import numpy as np class PVAkku: def __init__(self, kapazitaet_wh=None, hours=None, lade_effizienz=0.88, entlade_effizienz=0.88, max_ladeleistung_w=None, start_soc_prozent=0, min_soc_prozent=0, max_soc_prozent=100): # Battery capacity in Wh self.kapazitaet_wh = kapazitaet_wh # Initial state of charge in Wh self.start_soc_prozent = start_soc_prozent self.soc_wh = (start_soc_prozent / 100) * kapazitaet_wh self.hours = hours self.discharge_array = np.full(self.hours, 1) self.charge_array = np.full(self.hours, 1) # Charge and discharge efficiency self.lade_effizienz = lade_effizienz self.entlade_effizienz = entlade_effizienz self.max_ladeleistung_w = max_ladeleistung_w if max_ladeleistung_w else self.kapazitaet_wh self.min_soc_prozent = min_soc_prozent self.max_soc_prozent = max_soc_prozent def to_dict(self): return { "kapazitaet_wh": self.kapazitaet_wh, "start_soc_prozent": self.start_soc_prozent, "soc_wh": self.soc_wh, "hours": self.hours, "discharge_array": self.discharge_array.tolist(), # Convert np.array to list "charge_array": self.charge_array.tolist(), "lade_effizienz": self.lade_effizienz, "entlade_effizienz": self.entlade_effizienz, "max_ladeleistung_w": self.max_ladeleistung_w } @classmethod def from_dict(cls, data): # Create a new object with basic data obj = cls( kapazitaet_wh=data["kapazitaet_wh"], hours=data["hours"], lade_effizienz=data["lade_effizienz"], entlade_effizienz=data["entlade_effizienz"], max_ladeleistung_w=data["max_ladeleistung_w"], start_soc_prozent=data["start_soc_prozent"] ) # Set arrays obj.discharge_array = np.array(data["discharge_array"]) obj.charge_array = np.array(data["charge_array"]) obj.soc_wh = data["soc_wh"] # Set current state of charge, which may differ from start_soc_prozent return obj def reset(self): self.soc_wh = (self.start_soc_prozent / 100) * self.kapazitaet_wh self.discharge_array = np.full(self.hours, 1) self.charge_array = np.full(self.hours, 1) def set_discharge_per_hour(self, discharge_array): assert len(discharge_array) == self.hours self.discharge_array = np.array(discharge_array) def set_charge_per_hour(self, charge_array): assert len(charge_array) == self.hours self.charge_array = np.array(charge_array) def ladezustand_in_prozent(self): return (self.soc_wh / self.kapazitaet_wh) * 100 def energie_abgeben(self, wh, hour): if self.discharge_array[hour] == 0: return 0.0, 0.0 # No energy discharge and no losses # Calculate the maximum discharge amount considering discharge efficiency max_abgebbar_wh = self.soc_wh * self.entlade_effizienz # Consider the maximum discharge power of the battery max_abgebbar_wh = min(max_abgebbar_wh, self.max_ladeleistung_w) # The actually discharged energy cannot exceed requested energy or maximum discharge tatsaechlich_abgegeben_wh = min(wh, max_abgebbar_wh) # Calculate the actual amount withdrawn from the battery (before efficiency loss) tatsaechliche_entnahme_wh = tatsaechlich_abgegeben_wh / self.entlade_effizienz # Update the state of charge considering the actual withdrawal self.soc_wh -= tatsaechliche_entnahme_wh # Calculate losses due to efficiency verluste_wh = tatsaechliche_entnahme_wh - tatsaechlich_abgegeben_wh # Return the actually discharged energy and the losses return tatsaechlich_abgegeben_wh, verluste_wh def energie_laden(self, wh, hour): if hour is not None and self.charge_array[hour] == 0: return 0, 0 # Charging not allowed in this hour # If no value for wh is given, use the maximum charging power wh = wh if wh is not None else self.max_ladeleistung_w # Relative to the maximum charging power (between 0 and 1) relative_ladeleistung = self.charge_array[hour] effektive_ladeleistung = relative_ladeleistung * self.max_ladeleistung_w # Calculate the actual charging amount considering charging efficiency effektive_lademenge = min(wh, effektive_ladeleistung) # Update the state of charge without exceeding capacity geladene_menge_ohne_verlust = min(self.kapazitaet_wh - self.soc_wh, effektive_lademenge) geladene_menge = geladene_menge_ohne_verlust * self.lade_effizienz self.soc_wh += geladene_menge verluste_wh = geladene_menge_ohne_verlust * (1.0 - self.lade_effizienz) return geladene_menge, verluste_wh def aktueller_energieinhalt(self): """ This method returns the current remaining energy considering efficiency. It accounts for both charging and discharging efficiency. """ # Calculate remaining energy considering discharge efficiency nutzbare_energie = self.soc_wh * self.entlade_effizienz return nutzbare_energie # def energie_laden(self, wh, hour): # if hour is not None and self.charge_array[hour] == 0: # return 0, 0 # Charging not allowed in this hour # # If no value for wh is given, use the maximum charging power # wh = wh if wh is not None else self.max_ladeleistung_w # # Calculate the actual charging amount considering charging efficiency # effective_charging_amount = min(wh, self.max_ladeleistung_w) # # Update the state of charge without exceeding capacity # charged_amount_without_loss = min(self.kapazitaet_wh - self.soc_wh, effective_charging_amount) # charged_amount = charged_amount_without_loss * self.lade_effizienz # self.soc_wh += charged_amount # losses_wh = charged_amount_without_loss * (1.0 - self.lade_effizienz) # return charged_amount, losses_wh if __name__ == '__main__': # Example of using the class akku = PVAkku(10000) # A battery with 10,000 Wh capacity print(f"Initial state of charge: {akku.ladezustand_in_prozent()}%") akku.energie_laden(5000) print(f"State of charge after charging: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh") abgegebene_energie_wh = akku.energie_abgeben(3000) print(f"Discharged energy: {abgegebene_energie_wh} Wh, State of charge afterwards: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh") akku.energie_laden(6000) print(f"State of charge after further charging: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh")