mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-03-18 18:44:04 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
421 lines
12 KiB
Python
Executable File
421 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import cProfile
|
|
import json
|
|
import pstats
|
|
import sys
|
|
import time
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
from akkudoktoreos.config.config import get_config
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.core.logging import get_logger
|
|
from akkudoktoreos.optimization.genetic import (
|
|
OptimizationParameters,
|
|
optimization_problem,
|
|
)
|
|
from akkudoktoreos.prediction.prediction import get_prediction
|
|
|
|
get_logger(__name__, logging_level="DEBUG")
|
|
|
|
|
|
def prepare_optimization_real_parameters() -> OptimizationParameters:
|
|
"""Prepare and return optimization parameters with real world data.
|
|
|
|
Returns:
|
|
OptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# Make a config
|
|
settings = {
|
|
# -- General --
|
|
"prediction_hours": 48,
|
|
"prediction_historic_hours": 24,
|
|
"latitude": 52.52,
|
|
"longitude": 13.405,
|
|
# -- Predictions --
|
|
# PV Forecast
|
|
"pvforecast_provider": "PVForecastAkkudoktor",
|
|
"pvforecast0_peakpower": 5.0,
|
|
"pvforecast0_surface_azimuth": -10,
|
|
"pvforecast0_surface_tilt": 7,
|
|
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
|
"pvforecast0_inverter_paco": 10000,
|
|
"pvforecast1_peakpower": 4.8,
|
|
"pvforecast1_surface_azimuth": -90,
|
|
"pvforecast1_surface_tilt": 7,
|
|
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
|
"pvforecast1_inverter_paco": 10000,
|
|
"pvforecast2_peakpower": 1.4,
|
|
"pvforecast2_surface_azimuth": -40,
|
|
"pvforecast2_surface_tilt": 60,
|
|
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
|
"pvforecast2_inverter_paco": 2000,
|
|
"pvforecast3_peakpower": 1.6,
|
|
"pvforecast3_surface_azimuth": 5,
|
|
"pvforecast3_surface_tilt": 45,
|
|
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
|
"pvforecast3_inverter_paco": 1400,
|
|
"pvforecast4_peakpower": None,
|
|
# Weather Forecast
|
|
"weather_provider": "ClearOutside",
|
|
# Electricity Price Forecast
|
|
"elecprice_provider": "ElecPriceAkkudoktor",
|
|
# Load Forecast
|
|
"load_provider": "LoadAkkudoktor",
|
|
"loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh
|
|
# -- Simulations --
|
|
}
|
|
config_eos = get_config()
|
|
prediction_eos = get_prediction()
|
|
ems_eos = get_ems()
|
|
|
|
# Update/ set configuration
|
|
config_eos.merge_settings_from_dict(settings)
|
|
|
|
# Get current prediction data for optimization run
|
|
ems_eos.set_start_datetime()
|
|
print(
|
|
f"Real data prediction from {prediction_eos.start_datetime} to {prediction_eos.end_datetime}"
|
|
)
|
|
prediction_eos.update_data()
|
|
|
|
# PV Forecast (in W)
|
|
pv_forecast = prediction_eos.key_to_array(
|
|
key="pvforecast_ac_power",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"pv_forecast: {pv_forecast}")
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = prediction_eos.key_to_array(
|
|
key="weather_temp_air",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"temperature_forecast: {temperature_forecast}")
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = prediction_eos.key_to_array(
|
|
key="elecprice_marketprice_wh",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"strompreis_euro_pro_wh: {strompreis_euro_pro_wh}")
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = prediction_eos.key_to_array(
|
|
key="load_mean",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"gesamtlast: {gesamtlast}")
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
print(f"start_solution: {start_solution}")
|
|
|
|
# Define parameters for the optimization problem
|
|
return OptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"eauto": {
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"inverter": {
|
|
"max_power_wh": 10000,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def prepare_optimization_parameters() -> OptimizationParameters:
|
|
"""Prepare and return optimization parameters with predefined data.
|
|
|
|
Returns:
|
|
OptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# PV Forecast (in W)
|
|
pv_forecast = np.zeros(48)
|
|
pv_forecast[12] = 5000
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = [
|
|
18.3,
|
|
17.8,
|
|
16.9,
|
|
16.2,
|
|
15.6,
|
|
15.1,
|
|
14.6,
|
|
14.2,
|
|
14.3,
|
|
14.8,
|
|
15.7,
|
|
16.7,
|
|
17.4,
|
|
18.0,
|
|
18.6,
|
|
19.2,
|
|
19.1,
|
|
18.7,
|
|
18.5,
|
|
17.7,
|
|
16.2,
|
|
14.6,
|
|
13.6,
|
|
13.0,
|
|
12.6,
|
|
12.2,
|
|
11.7,
|
|
11.6,
|
|
11.3,
|
|
11.0,
|
|
10.7,
|
|
10.2,
|
|
11.4,
|
|
14.4,
|
|
16.4,
|
|
18.3,
|
|
19.5,
|
|
20.7,
|
|
21.9,
|
|
22.7,
|
|
23.1,
|
|
23.1,
|
|
22.8,
|
|
21.8,
|
|
20.2,
|
|
19.1,
|
|
18.0,
|
|
17.4,
|
|
]
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = np.full(48, 0.001)
|
|
strompreis_euro_pro_wh[0:10] = 0.00001
|
|
strompreis_euro_pro_wh[11:15] = 0.00005
|
|
strompreis_euro_pro_wh[20] = 0.00001
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = [
|
|
676.71,
|
|
876.19,
|
|
527.13,
|
|
468.88,
|
|
531.38,
|
|
517.95,
|
|
483.15,
|
|
472.28,
|
|
1011.68,
|
|
995.00,
|
|
1053.07,
|
|
1063.91,
|
|
1320.56,
|
|
1132.03,
|
|
1163.67,
|
|
1176.82,
|
|
1216.22,
|
|
1103.78,
|
|
1129.12,
|
|
1178.71,
|
|
1050.98,
|
|
988.56,
|
|
912.38,
|
|
704.61,
|
|
516.37,
|
|
868.05,
|
|
694.34,
|
|
608.79,
|
|
556.31,
|
|
488.89,
|
|
506.91,
|
|
804.89,
|
|
1141.98,
|
|
1056.97,
|
|
992.46,
|
|
1155.99,
|
|
827.01,
|
|
1257.98,
|
|
1232.67,
|
|
871.26,
|
|
860.88,
|
|
1158.03,
|
|
1222.72,
|
|
1221.04,
|
|
949.99,
|
|
987.01,
|
|
733.99,
|
|
592.97,
|
|
]
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
|
|
# Define parameters for the optimization problem
|
|
return OptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"eauto": {
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"inverter": {
|
|
"max_power_wh": 10000,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def run_optimization(
|
|
real_world: bool, start_hour: int, verbose: bool, seed: int, parameters_file: str, ngen: int
|
|
) -> Any:
|
|
"""Run the optimization problem.
|
|
|
|
Args:
|
|
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
|
|
verbose (bool, optional): Whether to print verbose output. Defaults to False.
|
|
|
|
Returns:
|
|
dict: Optimization result as a dictionary
|
|
"""
|
|
# Prepare parameters
|
|
if parameters_file:
|
|
with open(parameters_file, "r") as f:
|
|
parameters = OptimizationParameters(**json.load(f))
|
|
elif real_world:
|
|
parameters = prepare_optimization_real_parameters()
|
|
else:
|
|
parameters = prepare_optimization_parameters()
|
|
|
|
if verbose:
|
|
print("\nOptimization Parameters:")
|
|
print(parameters.model_dump_json(indent=4))
|
|
|
|
# Initialize the optimization problem using the default configuration
|
|
config_eos = get_config()
|
|
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
|
|
opt_class = optimization_problem(verbose=verbose, fixed_seed=seed)
|
|
|
|
# Perform the optimisation based on the provided parameters and start hour
|
|
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour, ngen=ngen)
|
|
|
|
return result.model_dump_json()
|
|
|
|
|
|
def main():
|
|
"""Main function to run the optimization script with optional profiling."""
|
|
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
|
|
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
|
|
parser.add_argument(
|
|
"--verbose", action="store_true", help="Enable verbose output during optimization"
|
|
)
|
|
parser.add_argument(
|
|
"--real-world", action="store_true", help="Use real world data for predictions"
|
|
)
|
|
parser.add_argument(
|
|
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
|
|
)
|
|
parser.add_argument(
|
|
"--parameters-file",
|
|
type=str,
|
|
default="",
|
|
help="Load optimization parameters from json file (default: unset)",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="Use fixed random seed (default: 42)")
|
|
parser.add_argument(
|
|
"--ngen",
|
|
type=int,
|
|
default=400,
|
|
help="Number of generations during optimization process (default: 400)",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.profile:
|
|
# Run with profiling
|
|
profiler = cProfile.Profile()
|
|
try:
|
|
result = profiler.runcall(
|
|
run_optimization,
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
# Print profiling statistics
|
|
stats = pstats.Stats(profiler)
|
|
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
|
|
# Print result
|
|
if args.verbose:
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
else:
|
|
# Run without profiling
|
|
try:
|
|
start_time = time.time()
|
|
result = run_optimization(
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
if args.verbose:
|
|
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|