EOS/tests/test_class_ems.py
Normann a7d58eed9a
pre-commit update and ignore changes (#461)
* pre-commit autoupdate
* type: ignore changes
* [attr-defined,unused-ignore] usage
2025-02-24 10:00:09 +01:00

360 lines
9.2 KiB
Python

import numpy as np
import pytest
from akkudoktoreos.core.ems import (
EnergyManagement,
EnergyManagementParameters,
SimulationResult,
get_ems,
)
from akkudoktoreos.devices.battery import (
Battery,
ElectricVehicleParameters,
SolarPanelBatteryParameters,
)
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Inverter, InverterParameters
start_hour = 1
# Example initialization of necessary components
@pytest.fixture
def create_ems_instance(devices_eos, config_eos) -> EnergyManagement:
"""Fixture to create an EnergyManagement instance with given test parameters."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
)
assert config_eos.prediction.hours == 48
# Initialize the battery and the inverter
akku = Battery(
SolarPanelBatteryParameters(
device_id="battery1",
capacity_wh=5000,
initial_soc_percentage=80,
min_soc_percentage=10,
)
)
akku.reset()
devices_eos.add_device(akku)
inverter = Inverter(
InverterParameters(device_id="inverter1", max_power_wh=10000, battery_id=akku.device_id)
)
devices_eos.add_device(inverter)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
device_id="dishwasher1",
consumption_wh=2000,
duration_h=2,
),
)
home_appliance.set_starting_time(2)
devices_eos.add_device(home_appliance)
# Example initialization of electric car battery
eauto = Battery(
ElectricVehicleParameters(
device_id="ev1", capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
),
)
eauto.set_charge_per_hour(np.full(config_eos.prediction.hours, 1))
devices_eos.add_device(eauto)
devices_eos.post_setup()
# Parameters based on previous example data
pv_prognose_wh = [
0,
0,
0,
0,
0,
0,
0,
8.05,
352.91,
728.51,
930.28,
1043.25,
1106.74,
1161.69,
6018.82,
5519.07,
3969.88,
3017.96,
1943.07,
1007.17,
319.67,
7.88,
0,
0,
0,
0,
0,
0,
0,
0,
0,
5.04,
335.59,
705.32,
1121.12,
1604.79,
2157.38,
1433.25,
5718.49,
4553.96,
3027.55,
2574.46,
1720.4,
963.4,
383.3,
0,
0,
0,
]
strompreis_euro_pro_wh = [
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
]
einspeiseverguetung_euro_pro_wh = 0.00007
preis_euro_pro_wh_akku = 0.0001
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Initialize the energy management system with the respective parameters
ems = get_ems()
ems.set_parameters(
EnergyManagementParameters(
pv_prognose_wh=pv_prognose_wh,
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
gesamtlast=gesamtlast,
),
inverter=inverter,
ev=eauto,
home_appliance=home_appliance,
)
return ems
def test_simulation(create_ems_instance):
"""Test the EnergyManagement simulation method."""
ems = create_ems_instance
# Simulate starting from hour 1 (this value can be adjusted)
result = ems.simulate(start_hour=start_hour)
# visualisiere_ergebnisse(
# ems.gesamtlast,
# ems.pv_prognose_wh,
# ems.strompreis_euro_pro_wh,
# result,
# ems.akku.discharge_array+ems.akku.charge_array,
# None,
# ems.pv_prognose_wh,
# start_hour,
# 48,
# np.full(48, 0.0),
# filename="visualization_results.pdf",
# extra_data=None,
# )
# Assertions to validate results
assert result is not None, "Result should not be None"
assert isinstance(result, dict), "Result should be a dictionary"
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
"""
Check the result of the simulation based on expected values.
"""
# Example result returned from the simulation (used for assertions)
assert result is not None, "Result should not be None."
# Check that the result is a dictionary
assert isinstance(result, dict), "Result should be a dictionary."
assert SimulationResult(**result) is not None
# Check the length of the main arrays
assert len(result["Last_Wh_pro_Stunde"]) == 47, (
"The length of 'Last_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 47, (
"The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzbezug_Wh_pro_Stunde"]) == 47, (
"The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
)
assert len(result["Kosten_Euro_pro_Stunde"]) == 47, (
"The length of 'Kosten_Euro_pro_Stunde' should be 48."
)
assert len(result["akku_soc_pro_stunde"]) == 47, (
"The length of 'akku_soc_pro_stunde' should be 48."
)
# Verify specific values in the 'Last_Wh_pro_Stunde' array
assert result["Last_Wh_pro_Stunde"][1] == 1527.13, (
"The value at index 1 of 'Last_Wh_pro_Stunde' should be 1527.13."
)
assert result["Last_Wh_pro_Stunde"][2] == 1468.88, (
"The value at index 2 of 'Last_Wh_pro_Stunde' should be 1468.88."
)
assert result["Last_Wh_pro_Stunde"][12] == 1132.03, (
"The value at index 12 of 'Last_Wh_pro_Stunde' should be 1132.03."
)
# Verify that the value at index 0 is 'None'
# Check that 'Netzeinspeisung_Wh_pro_Stunde' and 'Netzbezug_Wh_pro_Stunde' are consistent
assert result["Netzbezug_Wh_pro_Stunde"][1] == 0, (
"The value at index 1 of 'Netzbezug_Wh_pro_Stunde' should be 0."
)
# Verify the total balance
assert abs(result["Gesamtbilanz_Euro"] - 1.958185274567674) < 1e-5, (
"Total balance should be 1.958185274567674."
)
# Check total revenue and total costs
assert abs(result["Gesamteinnahmen_Euro"] - 1.168863124510214) < 1e-5, (
"Total revenue should be 1.168863124510214."
)
assert abs(result["Gesamtkosten_Euro"] - 3.127048399077888) < 1e-5, (
"Total costs should be 3.127048399077888 ."
)
# Check the losses
assert abs(result["Gesamt_Verluste"] - 2871.5330639359036) < 1e-5, (
"Total losses should be 2871.5330639359036 ."
)
# Check the values in 'akku_soc_pro_stunde'
assert result["akku_soc_pro_stunde"][-1] == 42.151590909090906, (
"The value at index -1 of 'akku_soc_pro_stunde' should be 42.151590909090906."
)
assert result["akku_soc_pro_stunde"][1] == 60.08659090909091, (
"The value at index 1 of 'akku_soc_pro_stunde' should be 60.08659090909091."
)
# Check home appliances
assert sum(ems.home_appliance.get_load_curve()) == 2000, (
"The sum of 'ems.home_appliance.get_load_curve()' should be 2000."
)
assert (
np.nansum(
np.where(
result["Home_appliance_wh_per_hour"] is None,
np.nan,
np.array(result["Home_appliance_wh_per_hour"]),
)
)
== 2000
), "The sum of 'Home_appliance_wh_per_hour' should be 2000."
print("All tests passed successfully.")