, 17.4 ], "start_solution": null } ``` ## Input Parameters ### Energy Management System (EMS) #### Battery Cost (`preis_euro_pro_wh_akku`) - Unit: €/Wh - Purpose: Represents the residual value of energy stored in the battery - Impact: Lower values encourage battery depletion, higher values preserve charge at the end of the simulation. #### Feed-in Tariff (`einspeiseverguetung_euro_pro_wh`) - Unit: €/Wh - Purpose: Compensation received for feeding excess energy back to the grid #### Total Load Forecast (`gesamtlast`) - Unit: W - Time Range: 48 hours (00:00 today to 23:00 tomorrow) - Format: Array of hourly values - Note: Exclude optimizable loads (EV charging, battery charging, etc.) ##### Data Sources 1. Standard Load Profile: `GET /v1/prediction/list?key=load_mean` for a standard load profile based on your yearly consumption. 2. Adjusted Load Profile: `GET /v1/prediction/list?key=load_mean_adjusted` for a combination of a standard load profile based on your yearly consumption incl. data from last 48h. #### PV Generation Forecast (`pv_prognose_wh`) - Unit: W - Time Range: 48 hours (00:00 today to 23:00 tomorrow) - Format: Array of hourly values - Data Source: `GET /v1/prediction/series?key=pvforecast_ac_power` #### Electricity Price Forecast (`strompreis_euro_pro_wh`) - Unit: €/Wh - Time Range: 48 hours (00:00 today to 23:00 tomorrow) - Format: Array of hourly values - Data Source: `GET /v1/prediction/list?key=elecprice_marketprice_wh` Verify prices against your local tariffs. ### Battery Storage System #### Configuration - `device_id`: ID of battery - `capacity_wh`: Total battery capacity in Wh - `charging_efficiency`: Charging efficiency (0-1) - `discharging_efficiency`: Discharging efficiency (0-1) - `max_charge_power_w`: Maximum charging power in W #### State of Charge (SoC) - `initial_soc_percentage`: Current battery level (%) - `min_soc_percentage`: Minimum allowed SoC (%) - `max_soc_percentage`: Maximum allowed SoC (%) ### Inverter - `device_id`: ID of inverter - `max_power_wh`: Maximum inverter power in Wh - `battery_id`: ID of battery ### Electric Vehicle (EV) - `device_id`: ID of electric vehicle - `capacity_wh`: Battery capacity in Wh - `charging_efficiency`: Charging efficiency (0-1) - `discharging_efficiency`: Discharging efficiency (0-1) - `max_charge_power_w`: Maximum charging power in W - `initial_soc_percentage`: Current charge level (%) - `min_soc_percentage`: Minimum allowed SoC (%) - `max_soc_percentage`: Maximum allowed SoC (%) ### Temperature Forecast - Unit: °C - Time Range: 48 hours (00:00 today to 23:00 tomorrow) - Format: Array of hourly values - Data Source: `GET /v1/prediction/list?key=weather_temp_air` ## Output Format ### Sample Response ```json { "ac_charge": [0.625, 0, ..., 0.75, 0], "dc_charge": [1, 1, ..., 1, 1], "discharge_allowed": [0, 0, 1, ..., 0, 0], "eautocharge_hours_float": [0.625, 0, ..., 0.75, 0], "result": { "Last_Wh_pro_Stunde": [...], "EAuto_SoC_pro_Stunde": [...], "Einnahmen_Euro_pro_Stunde": [...], "Gesamt_Verluste": 1514.96, "Gesamtbilanz_Euro": 2.51, "Gesamteinnahmen_Euro": 2.88, "Gesamtkosten_Euro": 5.39, "akku_soc_pro_stunde": [...] } } ``` ### Output Parameters #### Battery Control - `ac_charge`: Grid charging schedule (0.0-1.0) - `dc_charge`: DC charging schedule (0-1) - `discharge_allowed`: Discharge permission (0 or 1) 0 (no charge) 1 (charge with full load) `ac_charge` multiplied by the maximum charge power of the battery results in the planned charging power. #### EV Charging - `eautocharge_hours_float`: EV charging schedule (0.0-1.0) #### Results The `result` object contains detailed information about the optimization outcome. The length of the array is between 25 and 48 and starts at the current hour and ends at 23:00 tomorrow. - `Last_Wh_pro_Stunde`: Array of hourly load values in Wh - Shows the total energy consumption per hour - Includes household load, battery charging/discharging, and EV charging - `EAuto_SoC_pro_Stunde`: Array of hourly EV state of charge values (%) - Shows the projected EV battery level throughout the optimization period - `Einnahmen_Euro_pro_Stunde`: Array of hourly revenue values in Euro - `Gesamt_Verluste`: Total energy losses in Wh - `Gesamtbilanz_Euro`: Overall financial balance in Euro - `Gesamteinnahmen_Euro`: Total revenue in Euro - `Gesamtkosten_Euro`: Total costs in Euro - `akku_soc_pro_stunde`: Array of hourly battery state of charge values (%) ## Timeframe overview ```{figure} ../_static/optimization_timeframes.png :alt: Timeframe Overview Timeframe Overview ```