#!/usr/bin/env python3 import time import numpy as np from akkudoktoreos.class_numpy_encoder import NumpyEncoder # Import necessary modules from the project from akkudoktoreos.class_optimize import optimization_problem from akkudoktoreos.visualize import visualisiere_ergebnisse start_hour = 0 # PV Forecast (in W) pv_forecast = np.zeros(48) pv_forecast[12] = 5000 # [ # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 8.05, # 352.91, # 728.51, # 930.28, # 1043.25, # 1106.74, # 1161.69, # 1018.82, # 1519.07, # 1969.88, # 1017.96, # 1043.07, # 1007.17, # 319.67, # 7.88, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 5.04, # 335.59, # 705.32, # 1121.12, # 1604.79, # 2157.38, # 1433.25, # 5718.49, # 4553.96, # 3027.55, # 2574.46, # 1720.4, # 963.4, # 383.3, # 0, # 0, # 0, # ] # Temperature Forecast (in degree C) temperature_forecast = [ 18.3, 17.8, 16.9, 16.2, 15.6, 15.1, 14.6, 14.2, 14.3, 14.8, 15.7, 16.7, 17.4, 18.0, 18.6, 19.2, 19.1, 18.7, 18.5, 17.7, 16.2, 14.6, 13.6, 13.0, 12.6, 12.2, 11.7, 11.6, 11.3, 11.0, 10.7, 10.2, 11.4, 14.4, 16.4, 18.3, 19.5, 20.7, 21.9, 22.7, 23.1, 23.1, 22.8, 21.8, 20.2, 19.1, 18.0, 17.4, ] # Electricity Price (in Euro per Wh) strompreis_euro_pro_wh = np.full(48, 0.001) strompreis_euro_pro_wh[0:10] = 0.00001 strompreis_euro_pro_wh[11:15] = 0.00005 strompreis_euro_pro_wh[20] = 0.00001 # [ # 0.0000384, # 0.0000318, # 0.0000284, # 0.0008283, # 0.0008289, # 0.0008334, # 0.0008290, # 0.0003302, # 0.0003042, # 0.0002430, # 0.0002280, # 0.0002212, # 0.0002093, # 0.0001879, # 0.0001838, # 0.0002004, # 0.0002198, # 0.0002270, # 0.0002997, # 0.0003195, # 0.0003081, # 0.0002969, # 0.0002921, # 0.0002780, # 0.0003384, # 0.0003318, # 0.0003284, # 0.0003283, # 0.0003289, # 0.0003334, # 0.0003290, # 0.0003302, # 0.0003042, # 0.0002430, # 0.0002280, # 0.0002212, # 0.0002093, # 0.0001879, # 0.0001838, # 0.0002004, # 0.0002198, # 0.0002270, # 0.0002997, # 0.0003195, # 0.0003081, # 0.0002969, # 0.0002921, # 0.0002780, # ] # Overall System Load (in W) gesamtlast = [ 676.71, 876.19, 527.13, 468.88, 531.38, 517.95, 483.15, 472.28, 1011.68, 995.00, 1053.07, 1063.91, 1320.56, 1132.03, 1163.67, 1176.82, 1216.22, 1103.78, 1129.12, 1178.71, 1050.98, 988.56, 912.38, 704.61, 516.37, 868.05, 694.34, 608.79, 556.31, 488.89, 506.91, 804.89, 1141.98, 1056.97, 992.46, 1155.99, 827.01, 1257.98, 1232.67, 871.26, 860.88, 1158.03, 1222.72, 1221.04, 949.99, 987.01, 733.99, 592.97, ] # Start Solution (binary) start_solution = None # Define parameters for the optimization problem parameter = { # Value of energy in battery (per Wh) "preis_euro_pro_wh_akku": 0e-05, # Initial state of charge (SOC) of PV battery (%) "pv_soc": 15, # Battery capacity (in Wh) "pv_akku_cap": 26400, # Yearly energy consumption (in Wh) "year_energy": 4100000, # Feed-in tariff for exporting electricity (per Wh) "einspeiseverguetung_euro_pro_wh": 7e-05, # Maximum heating power (in W) "max_heizleistung": 1000, # Overall load on the system "gesamtlast": gesamtlast, # PV generation forecast (48 hours) "pv_forecast": pv_forecast, # Temperature forecast (48 hours) "temperature_forecast": temperature_forecast, # Electricity price forecast (48 hours) "strompreis_euro_pro_wh": strompreis_euro_pro_wh, # Minimum SOC for electric car "eauto_min_soc": 50, # Electric car battery capacity (Wh) "eauto_cap": 60000, # Charging efficiency of the electric car "eauto_charge_efficiency": 0.95, # Charging power of the electric car (W) "eauto_charge_power": 11040, # Current SOC of the electric car (%) "eauto_soc": 15, # Current PV power generation (W) "pvpowernow": 211.137503624, # Initial solution for the optimization "start_solution": start_solution, # Household appliance consumption (Wh) "haushaltsgeraet_wh": 5000, # Duration of appliance usage (hours) "haushaltsgeraet_dauer": 0, # Minimum Soc PV Battery "min_soc_prozent": 15, } # Startzeit nehmen start_time = time.time() # Initialize the optimization problem opt_class = optimization_problem( prediction_hours=48, strafe=10, optimization_hours=24, verbose=True, fixed_seed=42 ) # Perform the optimisation based on the provided parameters and start hour ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour) # Endzeit nehmen end_time = time.time() # Berechnete Zeit ausgeben elapsed_time = end_time - start_time print(f"Elapsed time: {elapsed_time:.4f} seconds") ac_charge, dc_charge, discharge = ( ergebnis["ac_charge"], ergebnis["dc_charge"], ergebnis["discharge_allowed"], ) visualisiere_ergebnisse( gesamtlast, pv_forecast, strompreis_euro_pro_wh, ergebnis["result"], ac_charge, dc_charge, discharge, temperature_forecast, start_hour, 48, np.full(48, parameter["einspeiseverguetung_euro_pro_wh"]), filename="visualization_results.pdf", extra_data=None, ) json_data = NumpyEncoder.dumps(ergebnis) print(json_data)