import re from datetime import datetime, timedelta, timezone from pathlib import Path from unittest.mock import Mock, patch import numpy as np import pandas as pd import pvlib import pytest from bs4 import BeautifulSoup from akkudoktoreos.core.cache import CacheFileStore from akkudoktoreos.core.ems import get_ems from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime DIR_TESTDATA = Path(__file__).absolute().parent.joinpath("testdata") FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_HTML = DIR_TESTDATA.joinpath("weatherforecast_clearout_1.html") FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA = DIR_TESTDATA.joinpath("weatherforecast_clearout_1.json") @pytest.fixture def provider(config_eos): """Fixture to create a WeatherProvider instance.""" settings = { "weather": { "provider": "ClearOutside", }, "general": { "latitude": 50.0, "longitude": 10.0, }, } config_eos.merge_settings_from_dict(settings) return WeatherClearOutside() @pytest.fixture def sample_clearout_1_html(): """Fixture that returns sample forecast data report.""" with FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_HTML.open( "r", encoding="utf-8", newline=None ) as f_res: input_data = f_res.read() return input_data @pytest.fixture def sample_clearout_1_data(): """Fixture that returns sample forecast data.""" with FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA.open("r", encoding="utf-8", newline=None) as f_in: json_str = f_in.read() data = WeatherClearOutside.from_json(json_str) return data @pytest.fixture def cache_store(): """A pytest fixture that creates a new CacheFileStore instance for testing.""" return CacheFileStore() # ------------------------------------------------ # General WeatherProvider # ------------------------------------------------ def test_singleton_instance(provider): """Test that WeatherForecast behaves as a singleton.""" another_instance = WeatherClearOutside() assert provider is another_instance def test_invalid_provider(provider, config_eos): """Test requesting an unsupported provider.""" settings = { "weather": { "provider": "", } } config_eos.merge_settings_from_dict(settings) assert not provider.enabled() def test_invalid_coordinates(provider, config_eos): """Test invalid coordinates raise ValueError.""" settings = { "weather": { "provider": "ClearOutside", }, "general": { "latitude": 1000.0, "longitude": 1000.0, }, } with pytest.raises( ValueError, # match="Latitude '1000' and/ or longitude `1000` out of valid range." ): config_eos.merge_settings_from_dict(settings) # ------------------------------------------------ # Irradiance caclulation # ------------------------------------------------ def test_irridiance_estimate_from_cloud_cover(provider): """Test cloud cover to irradiance estimation.""" cloud_cover_data = pd.Series( data=[20, 50, 80], index=pd.date_range("2023-10-22", periods=3, freq="h") ) ghi, dni, dhi = provider.estimate_irradiance_from_cloud_cover(50.0, 10.0, cloud_cover_data) assert ghi == [0, 0, 0] assert dhi == [0, 0, 0] assert dni == [0, 0, 0] # ------------------------------------------------ # ClearOutside # ------------------------------------------------ @patch("requests.get") def test_request_forecast(mock_get, provider, sample_clearout_1_html, config_eos): """Test fetching forecast from ClearOutside.""" # Mock response object mock_response = Mock() mock_response.status_code = 200 mock_response.content = sample_clearout_1_html mock_get.return_value = mock_response # Preset, as this is usually done by update() config_eos.update() # Test function response = provider._request_forecast() assert response.status_code == 200 assert response.content == sample_clearout_1_html @patch("requests.get") def test_update_data(mock_get, provider, sample_clearout_1_html, sample_clearout_1_data): # Mock response object mock_response = Mock() mock_response.status_code = 200 mock_response.content = sample_clearout_1_html mock_get.return_value = mock_response expected_start = to_datetime("2024-10-26 00:00:00", in_timezone="Europe/Berlin") expected_end = to_datetime("2024-10-28 00:00:00", in_timezone="Europe/Berlin") expected_keep = to_datetime("2024-10-24 00:00:00", in_timezone="Europe/Berlin") # Call the method ems_eos = get_ems() ems_eos.set_start_datetime(expected_start) provider.update_data() # Check for correct prediction time window assert provider.config.prediction.hours == 48 assert provider.config.prediction.historic_hours == 48 assert compare_datetimes(provider.start_datetime, expected_start).equal assert compare_datetimes(provider.end_datetime, expected_end).equal assert compare_datetimes(provider.keep_datetime, expected_keep).equal # Verify the data assert len(provider) == 165 # 6 days, 24 hours per day - 7th day 21 hours # Check that specific values match the expected output # for i, record in enumerate(weather_data.records): # # Compare datetime and specific values # assert record.datetime == sample_clearout_1_data.records[i].datetime # assert record.data['total_clouds'] == sample_clearout_1_data.records[i].data['total_clouds'] # # Check additional weather attributes as necessary @pytest.mark.skip(reason="Test fixture to be improved") @patch("requests.get") def test_cache_forecast(mock_get, provider, sample_clearout_1_html, cache_store): """Test that ClearOutside forecast data is cached with TTL. This can not be tested with mock_get. Mock objects are not pickable and therefor can not be cached to a file. Keep it for documentation. """ # Mock response object mock_response = Mock() mock_response.status_code = 200 mock_response.content = sample_clearout_1_html mock_get.return_value = mock_response cache_store.clear(clear_all=True) provider.update_data() mock_get.assert_called_once() forecast_data_first = provider.to_json() provider.update_data() forecast_data_second = provider.to_json() # Verify that cache returns the same object without calling the method again assert forecast_data_first == forecast_data_second # A mock object is not pickable and therefor can not be chached to file assert mock_get.call_count == 2 # ------------------------------------------------ # Development ClearOutside # ------------------------------------------------ @pytest.mark.skip(reason="For development only") @patch("requests.get") def test_development_forecast_data(mock_get, provider, sample_clearout_1_html): # Mock response object mock_response = Mock() mock_response.status_code = 200 mock_response.content = sample_clearout_1_html mock_get.return_value = mock_response # Fill the instance provider.update_data(force_enable=True) with FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA.open( "w", encoding="utf-8", newline="\n" ) as f_out: f_out.write(provider.to_json()) @pytest.mark.skip(reason="For development only") def test_clearoutsides_development_scraper(provider, sample_clearout_1_html): """Test scraping from ClearOutside.""" soup = BeautifulSoup(sample_clearout_1_html, "html.parser") # Sample was created for the loacation lat = 50.0 lon = 10.0 # Find generation data p_generated = soup.find("h2", string=lambda text: text and text.startswith("Generated:")) assert p_generated is not None # Extract forecast start and end dates forecast_pattern = r"Forecast: (\d{2}/\d{2}/\d{2}) to (\d{2}/\d{2}/\d{2})" forecast_match = re.search(forecast_pattern, p_generated.get_text()) if forecast_match: forecast_start_date = forecast_match.group(1) forecast_end_date = forecast_match.group(2) else: assert False assert forecast_start_date == "26/10/24" assert forecast_end_date == "01/11/24" # Extract timezone offset timezone_pattern = r"Timezone: UTC([+-]\d+)\.(\d+)" timezone_match = re.search(timezone_pattern, p_generated.get_text()) if timezone_match: hours = int(timezone_match.group(1)) assert hours == 2 # Convert the decimal part to minutes (e.g., .50 -> 30 minutes) minutes = int(timezone_match.group(2)) * 6 # Multiply by 6 to convert to minutes assert minutes == 0 # Create the timezone object using timedelta for the offset forecast_timezone = timezone(timedelta(hours=hours, minutes=minutes)) else: assert False forecast_start_datetime = to_datetime( forecast_start_date, in_timezone=forecast_timezone, to_naiv=False, to_maxtime=False ) assert forecast_start_datetime == datetime(2024, 10, 26, 0, 0) # Find all paragraphs with id 'day_'. There should be seven. p_days = soup.find_all(id=re.compile(r"day_[0-9]")) assert len(p_days) == 7 p_day = p_days[0] # Within day_x paragraph find the details labels p_detail_labels = p_day.find_all(class_="fc_detail_label") detail_names = [p.get_text() for p in p_detail_labels] assert detail_names == [ "Total Clouds (% Sky Obscured)", "Low Clouds (% Sky Obscured)", "Medium Clouds (% Sky Obscured)", "High Clouds (% Sky Obscured)", "ISS Passover", "Visibility (miles)", "Fog (%)", "Precipitation Type", "Precipitation Probability (%)", "Precipitation Amount (mm)", "Wind Speed/Direction (mph)", "Chance of Frost", "Temperature (°C)", "Feels Like (°C)", "Dew Point (°C)", "Relative Humidity (%)", "Pressure (mb)", "Ozone (du)", ] # Find all the paragraphs that are associated to the details. # Beware there is one ul paragraph before that is not associated to a detail p_detail_tables = p_day.find_all("ul") assert len(p_detail_tables) == len(detail_names) + 1 p_detail_tables.pop(0) # Create clearout data clearout_data = {} # Add data values for i, detail_name in enumerate(detail_names): p_detail_values = p_detail_tables[i].find_all("li") detail_data = [] for p_detail_value in p_detail_values: if ( detail_name in ("Precipitation Type", "Chance of Frost") and hasattr(p_detail_value, "title") and p_detail_value.title ): value_str = p_detail_value.title.string else: value_str = p_detail_value.get_text() try: value = float(value_str) except ValueError: value = value_str detail_data.append(value) assert len(detail_data) == 24 clearout_data[detail_name] = detail_data assert clearout_data["Temperature (°C)"] == [ 14.0, 14.0, 13.0, 12.0, 11.0, 11.0, 10.0, 10.0, 9.0, 9.0, 9.0, 9.0, 9.0, 10.0, 9.0, 9.0, 10.0, 11.0, 13.0, 14.0, 15.0, 16.0, 16.0, 16.0, ] assert clearout_data["Relative Humidity (%)"] == [ 59.0, 68.0, 75.0, 81.0, 84.0, 85.0, 85.0, 91.0, 91.0, 93.0, 93.0, 93.0, 93.0, 93.0, 95.0, 95.0, 93.0, 87.0, 81.0, 76.0, 70.0, 66.0, 66.0, 69.0, ] assert clearout_data["Wind Speed/Direction (mph)"] == [ 7.0, 6.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 3.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 4.0, 5.0, 6.0, 6.0, 5.0, 5.0, ] # Add datetimes of the scrapped data clearout_data["DateTime"] = [forecast_start_datetime + timedelta(hours=i) for i in range(24)] detail_names.append("DateTime") assert len(clearout_data["DateTime"]) == 24 assert clearout_data["DateTime"][0] == to_datetime( "2024-10-26 00:00:00", in_timezone=forecast_timezone ) assert clearout_data["DateTime"][23] == to_datetime( "2024-10-26 23:00:00", in_timezone=forecast_timezone ) # Converting the cloud cover into Global Horizontal Irradiance (GHI) with a PVLib method offset = 35 # The default offset_fraction = offset / 100.0 # Adjust percentage to scaling factor cloud_cover = pd.Series(clearout_data["Total Clouds (% Sky Obscured)"]) # Convert datetime list to a pandas DatetimeIndex cloud_cover_times = pd.DatetimeIndex(clearout_data["DateTime"]) # Create a location object location = pvlib.location.Location(latitude=lat, longitude=lon) # Get solar position and clear-sky GHI using the Ineichen model solpos = location.get_solarposition(cloud_cover_times) clear_sky = location.get_clearsky(cloud_cover_times, model="ineichen") # Convert cloud cover percentage to a scaling factor cloud_cover_fraction = np.array(cloud_cover) / 100.0 # Calculate adjusted GHI with proportional offset adjustment adjusted_ghi = clear_sky["ghi"] * ( offset_fraction + (1 - offset_fraction) * (1 - cloud_cover_fraction) ) adjusted_ghi.fillna(0.0, inplace=True) # Apply DISC model to estimate Direct Normal Irradiance (DNI) from adjusted GHI disc_output = pvlib.irradiance.disc(adjusted_ghi, solpos["zenith"], cloud_cover_times) adjusted_dni = disc_output["dni"] adjusted_dni.fillna(0.0, inplace=True) # Calculate Diffuse Horizontal Irradiance (DHI) as DHI = GHI - DNI * cos(zenith) zenith_rad = np.radians(solpos["zenith"]) adjusted_dhi = adjusted_ghi - adjusted_dni * np.cos(zenith_rad) adjusted_dhi.fillna(0.0, inplace=True) # Add GHI, DNI, DHI to clearout data clearout_data["Global Horizontal Irradiance (W/m2)"] = adjusted_ghi.to_list() detail_names.append("Global Horizontal Irradiance (W/m2)") clearout_data["Direct Normal Irradiance (W/m2)"] = adjusted_dni.to_list() detail_names.append("Direct Normal Irradiance (W/m2)") clearout_data["Diffuse Horizontal Irradiance (W/m2)"] = adjusted_dhi.to_list() detail_names.append("Diffuse Horizontal Irradiance (W/m2)") assert clearout_data["Global Horizontal Irradiance (W/m2)"] == [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 24.291000436601216, 85.88494154645998, 136.09269403109946, 139.26925350542064, 146.7174434892616, 149.0167479382964, 138.97458866666065, 103.47132353697396, 46.81279774519421, 0.12972168074047014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] assert clearout_data["Direct Normal Irradiance (W/m2)"] == [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.19687368654253, 0.0, 0.0, 2.9434862632289804, 9.621272744657047, 9.384995789935898, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] assert clearout_data["Diffuse Horizontal Irradiance (W/m2)"] == [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 24.291000436601216, 85.88494154645998, 132.32210426501337, 139.26925350542064, 146.7174434892616, 147.721968406295, 135.32240392326145, 100.82522311704261, 46.81279774519421, 0.12972168074047014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] # Preciptable Water (PWAT) with a PVLib method clearout_data["Preciptable Water (cm)"] = pvlib.atmosphere.gueymard94_pw( pd.Series(data=clearout_data["Temperature (°C)"]), pd.Series(data=clearout_data["Relative Humidity (%)"]), ).to_list() detail_names.append("Preciptable Water (cm)") assert clearout_data["Preciptable Water (cm)"] == [ 1.5345406562673334, 1.7686231292572652, 1.8354895631381385, 1.8651290310892348, 1.8197998755611786, 1.8414641597940502, 1.7325709431177607, 1.8548700685143087, 1.7453005409540279, 1.783658794601369, 1.783658794601369, 1.783658794601369, 1.783658794601369, 1.8956364436464912, 1.8220170482487101, 1.8220170482487101, 1.8956364436464912, 1.8847927282597918, 1.9823287281891897, 1.9766964385816497, 1.9346943880237457, 1.9381315133101413, 1.9381315133101413, 2.026228400278784, ]