import datetime # Set the backend for matplotlib to Agg import matplotlib import matplotlib.pyplot as plt import numpy as np from matplotlib.backends.backend_pdf import PdfPages from modules.class_sommerzeit import ist_dst_wechsel matplotlib.use("Agg") def visualisiere_ergebnisse( gesamtlast, pv_forecast, strompreise, ergebnisse, discharge_hours, laden_moeglich, temperature, start_hour, prediction_hours, einspeiseverguetung_euro_pro_wh, filename="visualization_results.pdf", extra_data=None, ): ##################### # 24-hour visualization ##################### with PdfPages(filename) as pdf: # Load and PV generation plt.figure(figsize=(14, 14)) plt.subplot(3, 3, 1) hours = np.arange(0, prediction_hours) gesamtlast_array = np.array(gesamtlast) # Plot individual loads plt.plot(hours, gesamtlast_array, label="Load (Wh)", marker="o") # Calculate and plot total load plt.plot( hours, gesamtlast_array, label="Total Load (Wh)", marker="o", linewidth=2, linestyle="--", ) plt.xlabel("Hour") plt.ylabel("Load (Wh)") plt.title("Load Profiles") plt.grid(True) plt.legend() # Electricity prices hours_p = np.arange(0, len(strompreise)) plt.subplot(3, 2, 2) plt.plot( hours_p, strompreise, label="Electricity Price (€/Wh)", color="purple", marker="s", ) plt.title("Electricity Prices") plt.xlabel("Hour of the Day") plt.ylabel("Price (€/Wh)") plt.legend() plt.grid(True) # PV forecast plt.subplot(3, 2, 3) plt.plot(hours, pv_forecast, label="PV Generation (Wh)", marker="x") plt.title("PV Forecast") plt.xlabel("Hour of the Day") plt.ylabel("Wh") plt.legend() plt.grid(True) # Feed-in remuneration plt.subplot(3, 2, 4) plt.plot( hours, einspeiseverguetung_euro_pro_wh, label="Remuneration (€/Wh)", marker="x", ) plt.title("Remuneration") plt.xlabel("Hour of the Day") plt.ylabel("€/Wh") plt.legend() plt.grid(True) # Temperature forecast plt.subplot(3, 2, 5) plt.title("Temperature Forecast (°C)") plt.plot(hours, temperature, label="Temperature (°C)", marker="x") plt.xlabel("Hour of the Day") plt.ylabel("°C") plt.legend() plt.grid(True) pdf.savefig() # Save the current figure state to the PDF plt.close() # Close the current figure to free up memory ##################### # Start hour visualization ##################### plt.figure(figsize=(14, 10)) if ist_dst_wechsel(datetime.now()): hours = np.arange(start_hour, prediction_hours - 1) else: hours = np.arange(start_hour, prediction_hours) # Energy flow, grid feed-in, and grid consumption plt.subplot(3, 2, 1) plt.plot(hours, ergebnisse["Last_Wh_pro_Stunde"], label="Load (Wh)", marker="o") plt.plot( hours, ergebnisse["Haushaltsgeraet_wh_pro_stunde"], label="Household Device (Wh)", marker="o", ) plt.plot( hours, ergebnisse["Netzeinspeisung_Wh_pro_Stunde"], label="Grid Feed-in (Wh)", marker="x", ) plt.plot( hours, ergebnisse["Netzbezug_Wh_pro_Stunde"], label="Grid Consumption (Wh)", marker="^", ) plt.plot( hours, ergebnisse["Verluste_Pro_Stunde"], label="Losses (Wh)", marker="^" ) plt.title("Energy Flow per Hour") plt.xlabel("Hour") plt.ylabel("Energy (Wh)") plt.legend() # State of charge for batteries plt.subplot(3, 2, 2) plt.plot( hours, ergebnisse["akku_soc_pro_stunde"], label="PV Battery (%)", marker="x" ) plt.plot( hours, ergebnisse["E-Auto_SoC_pro_Stunde"], label="E-Car Battery (%)", marker="x", ) plt.legend( loc="upper left", bbox_to_anchor=(1, 1) ) # Place legend outside the plot plt.grid(True, which="both", axis="x") # Grid for every hour ax1 = plt.subplot(3, 2, 3) for hour, value in enumerate(discharge_hours): ax1.axvspan( hour, hour + 1, color="red", ymax=value, alpha=0.3, label="Discharge Possibility" if hour == 0 else "", ) for hour, value in enumerate(laden_moeglich): ax1.axvspan( hour, hour + 1, color="green", ymax=value, alpha=0.3, label="Charging Possibility" if hour == 0 else "", ) ax1.legend(loc="upper left") ax1.set_xlim(0, prediction_hours) pdf.savefig() # Save the current figure state to the PDF plt.close() # Close the current figure to free up memory # Financial overview fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots total_costs = ergebnisse["Gesamtkosten_Euro"] total_revenue = ergebnisse["Gesamteinnahmen_Euro"] total_balance = ergebnisse["Gesamtbilanz_Euro"] losses = ergebnisse["Gesamt_Verluste"] # Costs and revenues per hour on the first axis (axs[0]) axs[0].plot( hours, ergebnisse["Kosten_Euro_pro_Stunde"], label="Costs (Euro)", marker="o", color="red", ) axs[0].plot( hours, ergebnisse["Einnahmen_Euro_pro_Stunde"], label="Revenue (Euro)", marker="x", color="green", ) axs[0].set_title("Financial Balance per Hour") axs[0].set_xlabel("Hour") axs[0].set_ylabel("Euro") axs[0].legend() axs[0].grid(True) # Summary of finances on the second axis (axs[1]) labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"] values = [total_costs, total_revenue, total_balance] colors = ["red" if value > 0 else "green" for value in values] axs[1].bar(labels, values, color=colors) axs[1].set_title("Financial Overview") axs[1].set_ylabel("Euro") # Second axis (ax2) for losses, shared with axs[1] ax2 = axs[1].twinx() ax2.bar("Total Losses", losses, color="blue") ax2.set_ylabel("Losses [Wh]", color="blue") ax2.tick_params(axis="y", labelcolor="blue") pdf.savefig() # Save the complete figure to the PDF plt.close() # Close the figure # Additional data visualization if provided if extra_data is not None: plt.figure(figsize=(14, 10)) plt.subplot(1, 2, 1) f1 = np.array(extra_data["verluste"]) f2 = np.array(extra_data["bilanz"]) n1 = np.array(extra_data["nebenbedingung"]) scatter = plt.scatter(f1, f2, c=n1, cmap="viridis") # Add color legend plt.colorbar(scatter, label="Constraint") pdf.savefig() # Save the complete figure to the PDF plt.close() # Close the figure plt.figure(figsize=(14, 10)) filtered_losses = np.array( [ v for v, n in zip( extra_data["verluste"], extra_data["nebenbedingung"] ) if n < 0.01 ] ) filtered_balance = np.array( [ b for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"]) if n < 0.01 ] ) best_loss = min(filtered_losses) worst_loss = max(filtered_losses) best_balance = min(filtered_balance) worst_balance = max(filtered_balance) data = [filtered_losses, filtered_balance] labels = ["Losses", "Balance"] # Create plots fig, axs = plt.subplots( 1, 2, figsize=(10, 6), sharey=False ) # Two subplots, separate y-axes # First violin plot for losses axs[0].violinplot(data[0], showmeans=True, showmedians=True) axs[0].set_title("Losses") axs[0].set_xticklabels(["Losses"]) # Second violin plot for balance axs[1].violinplot(data[1], showmeans=True, showmedians=True) axs[1].set_title("Balance") axs[1].set_xticklabels(["Balance"]) # Fine-tuning plt.tight_layout() pdf.savefig() # Save the current figure state to the PDF plt.close() # Close the figure