#!/usr/bin/env python3 import numpy as np from datetime import datetime from pprint import pprint import matplotlib.pyplot as plt from deap import base, creator, tools, algorithms # Import necessary modules from the project from modules.class_optimize import optimization_problem from modules.visualize import * start_hour = 10 # PV Forecast (in W) pv_forecast = [ 0, 0, 0, 0, 0, 0, 0, 8.05, 352.91, 728.51, 930.28, 1043.25, 1106.74, 1161.69, 6018.82, 5519.07, 3969.88, 3017.96, 1943.07, 1007.17, 319.67, 7.88, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.04, 335.59, 705.32, 1121.12, 1604.79, 2157.38, 1433.25, 5718.49, 4553.96, 3027.55, 2574.46, 1720.4, 963.4, 383.3, 0, 0, 0 ] # Temperature Forecast (in degree C) temperature_forecast = [ 18.3, 17.8, 16.9, 16.2, 15.6, 15.1, 14.6, 14.2, 14.3, 14.8, 15.7, 16.7, 17.4, 18.0, 18.6, 19.2, 19.1, 18.7, 18.5, 17.7, 16.2, 14.6, 13.6, 13.0, 12.6, 12.2, 11.7, 11.6, 11.3, 11.0, 10.7, 10.2, 11.4, 14.4, 16.4, 18.3, 19.5, 20.7, 21.9, 22.7, 23.1, 23.1, 22.8, 21.8, 20.2, 19.1, 18.0, 17.4 ] # Electricity Price (in Euro per Wh) strompreis_euro_pro_wh = [ 0.0003384, 0.0003318, 0.0003284, 0.0003283, 0.0003289, 0.0003334, 0.0003290, 0.0003302, 0.0003042, 0.0002430, 0.0002280, 0.0002212, 0.0002093, 0.0001879, 0.0001838, 0.0002004, 0.0002198, 0.0002270, 0.0002997, 0.0003195, 0.0003081, 0.0002969, 0.0002921, 0.0002780, 0.0003384, 0.0003318, 0.0003284, 0.0003283, 0.0003289, 0.0003334, 0.0003290, 0.0003302, 0.0003042, 0.0002430, 0.0002280, 0.0002212, 0.0002093, 0.0001879, 0.0001838, 0.0002004, 0.0002198, 0.0002270, 0.0002997, 0.0003195, 0.0003081, 0.0002969, 0.0002921, 0.0002780 ] # Overall System Load (in W) gesamtlast = [ 676.71, 876.19, 527.13, 468.88, 531.38, 517.95, 483.15, 472.28, 1011.68, 995.00, 1053.07, 1063.91, 1320.56, 1132.03, 1163.67, 1176.82, 1216.22, 1103.78, 1129.12, 1178.71, 1050.98, 988.56, 912.38, 704.61, 516.37, 868.05, 694.34, 608.79, 556.31, 488.89, 506.91, 804.89, 1141.98, 1056.97, 992.46, 1155.99, 827.01, 1257.98, 1232.67, 871.26, 860.88, 1158.03, 1222.72, 1221.04, 949.99, 987.01, 733.99, 592.97 ] # Start Solution (binary) start_solution = [ 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] # Define parameters for the optimization problem parameter = { "preis_euro_pro_wh_akku": 10e-05, # Cost of storing energy in battery (per Wh) 'pv_soc': 80, # Initial state of charge (SOC) of PV battery (%) 'pv_akku_cap': 26400, # Battery capacity (in Wh) 'year_energy': 4100000, # Yearly energy consumption (in Wh) 'einspeiseverguetung_euro_pro_wh': 7e-05, # Feed-in tariff for exporting electricity (per Wh) 'max_heizleistung': 1000, # Maximum heating power (in W) "gesamtlast": gesamtlast, # Overall load on the system 'pv_forecast': pv_forecast, # PV generation forecast (48 hours) "temperature_forecast": temperature_forecast, # Temperature forecast (48 hours) "strompreis_euro_pro_wh": strompreis_euro_pro_wh, # Electricity price forecast (48 hours) 'eauto_min_soc': 0, # Minimum SOC for electric car 'eauto_cap': 60000, # Electric car battery capacity (Wh) 'eauto_charge_efficiency': 0.95, # Charging efficiency of the electric car 'eauto_charge_power': 11040, # Charging power of the electric car (W) 'eauto_soc': 54, # Current SOC of the electric car (%) 'pvpowernow': 211.137503624, # Current PV power generation (W) 'start_solution': start_solution, # Initial solution for the optimization 'haushaltsgeraet_wh': 937, # Household appliance consumption (Wh) 'haushaltsgeraet_dauer': 0 # Duration of appliance usage (hours) } # Initialize the optimization problem opt_class = optimization_problem(prediction_hours=48, strafe=10, optimization_hours=24) # Perform the optimisation based on the provided parameters and start hour ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour) # Print or visualize the result pprint(ergebnis)