Files
EOS/src/akkudoktoreos/server/eos.py
Bobby Noelte b397b5d43e fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.

This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.

The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.

This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.

* fix: automatic optimization

  Allow optimization to automatically run on configured intervals gathering all
  optimization parameters from configuration and predictions. The automatic run
  can be configured to only run prediction updates skipping the optimization.
  Extend documentaion to also cover automatic optimization. Lock automatic runs
  against runs initiated by the /optimize or other endpoints. Provide new
  endpoints to retrieve the energy management plan and the genetic solution
  of the latest automatic optimization run. Offload energy management to thread
  pool executor to keep the app more responsive during the CPU heavy optimization
  run.

* fix: EOS servers recognize environment variables on startup

  Force initialisation of EOS configuration on server startup to assure
  all sources of EOS configuration are properly set up and read. Adapt
  server tests and configuration tests to also test for environment
  variable configuration.

* fix: Remove 0.0.0.0 to localhost translation under Windows

  EOS imposed a 0.0.0.0 to localhost translation under Windows for
  convenience. This caused some trouble in user configurations. Now, as the
  default IP address configuration is 127.0.0.1, the user is responsible
  for to set up the correct Windows compliant IP address.

* fix: allow names for hosts additional to IP addresses

* fix: access pydantic model fields by class

  Access by instance is deprecated.

* fix: down sampling key_to_array

* fix: make cache clear endpoint clear all cache files

  Make /v1/admin/cache/clear clear all cache files. Before it only cleared
  expired cache files by default. Add new endpoint /v1/admin/clear-expired
  to only clear expired cache files.

* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin

  timezonefinder 8.10 got more inaccurate for timezones in europe as there is
  a common timezone. Use new package tzfpy instead which is still returning
  Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
  timezonefinder.

* fix: provider settings configuration

  Provider configuration used to be a union holding the settings for several
  providers. Pydantic union handling does not always find the correct type
  for a provider setting. This led to exceptions in specific configurations.
  Now provider settings are explicit comfiguration items for each possible
  provider. This is a breaking change as the configuration structure was
  changed.

* fix: ClearOutside weather prediction irradiance calculation

  Pvlib needs a pandas time index. Convert time index.

* fix: test config file priority

  Do not use config_eos fixture as this fixture already creates a config file.

* fix: optimization sample request documentation

  Provide all data in documentation of optimization sample request.

* fix: gitlint blocking pip dependency resolution

  Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
  Gitlint dependencies blocked pip from dependency resolution.

* fix: sync pre-commit config to actual dependency requirements

  .pre-commit-config.yaml was out of sync, also requirements-dev.txt.

* fix: missing babel in requirements.txt

  Add babel to requirements.txt

* feat: setup default device configuration for automatic optimization

  In case the parameters for automatic optimization are not fully defined a
  default configuration is setup to allow the automatic energy management
  run. The default configuration may help the user to correctly define
  the device configuration.

* feat: allow configuration of genetic algorithm parameters

  The genetic algorithm parameters for number of individuals, number of
  generations, the seed and penalty function parameters are now avaliable
  as configuration options.

* feat: allow configuration of home appliance time windows

  The time windows a home appliance is allowed to run are now configurable
  by the configuration (for /v1 API) and also by the home appliance parameters
  (for the classic /optimize API). If there is no such configuration the
  time window defaults to optimization hours, which was the standard before
  the change. Documentation on how to configure time windows is added.

* feat: standardize mesaurement keys for battery/ ev SoC measurements

  The standardized measurement keys to report battery SoC to the device
  simulations can now be retrieved from the device configuration as a
  read-only config option.

* feat: feed in tariff prediction

  Add feed in tarif predictions needed for automatic optimization. The feed in
  tariff can be retrieved as fixed feed in tarif or can be imported. Also add
  tests for the different feed in tariff providers. Extend documentation to
  cover the feed in tariff providers.

* feat: add energy management plan based on S2 standard instructions

  EOS can generate an energy management plan as a list of simple instructions.
  May be retrieved by the /v1/energy-management/plan endpoint. The instructions
  loosely follow the S2 energy management standard.

* feat: make measurement keys configurable by EOS configuration.

  The fixed measurement keys are replaced by configurable measurement keys.

* feat: make pendulum DateTime, Date, Duration types usable for pydantic models

  Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
  added to the datetimeutil utility. Remove custom made pendulum adaptations
  from EOS pydantic module. Make EOS modules use the pydantic pendulum types
  managed by the datetimeutil module instead of the core pendulum types.

* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.

  The time windows are are added to support home appliance time window
  configuration. All time classes are also pydantic models. Time is the base
  class for time definition derived from pendulum.Time.

* feat: Extend DataRecord by configurable field like data.

  Configurable field like data was added to support the configuration of
  measurement records.

* feat: Add additional information to health information

  Version information is added to the health endpoints of eos and eosDash.
  The start time of the last optimization and the latest run time of the energy
  management is added to the EOS health information.

* feat: add pydantic merge model tests

* feat: add plan tab to EOSdash

  The plan tab displays the current energy management instructions.

* feat: add predictions tab to EOSdash

  The predictions tab displays the current predictions.

* feat: add cache management to EOSdash admin tab

  The admin tab is extended by a section for cache management. It allows to
  clear the cache.

* feat: add about tab to EOSdash

  The about tab resembles the former hello tab and provides extra information.

* feat: Adapt changelog and prepare for release management

  Release management using commitizen is added. The changelog file is adapted and
  teh changelog and a description for release management is added in the
  documentation.

* feat(doc): Improve install and devlopment documentation

  Provide a more concise installation description in Readme.md and add extra
  installation page and development page to documentation.

* chore: Use memory cache for interpolation instead of dict in inverter

  Decorate calculate_self_consumption() with @cachemethod_until_update to cache
  results in memory during an energy management/ optimization run. Replacement
  of dict type caching in inverter is now possible because all optimization
  runs are properly locked and the memory cache CacheUntilUpdateStore is properly
  cleared at the start of any energy management/ optimization operation.

* chore: refactor genetic

  Refactor the genetic algorithm modules for enhanced module structure and better
  readability. Removed unnecessary and overcomplex devices singleton. Also
  split devices configuration from genetic algorithm parameters to allow further
  development independently from genetic algorithm parameter format. Move
  charge rates configuration for electric vehicles from optimization to devices
  configuration to allow to have different charge rates for different cars in
  the future.

* chore: Rename memory cache to CacheEnergyManagementStore

  The name better resembles the task of the cache to chache function and method
  results for an energy management run. Also the decorator functions are renamed
  accordingly: cachemethod_energy_management, cache_energy_management

* chore: use class properties for config/ems/prediction mixin classes

* chore: skip debug logs from mathplotlib

  Mathplotlib is very noisy in debug mode.

* chore: automatically sync bokeh js to bokeh python package

  bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.

* chore: rename hello.py to about.py

  Make hello.py the adapted EOSdash about page.

* chore: remove demo page from EOSdash

  As no the plan and prediction pages are working without configuration, the demo
  page is no longer necessary

* chore: split test_server.py for system test

  Split test_server.py to create explicit test_system.py for system tests.

* chore: move doc utils to generate_config_md.py

  The doc utils are only used in scripts/generate_config_md.py. Move it there to
  attribute for strong cohesion.

* chore: improve pydantic merge model documentation

* chore: remove pendulum warning from readme

* chore: remove GitHub discussions from contributing documentation

  Github discussions is to be replaced by Akkudoktor.net.

* chore(release): bump version to 0.1.0+dev for development

* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1

  bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.

* build(deps): bump uvicorn from 0.36.0 to 0.37.0

BREAKING CHANGE: EOS configuration changed. V1 API changed.

  - The available_charge_rates_percent configuration is removed from optimization.
    Use the new charge_rate configuration for the electric vehicle
  - Optimization configuration parameter hours renamed to horizon_hours
  - Device configuration now has to provide the number of devices and device
    properties per device.
  - Specific prediction provider configuration to be provided by explicit
    configuration item (no union for all providers).
  - Measurement keys to be provided as a list.
  - New feed in tariff providers have to be configured.
  - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
  - /v1/admin/cache/clear now clears all cache files. Use
    /v1/admin/cache/clear-expired to only clear all expired cache files.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00

1626 lines
55 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import asyncio
import json
import os
import signal
import subprocess
import sys
import traceback
from contextlib import asynccontextmanager
from pathlib import Path
from typing import Annotated, Any, AsyncGenerator, Dict, List, Optional, Union
import psutil
import uvicorn
from fastapi import Body, FastAPI
from fastapi import Path as FastapiPath
from fastapi import Query, Request
from fastapi.exceptions import HTTPException
from fastapi.responses import (
FileResponse,
HTMLResponse,
JSONResponse,
RedirectResponse,
Response,
)
from loguru import logger
from akkudoktoreos.config.config import ConfigEOS, SettingsEOS, get_config
from akkudoktoreos.core.cache import CacheFileStore
from akkudoktoreos.core.emplan import EnergyManagementPlan, ResourceStatus
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.core.emsettings import EnergyManagementMode
from akkudoktoreos.core.logabc import LOGGING_LEVELS
from akkudoktoreos.core.logging import read_file_log, track_logging_config
from akkudoktoreos.core.pydantic import (
PydanticBaseModel,
PydanticDateTimeData,
PydanticDateTimeDataFrame,
PydanticDateTimeSeries,
)
from akkudoktoreos.core.version import __version__
from akkudoktoreos.devices.devices import ResourceKey, get_resource_registry
from akkudoktoreos.measurement.measurement import get_measurement
from akkudoktoreos.optimization.genetic.geneticparams import (
GeneticOptimizationParameters,
)
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSolution
from akkudoktoreos.optimization.optimization import OptimizationSolution
from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings
from akkudoktoreos.prediction.load import LoadCommonProviderSettings, LoadCommonSettings
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.prediction import get_prediction
from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings
from akkudoktoreos.server.rest.error import create_error_page
from akkudoktoreos.server.rest.tasks import repeat_every
from akkudoktoreos.server.server import (
get_default_host,
get_host_ip,
validate_ip_or_hostname,
wait_for_port_free,
)
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
from akkudoktoreos.utils.stringutil import str2bool
config_eos = get_config()
measurement_eos = get_measurement()
prediction_eos = get_prediction()
ems_eos = get_ems()
resource_registry_eos = get_resource_registry()
# ------------------------------------
# Logging configuration at import time
# ------------------------------------
logger.remove()
track_logging_config(config_eos, "logging", None, None)
config_eos.track_nested_value("/logging", track_logging_config)
# ----------------------------
# Safe argparse at import time
# ----------------------------
parser = argparse.ArgumentParser(description="Start EOS server.")
parser.add_argument(
"--host",
type=str,
help="Host for the EOS server (default: value from config)",
)
parser.add_argument(
"--port",
type=int,
help="Port for the EOS server (default: value from config)",
)
parser.add_argument(
"--log_level",
type=str,
default="none",
help='Log level for the server console. Options: "critical", "error", "warning", "info", "debug", "trace" (default: "none")',
)
parser.add_argument(
"--reload",
type=str2bool,
default=False,
help="Enable or disable auto-reload. Useful for development. Options: True or False (default: False)",
)
parser.add_argument(
"--startup_eosdash",
type=str2bool,
default=None,
help="Enable or disable automatic EOSdash startup. Options: True or False (default: value from config)",
)
# Command line arguments
args: argparse.Namespace
args_unknown: list[str]
args, args_unknown = parser.parse_known_args()
# -----------------------------
# Prepare config at import time
# -----------------------------
# Set config to actual environment variable & config file content
config_eos.reset_settings()
# Setup parameters from args, config_eos and default
# Remember parameters in config
# Setup EOS logging level - first to have the other logging messages logged
if args and args.log_level is not None:
log_level = args.log_level.upper()
# Ensure log_level from command line is in config settings
if log_level in LOGGING_LEVELS:
# Setup console logging level using nested value
# - triggers logging configuration by track_logging_config
config_eos.set_nested_value("logging/console_level", log_level)
logger.debug(f"logging/console_level configuration set by argument to {log_level}")
# Setup EOS server host
if args and args.host:
host = args.host
logger.debug(f"server/host configuration set by argument to {host}")
elif config_eos.server.host:
host = config_eos.server.host
else:
host = get_default_host()
# Ensure host from command line is in config settings
config_eos.set_nested_value("server/host", host)
# Setup EOS server port
if args and args.port:
port = args.port
logger.debug(f"server/port configuration set by argument to {port}")
elif config_eos.server.port:
port = config_eos.server.port
else:
port = 8503
# Ensure port from command line is in config settings
config_eos.set_nested_value("server/port", port)
# Setup EOS reload for development
if args is None or args.reload is None:
reload = False
else:
logger.debug(f"reload set by argument to {args.reload}")
reload = args.reload
# Setup EOSdash startup
if args and args.startup_eosdash is not None:
# Ensure startup_eosdash from command line is in config settings
config_eos.set_nested_value("server/startup_eosdash", args.startup_eosdash)
logger.debug(f"server/startup_eosdash configuration set by argument to {args.startup_eosdash}")
if config_eos.server.startup_eosdash:
# Ensure EOSdash host and port config settings are at least set to default values
# Setup EOS server host
if config_eos.server.eosdash_host is None:
config_eos.set_nested_value("server/eosdash_host", host)
# Setup EOS server host
if config_eos.server.eosdash_port is None:
config_eos.set_nested_value("server/eosdash_port", port + 1)
# ----------------------
# EOSdash server startup
# ----------------------
def start_eosdash(
host: str,
port: int,
eos_host: str,
eos_port: int,
log_level: str,
access_log: bool,
reload: bool,
eos_dir: str,
eos_config_dir: str,
) -> subprocess.Popen:
"""Start the EOSdash server as a subprocess.
This function starts the EOSdash server by launching it as a subprocess. It checks if the server
is already running on the specified port and either returns the existing process or starts a new
one.
Args:
host (str): The hostname for the EOSdash server.
port (int): The port for the EOSdash server.
eos_host (str): The hostname for the EOS server.
eos_port (int): The port for the EOS server.
log_level (str): The logging level for the EOSdash server.
access_log (bool): Flag to enable or disable access logging.
reload (bool): Flag to enable or disable auto-reloading.
eos_dir (str): Path to the EOS data directory.
eos_config_dir (str): Path to the EOS configuration directory.
Returns:
subprocess.Popen: The process of the EOSdash server.
Raises:
RuntimeError: If the EOSdash server fails to start.
"""
try:
validate_ip_or_hostname(host)
validate_ip_or_hostname(eos_host)
except Exception as ex:
error_msg = f"Could not start EOSdash: {ex}"
logger.error(error_msg)
raise RuntimeError(error_msg)
eosdash_path = Path(__file__).parent.resolve().joinpath("eosdash.py")
# Do a one time check for port free to generate warnings if not so
wait_for_port_free(port, timeout=0, waiting_app_name="EOSdash")
cmd = [
sys.executable,
"-m",
"akkudoktoreos.server.eosdash",
"--host",
str(host),
"--port",
str(port),
"--eos-host",
str(eos_host),
"--eos-port",
str(eos_port),
"--log_level",
log_level,
"--access_log",
str(access_log),
"--reload",
str(reload),
]
# Set environment before any subprocess run, to keep custom config dir
env = os.environ.copy()
env["EOS_DIR"] = eos_dir
env["EOS_CONFIG_DIR"] = eos_config_dir
try:
server_process = subprocess.Popen( # noqa: S603
cmd,
env=env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
start_new_session=True,
)
logger.info(f"Started EOSdash with '{cmd}'.")
except subprocess.CalledProcessError as ex:
error_msg = f"Could not start EOSdash: {ex}"
logger.error(error_msg)
raise RuntimeError(error_msg)
# Check EOSdash is still running
if server_process.poll() is not None:
error_msg = f"EOSdash finished immediatedly with code: {server_process.returncode}"
logger.error(error_msg)
raise RuntimeError(error_msg)
return server_process
# ----------------------
# EOS REST Server
# ----------------------
def save_eos_state() -> None:
"""Save EOS state."""
resource_registry_eos.save()
cache_save() # keep last
def load_eos_state() -> None:
"""Load EOS state."""
cache_load() # keep first
resource_registry_eos.load()
def terminate_eos() -> None:
"""Gracefully shut down the EOS server process."""
pid = psutil.Process().pid
if os.name == "nt":
os.kill(pid, signal.CTRL_C_EVENT) # type: ignore[attr-defined,unused-ignore]
else:
os.kill(pid, signal.SIGTERM) # type: ignore[attr-defined,unused-ignore]
logger.info(f"🚀 EOS terminated, PID {pid}")
def cache_clear(clear_all: Optional[bool] = None) -> None:
"""Cleanup expired cache files."""
if clear_all:
CacheFileStore().clear(clear_all=True)
else:
CacheFileStore().clear(before_datetime=to_datetime())
def cache_load() -> dict:
"""Load cache from cachefilestore.json."""
return CacheFileStore().load_store()
def cache_save() -> dict:
"""Save cache to cachefilestore.json."""
return CacheFileStore().save_store()
def cache_cleanup_on_exception(e: Exception) -> None:
logger.error("Cache cleanup task caught an exception: {}", e, exc_info=True)
@repeat_every(
seconds=float(config_eos.cache.cleanup_interval),
on_exception=cache_cleanup_on_exception,
)
def cache_cleanup_task() -> None:
"""Repeating task to clear cache from expired cache files."""
logger.debug("Clear cache")
cache_clear()
def energy_management_on_exception(e: Exception) -> None:
logger.error("Energy management task caught an exception: {}", e, exc_info=True)
@repeat_every(
seconds=10,
wait_first=config_eos.ems.startup_delay,
on_exception=energy_management_on_exception,
)
async def energy_management_task() -> None:
"""Repeating task for energy management."""
logger.debug("Check EMS run")
await ems_eos.manage_energy()
async def server_shutdown_task() -> None:
"""One-shot task for shutting down the EOS server.
This coroutine performs the following actions:
1. Ensures the cache is saved by calling the cache_save function.
2. Waits for 5 seconds to allow the EOS server to complete any ongoing tasks.
3. Gracefully shuts down the current process by sending the appropriate signal.
If running on Windows, the CTRL_C_EVENT signal is sent to terminate the process.
On other operating systems, the SIGTERM signal is used.
Finally, logs a message indicating that the EOS server has been terminated.
"""
save_eos_state()
# Give EOS time to finish some work
await asyncio.sleep(5)
terminate_eos()
sys.exit(0)
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
"""Lifespan manager for the app."""
# On startup
if config_eos.server.startup_eosdash:
try:
if (
config_eos.server.eosdash_host is None
or config_eos.server.eosdash_port is None
or config_eos.server.host is None
or config_eos.server.port is None
):
raise ValueError(
f"Invalid configuration for EOSdash server startup.\n"
f"- server/startup_eosdash: {config_eos.server.startup_eosdash}\n"
f"- server/eosdash_host: {config_eos.server.eosdash_host}\n"
f"- server/eosdash_port: {config_eos.server.eosdash_port}\n"
f"- server/host: {config_eos.server.host}\n"
f"- server/port: {config_eos.server.port}"
)
log_level = (
config_eos.logging.console_level if config_eos.logging.console_level else "info"
)
eosdash_process = start_eosdash(
host=str(config_eos.server.eosdash_host),
port=config_eos.server.eosdash_port,
eos_host=str(config_eos.server.host),
eos_port=config_eos.server.port,
log_level=log_level,
access_log=True,
reload=False,
eos_dir=str(config_eos.general.data_folder_path),
eos_config_dir=str(config_eos.general.config_folder_path),
)
except Exception as e:
logger.error(f"Failed to start EOSdash server. Error: {e}")
sys.exit(1)
load_eos_state()
# Start EOS tasks
if config_eos.cache.cleanup_interval is None:
logger.warning("Cache file cleanup disabled. Set cache.cleanup_interval.")
else:
await cache_cleanup_task()
await energy_management_task()
# Handover to application
yield
# On shutdown
save_eos_state()
app = FastAPI(
title="Akkudoktor-EOS",
description="This project provides a comprehensive solution for simulating and optimizing an energy system based on renewable energy sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements), heat pumps, electric vehicles, and consideration of electricity price data, this system enables forecasting and optimization of energy flow and costs over a specified period.",
summary="Comprehensive solution for simulating and optimizing an energy system based on renewable energy sources",
version=f"v{__version__}",
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
lifespan=lifespan,
)
class PdfResponse(FileResponse):
media_type = "application/pdf"
@app.post("/v1/admin/cache/clear", tags=["admin"])
def fastapi_admin_cache_clear_post() -> dict:
"""Clear the cache.
Deletes all cache files.
Returns:
data (dict): The management data after cleanup.
"""
try:
cache_clear(clear_all=True)
data = CacheFileStore().current_store()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on cache clear: {e}")
return data
@app.post("/v1/admin/cache/clear-expired", tags=["admin"])
def fastapi_admin_cache_clear_expired_post() -> dict:
"""Clear the cache from expired data.
Deletes expired cache files.
Returns:
data (dict): The management data after cleanup.
"""
try:
cache_clear(clear_all=False)
data = CacheFileStore().current_store()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on cache clear expired: {e}")
return data
@app.post("/v1/admin/cache/save", tags=["admin"])
def fastapi_admin_cache_save_post() -> dict:
"""Save the current cache management data.
Returns:
data (dict): The management data that was saved.
"""
try:
data = cache_save()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on cache save: {e}")
return data
@app.post("/v1/admin/cache/load", tags=["admin"])
def fastapi_admin_cache_load_post() -> dict:
"""Load cache management data.
Returns:
data (dict): The management data that was loaded.
"""
try:
data = cache_save()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on cache load: {e}")
return data
@app.get("/v1/admin/cache", tags=["admin"])
def fastapi_admin_cache_get() -> dict:
"""Current cache management data.
Returns:
data (dict): The management data.
"""
try:
data = CacheFileStore().current_store()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on cache data retrieval: {e}")
return data
@app.post("/v1/admin/server/restart", tags=["admin"])
async def fastapi_admin_server_restart_post() -> dict:
"""Restart the server.
Restart EOS properly by starting a new instance before exiting the old one.
"""
save_eos_state()
# Start a new EOS (Uvicorn) process
logger.info("🔄 Restarting EOS...")
# Force a new process group to make the new process easily distinguishable from the current one
# Set environment before any subprocess run, to keep custom config dir
env = os.environ.copy()
env["EOS_DIR"] = str(config_eos.general.data_folder_path)
env["EOS_CONFIG_DIR"] = str(config_eos.general.config_folder_path)
if os.name == "nt":
# Windows
DETACHED_PROCESS = 0x00000008
# getattr avoids mypy warning on Linux
CREATE_NEW_PROCESS_GROUP = getattr(subprocess, "CREATE_NEW_PROCESS_GROUP", 0x00000200)
new_process = subprocess.Popen( # noqa: S603
[
sys.executable,
]
+ sys.argv,
env=env,
creationflags=DETACHED_PROCESS | CREATE_NEW_PROCESS_GROUP,
close_fds=True,
# stdin, stdout, stderr are inherited by default
)
else:
# Unix/Linux/macOS
new_process = subprocess.Popen( # noqa: S603
[
sys.executable,
]
+ sys.argv,
env=env,
start_new_session=True,
close_fds=True,
# stdin, stdout, stderr are inherited by default
)
logger.info(f"🚀 EOS restarted, PID {new_process.pid}")
# Gracefully shut down this process.
asyncio.create_task(server_shutdown_task())
# Will be executed because shutdown is delegated to async coroutine
return {
"message": "Restarting EOS...",
"pid": new_process.pid,
}
@app.post("/v1/admin/server/shutdown", tags=["admin"])
async def fastapi_admin_server_shutdown_post() -> dict:
"""Shutdown the server."""
logger.info("🔄 Stopping EOS...")
# Gracefully shut down this process.
asyncio.create_task(server_shutdown_task())
# Will be executed because shutdown is delegated to async coroutine
return {
"message": "Stopping EOS...",
"pid": psutil.Process().pid,
}
@app.get("/v1/health")
def fastapi_health_get(): # type: ignore
"""Health check endpoint to verify that the EOS server is alive."""
return JSONResponse(
{
"status": "alive",
"pid": psutil.Process().pid,
"version": __version__,
"energy-management": {
"start_datetime": to_datetime(ems_eos.start_datetime, as_string=True),
"last_run_datetime": to_datetime(ems_eos.last_run_datetime, as_string=True),
},
}
)
@app.post("/v1/config/reset", tags=["config"])
def fastapi_config_reset_post() -> ConfigEOS:
"""Reset the configuration to the EOS configuration file.
Returns:
configuration (ConfigEOS): The current configuration after update.
"""
try:
config_eos.reset_settings()
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Cannot reset configuration: {e}",
)
return config_eos
@app.put("/v1/config/file", tags=["config"])
def fastapi_config_file_put() -> ConfigEOS:
"""Save the current configuration to the EOS configuration file.
Returns:
configuration (ConfigEOS): The current configuration that was saved.
"""
try:
config_eos.to_config_file()
except:
raise HTTPException(
status_code=404,
detail=f"Cannot save configuration to file '{config_eos.config_file_path}'.",
)
return config_eos
@app.get("/v1/config", tags=["config"])
def fastapi_config_get() -> ConfigEOS:
"""Get the current configuration.
Returns:
configuration (ConfigEOS): The current configuration.
"""
return config_eos
@app.put("/v1/config", tags=["config"])
def fastapi_config_put(settings: SettingsEOS) -> ConfigEOS:
"""Update the current config with the provided settings.
Note that for any setting value that is None or unset, the configuration will fall back to
values from other sources such as environment variables, the EOS configuration file, or default
values.
Args:
settings (SettingsEOS): The settings to write into the current settings.
Returns:
configuration (ConfigEOS): The current configuration after the write.
"""
try:
config_eos.merge_settings(settings)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on update of configuration: {e}")
return config_eos
@app.put("/v1/config/{path:path}", tags=["config"])
def fastapi_config_put_key(
path: str = FastapiPath(
..., description="The nested path to the configuration key (e.g., general/latitude)."
),
value: Optional[Any] = Body(
None, description="The value to assign to the specified configuration path (can be None)."
),
) -> ConfigEOS:
"""Update a nested key or index in the config model.
Args:
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0").
value (Any): The new value to assign to the key or index at path.
Returns:
configuration (ConfigEOS): The current configuration after the update.
"""
try:
config_eos.set_nested_value(path, value)
except Exception as e:
trace = "".join(traceback.TracebackException.from_exception(e).format())
raise HTTPException(
status_code=400,
detail=f"Error on update of configuration '{path}','{value}': {e}\n{trace}",
)
return config_eos
@app.get("/v1/config/{path:path}", tags=["config"])
def fastapi_config_get_key(
path: str = FastapiPath(
..., description="The nested path to the configuration key (e.g., general/latitude)."
),
) -> Response:
"""Get the value of a nested key or index in the config model.
Args:
path (str): The nested path to the key (e.g., "general/latitude" or "optimize/nested_list/0").
Returns:
value (Any): The value of the selected nested key.
"""
try:
return config_eos.get_nested_value(path)
except IndexError as e:
raise HTTPException(status_code=400, detail=str(e))
except KeyError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.get("/v1/logging/log", tags=["logging"])
async def fastapi_logging_get_log(
limit: int = Query(100, description="Maximum number of log entries to return."),
level: Optional[str] = Query(None, description="Filter by log level (e.g., INFO, ERROR)."),
contains: Optional[str] = Query(None, description="Filter logs containing this substring."),
regex: Optional[str] = Query(None, description="Filter logs by matching regex in message."),
from_time: Optional[str] = Query(
None, description="Start time (ISO format) for filtering logs."
),
to_time: Optional[str] = Query(None, description="End time (ISO format) for filtering logs."),
tail: bool = Query(False, description="If True, returns the most recent lines (tail mode)."),
) -> JSONResponse:
"""Get structured log entries from the EOS log file.
Filters and returns log entries based on the specified query parameters. The log
file is expected to contain newline-delimited JSON entries.
Args:
limit (int): Maximum number of entries to return.
level (Optional[str]): Filter logs by severity level (e.g., DEBUG, INFO).
contains (Optional[str]): Return only logs that include this string in the message.
regex (Optional[str]): Return logs that match this regular expression in the message.
from_time (Optional[str]): ISO 8601 timestamp to filter logs not older than this.
to_time (Optional[str]): ISO 8601 timestamp to filter logs not newer than this.
tail (bool): If True, fetch the most recent log entries (like `tail`).
Returns:
JSONResponse: A JSON list of log entries.
"""
log_path = config_eos.logging.file_path
try:
logs = read_file_log(
log_path=log_path,
limit=limit,
level=level,
contains=contains,
regex=regex,
from_time=from_time,
to_time=to_time,
tail=tail,
)
return JSONResponse(content=logs)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.get("/v1/resource/status", tags=["resource"])
def fastapi_devices_status_get(
resource_id: Annotated[str, Query(description="Resource ID.")],
actuator_id: Annotated[Optional[str], Query(description="Actuator ID.")] = None,
) -> ResourceStatus:
"""Get the latest status of a resource/ device.
Return:
latest_status: The latest status of a resource/ device.
"""
key = ResourceKey(resource_id=resource_id, actuator_id=actuator_id)
if not resource_registry_eos.status_exists(key):
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
status_latest = resource_registry_eos.status_latest(key)
if status_latest is None:
raise HTTPException(status_code=404, detail=f"Key '{key}' does not have a status.")
return status_latest
@app.put("/v1/resource/status", tags=["resource"])
def fastapi_devices_status_put(
resource_id: Annotated[str, Query(description="Resource ID.")],
status: Annotated[ResourceStatus, Body(description="Resource Status.")],
actuator_id: Annotated[Optional[str], Query(description="Actuator ID.")] = None,
) -> ResourceStatus:
"""Update the status of a resource/ device.
Return:
latest_status: The latest status of a resource/ device.
"""
key = ResourceKey(resource_id=resource_id, actuator_id=actuator_id)
try:
resource_registry_eos.update_status(key, status)
except Exception as e:
raise HTTPException(
status_code=400,
detail=f"Error on resource status update key='{key}', status='{status}': {e}",
)
status_latest = resource_registry_eos.status_latest(key)
if status_latest is None:
raise HTTPException(status_code=404, detail=f"Key '{key}' does not have a status.")
return status_latest
@app.get("/v1/measurement/keys", tags=["measurement"])
def fastapi_measurement_keys_get() -> list[str]:
"""Get a list of available measurement keys."""
return sorted(measurement_eos.record_keys)
@app.get("/v1/measurement/series", tags=["measurement"])
def fastapi_measurement_series_get(
key: Annotated[str, Query(description="Measurement key.")],
) -> PydanticDateTimeSeries:
"""Get the measurements of given key as series."""
if key not in measurement_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
pdseries = measurement_eos.key_to_series(key=key)
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/value", tags=["measurement"])
def fastapi_measurement_value_put(
datetime: Annotated[str, Query(description="Datetime.")],
key: Annotated[str, Query(description="Measurement key.")],
value: Union[float | str],
) -> PydanticDateTimeSeries:
"""Merge the measurement of given key and value into EOS measurements at given datetime."""
if key not in measurement_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
if isinstance(value, str):
# Try to convert to float
try:
value = float(value)
except:
logger.debug(
f'/v1/measurement/value key: {key} value: "{value}" - string value not convertable to float'
)
measurement_eos.update_value(datetime, key, value)
pdseries = measurement_eos.key_to_series(key=key)
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/series", tags=["measurement"])
def fastapi_measurement_series_put(
key: Annotated[str, Query(description="Measurement key.")], series: PydanticDateTimeSeries
) -> PydanticDateTimeSeries:
"""Merge measurement given as series into given key."""
if key not in measurement_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
pdseries = series.to_series() # make pandas series from PydanticDateTimeSeries
measurement_eos.key_from_series(key=key, series=pdseries)
pdseries = measurement_eos.key_to_series(key=key)
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/dataframe", tags=["measurement"])
def fastapi_measurement_dataframe_put(data: PydanticDateTimeDataFrame) -> None:
"""Merge the measurement data given as dataframe into EOS measurements."""
dataframe = data.to_dataframe()
measurement_eos.import_from_dataframe(dataframe)
@app.put("/v1/measurement/data", tags=["measurement"])
def fastapi_measurement_data_put(data: PydanticDateTimeData) -> None:
"""Merge the measurement data given as datetime data into EOS measurements."""
datetimedata = data.to_dict()
measurement_eos.import_from_dict(datetimedata)
@app.get("/v1/prediction/providers", tags=["prediction"])
def fastapi_prediction_providers_get(enabled: Optional[bool] = None) -> list[str]:
"""Get a list of available prediction providers.
Args:
enabled (bool): Return enabled/disabled providers. If unset, return all providers.
"""
if enabled is not None:
enabled_status = [enabled]
else:
enabled_status = [True, False]
return sorted(
[
provider.provider_id()
for provider in prediction_eos.providers
if provider.enabled() in enabled_status
]
)
@app.get("/v1/prediction/keys", tags=["prediction"])
def fastapi_prediction_keys_get() -> list[str]:
"""Get a list of available prediction keys."""
return sorted(prediction_eos.record_keys)
@app.get("/v1/prediction/series", tags=["prediction"])
def fastapi_prediction_series_get(
key: Annotated[str, Query(description="Prediction key.")],
start_datetime: Annotated[
Optional[str],
Query(description="Starting datetime (inclusive)."),
] = None,
end_datetime: Annotated[
Optional[str],
Query(description="Ending datetime (exclusive)."),
] = None,
) -> PydanticDateTimeSeries:
"""Get prediction for given key within given date range as series.
Args:
key (str): Prediction key
start_datetime (Optional[str]): Starting datetime (inclusive).
Defaults to start datetime of latest prediction.
end_datetime (Optional[str]: Ending datetime (exclusive).
Defaults to end datetime of latest prediction.
"""
if key not in prediction_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
if start_datetime is None:
start_datetime = prediction_eos.ems_start_datetime
else:
start_datetime = to_datetime(start_datetime)
if end_datetime is None:
end_datetime = prediction_eos.end_datetime
else:
end_datetime = to_datetime(end_datetime)
pdseries = prediction_eos.key_to_series(
key=key, start_datetime=start_datetime, end_datetime=end_datetime
)
return PydanticDateTimeSeries.from_series(pdseries)
@app.get("/v1/prediction/dataframe", tags=["prediction"])
def fastapi_prediction_dataframe_get(
keys: Annotated[list[str], Query(description="Prediction keys.")],
start_datetime: Annotated[
Optional[str],
Query(description="Starting datetime (inclusive)."),
] = None,
end_datetime: Annotated[
Optional[str],
Query(description="Ending datetime (exclusive)."),
] = None,
interval: Annotated[
Optional[str],
Query(description="Time duration for each interval. Defaults to 1 hour."),
] = None,
) -> PydanticDateTimeDataFrame:
"""Get prediction for given key within given date range as series.
Args:
key (str): Prediction key
start_datetime (Optional[str]): Starting datetime (inclusive).
Defaults to start datetime of latest prediction.
end_datetime (Optional[str]: Ending datetime (exclusive).
Defaults to end datetime of latest prediction.
"""
for key in keys:
if key not in prediction_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
if start_datetime is None:
start_datetime = prediction_eos.ems_start_datetime
else:
start_datetime = to_datetime(start_datetime)
if end_datetime is None:
end_datetime = prediction_eos.end_datetime
else:
end_datetime = to_datetime(end_datetime)
df = prediction_eos.keys_to_dataframe(
keys=keys, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
)
return PydanticDateTimeDataFrame.from_dataframe(df, tz=config_eos.general.timezone)
@app.get("/v1/prediction/list", tags=["prediction"])
def fastapi_prediction_list_get(
key: Annotated[str, Query(description="Prediction key.")],
start_datetime: Annotated[
Optional[str],
Query(description="Starting datetime (inclusive)."),
] = None,
end_datetime: Annotated[
Optional[str],
Query(description="Ending datetime (exclusive)."),
] = None,
interval: Annotated[
Optional[str],
Query(description="Time duration for each interval. Defaults to 1 hour."),
] = None,
) -> List[Any]:
"""Get prediction for given key within given date range as value list.
Args:
key (str): Prediction key
start_datetime (Optional[str]): Starting datetime (inclusive).
Defaults to start datetime of latest prediction.
end_datetime (Optional[str]: Ending datetime (exclusive).
Defaults to end datetime of latest prediction.
interval (Optional[str]): Time duration for each interval.
Defaults to 1 hour.
"""
if key not in prediction_eos.record_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
if start_datetime is None:
start_datetime = prediction_eos.ems_start_datetime
else:
start_datetime = to_datetime(start_datetime)
if end_datetime is None:
end_datetime = prediction_eos.end_datetime
else:
end_datetime = to_datetime(end_datetime)
if interval is None:
interval = to_duration("1 hour")
else:
interval = to_duration(interval)
prediction_list = prediction_eos.key_to_array(
key=key,
start_datetime=start_datetime,
end_datetime=end_datetime,
interval=interval,
).tolist()
return prediction_list
@app.put("/v1/prediction/import/{provider_id}", tags=["prediction"])
def fastapi_prediction_import_provider(
provider_id: str = FastapiPath(..., description="Provider ID."),
data: Optional[Union[PydanticDateTimeDataFrame, PydanticDateTimeData, dict]] = None,
force_enable: Optional[bool] = None,
) -> Response:
"""Import prediction for given provider ID.
Args:
provider_id: ID of provider to update.
data: Prediction data.
force_enable: Update data even if provider is disabled.
Defaults to False.
"""
try:
provider = prediction_eos.provider_by_id(provider_id)
except ValueError:
raise HTTPException(status_code=404, detail=f"Provider '{provider_id}' not found.")
if not provider.enabled() and not force_enable:
raise HTTPException(status_code=404, detail=f"Provider '{provider_id}' not enabled.")
try:
provider.import_from_json(json_str=json.dumps(data))
provider.update_datetime = to_datetime(in_timezone=config_eos.general.timezone)
except Exception as e:
raise HTTPException(
status_code=400, detail=f"Error on import for provider '{provider_id}': {e}"
)
return Response()
@app.post("/v1/prediction/update", tags=["prediction"])
async def fastapi_prediction_update(
force_update: Optional[bool] = False, force_enable: Optional[bool] = False
) -> Response:
"""Update predictions for all providers.
Args:
force_update: Update data even if it is already cached.
Defaults to False.
force_enable: Update data even if provider is disabled.
Defaults to False.
"""
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=force_update,
force_enable=force_enable,
)
except Exception as e:
trace = "".join(traceback.TracebackException.from_exception(e).format())
raise HTTPException(
status_code=400,
detail=f"Error on prediction update: {e}\n{trace}",
)
return Response()
@app.post("/v1/prediction/update/{provider_id}", tags=["prediction"])
async def fastapi_prediction_update_provider(
provider_id: str, force_update: Optional[bool] = False, force_enable: Optional[bool] = False
) -> Response:
"""Update predictions for given provider ID.
Args:
provider_id: ID of provider to update.
force_update: Update data even if it is already cached.
Defaults to False.
force_enable: Update data even if provider is disabled.
Defaults to False.
"""
try:
provider = prediction_eos.provider_by_id(provider_id)
except ValueError:
raise HTTPException(status_code=404, detail=f"Provider '{provider_id}' not found.")
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=force_update,
force_enable=force_enable,
)
except Exception as e:
trace = "".join(traceback.TracebackException.from_exception(e).format())
raise HTTPException(
status_code=400,
detail=f"Error on prediction update: {e}\n{trace}",
)
return Response()
@app.get("/v1/energy-management/optimization/solution", tags=["energy-management"])
def fastapi_energy_management_optimization_solution_get() -> OptimizationSolution:
"""Get the latest solution of the optimization."""
solution = ems_eos.optimization_solution()
if solution is None:
raise HTTPException(
status_code=404,
detail="Can not get the optimization solution. Did you configure automatic optimization?",
)
return solution
@app.get("/v1/energy-management/plan", tags=["energy-management"])
def fastapi_energy_management_plan_get() -> EnergyManagementPlan:
"""Get the latest energy management plan."""
plan = ems_eos.plan()
if plan is None:
raise HTTPException(
status_code=404,
detail="Can not get the energy management plan. Did you configure automatic optimization?",
)
return plan
@app.get("/strompreis", tags=["prediction"])
async def fastapi_strompreis() -> list[float]:
"""Deprecated: Electricity Market Price Prediction per Wh (€/Wh).
Electricity prices start at 00.00.00 today and are provided for 48 hours.
If no prices are available the missing ones at the start of the series are
filled with the first available price.
Note:
Electricity price charges are added.
Note:
Set ElecPriceAkkudoktor as provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=elecprice_marketprice_wh' or
'/v1/prediction/list?key=elecprice_marketprice_kwh' instead.
"""
settings = SettingsEOS(
elecprice=ElecPriceCommonSettings(
provider="ElecPriceAkkudoktor",
)
)
config_eos.merge_settings(settings=settings)
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=True,
)
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not update predictions: {e}",
)
# Get the current date and the end date based on prediction hours
# Fetch prices for the specified date range
start_datetime = to_datetime().start_of("day")
end_datetime = start_datetime.add(days=2)
try:
elecprice = prediction_eos.key_to_array(
key="elecprice_marketprice_wh",
start_datetime=start_datetime,
end_datetime=end_datetime,
).tolist()
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not get the electricity price forecast: {e}. Did you configure the electricity price forecast provider?",
)
return elecprice
class GesamtlastRequest(PydanticBaseModel):
year_energy: float
measured_data: List[Dict[str, Any]]
hours: int
@app.post("/gesamtlast", tags=["prediction"])
async def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
"""Deprecated: Total Load Prediction with adjustment.
Endpoint to handle total load prediction adjusted by latest measured data.
Total load prediction starts at 00.00.00 today and is provided for 48 hours.
If no prediction values are available the missing ones at the start of the series are
filled with the first available prediction value.
Note:
Use '/v1/prediction/list?key=load_mean_adjusted' instead.
Load energy meter readings to be added to EOS measurement by:
'/v1/measurement/value' or
'/v1/measurement/series' or
'/v1/measurement/dataframe' or
'/v1/measurement/data'
"""
settings = {
"prediction": {
"hours": request.hours,
},
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"LoadAkkudoktor": {
"loadakkudoktor_year_energy": request.year_energy,
},
},
},
"measurement": {
"load_emr_keys": ["gesamtlast_emr"],
},
}
config_eos.merge_settings_from_dict(settings)
# Insert measured data into EOS measurement
# Convert from energy per interval to dummy energy meter readings
measurement_key = "gesamtlast_emr"
measurement_eos.key_delete_by_datetime(
key=measurement_key
) # delete all gesamtlast_emr measurements
energy = {}
try:
for data_dict in request.measured_data:
dt_str = to_datetime(data_dict["time"], as_string=True)
value = float(data_dict["Last"])
energy[dt_str] = value
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Invalid measured data: {e}.",
)
energy_mr_dates = []
energy_mr_values = []
energy_mr = 0.0
for i, key in enumerate(sorted(energy)):
energy_mr += energy[key]
dt = to_datetime(key)
if i == 0:
# first element, add start value before
dt_before = dt - to_duration("1 hour")
energy_mr_dates.append(dt_before)
energy_mr_values.append(0.0)
energy_mr_dates.append(dt)
energy_mr_values.append(energy_mr)
measurement_eos.key_from_lists(measurement_key, energy_mr_dates, energy_mr_values)
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=True,
)
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not update predictions: {e}",
)
# Get the forcast starting at start of day
start_datetime = to_datetime().start_of("day")
end_datetime = start_datetime.add(days=2)
try:
prediction_list = prediction_eos.key_to_array(
key="load_mean_adjusted",
start_datetime=start_datetime,
end_datetime=end_datetime,
).tolist()
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not get the total load forecast: {e}. Did you configure the load forecast provider?",
)
return prediction_list
@app.get("/gesamtlast_simple", tags=["prediction"])
async def fastapi_gesamtlast_simple(year_energy: float) -> list[float]:
"""Deprecated: Total Load Prediction.
Endpoint to handle total load prediction.
Total load prediction starts at 00.00.00 today and is provided for 48 hours.
If no prediction values are available the missing ones at the start of the series are
filled with the first available prediction value.
Args:
year_energy (float): Yearly energy consumption in Wh.
Note:
Set LoadAkkudoktor as provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=load_mean' instead.
"""
settings = SettingsEOS(
load=LoadCommonSettings(
provider="LoadAkkudoktor",
provider_settings=LoadCommonProviderSettings(
LoadAkkudoktor=LoadAkkudoktorCommonSettings(
loadakkudoktor_year_energy=year_energy / 1000, # Convert to kWh
),
),
)
)
config_eos.merge_settings(settings=settings)
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=True,
)
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not update predictions: {e}",
)
# Get the forcast starting at start of day
start_datetime = to_datetime().start_of("day")
end_datetime = start_datetime.add(days=2)
try:
prediction_list = prediction_eos.key_to_array(
key="load_mean",
start_datetime=start_datetime,
end_datetime=end_datetime,
).tolist()
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not get the total load forecast: {e}. Did you configure the load forecast provider?",
)
return prediction_list
class ForecastResponse(PydanticBaseModel):
temperature: list[Optional[float]]
pvpower: list[float]
@app.get("/pvforecast", tags=["prediction"])
async def fastapi_pvforecast() -> ForecastResponse:
"""Deprecated: PV Forecast Prediction.
Endpoint to handle PV forecast prediction.
PVForecast starts at 00.00.00 today and is provided for 48 hours.
If no forecast values are available the missing ones at the start of the series are
filled with the first available forecast value.
Note:
Set PVForecastAkkudoktor as provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=pvforecast_ac_power' and
'/v1/prediction/list?key=pvforecastakkudoktor_temp_air' instead.
"""
settings = SettingsEOS(pvforecast=PVForecastCommonSettings(provider="PVForecastAkkudoktor"))
config_eos.merge_settings(settings=settings)
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
mode=EnergyManagementMode.PREDICTION,
force_update=True,
)
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not update predictions: {e}",
)
# Get the forcast starting at start of day
start_datetime = to_datetime().start_of("day")
end_datetime = start_datetime.add(days=2)
try:
ac_power = prediction_eos.key_to_array(
key="pvforecast_ac_power",
start_datetime=start_datetime,
end_datetime=end_datetime,
).tolist()
temp_air = prediction_eos.key_to_array(
key="pvforecastakkudoktor_temp_air",
start_datetime=start_datetime,
end_datetime=end_datetime,
).tolist()
except Exception as e:
raise HTTPException(
status_code=404,
detail=f"Can not get the PV forecast: {e}. Did you configure the PV forecast provider?",
)
# Return both forecasts as a JSON response
return ForecastResponse(temperature=temp_air, pvpower=ac_power)
@app.post("/optimize", tags=["optimize"])
async def fastapi_optimize(
parameters: GeneticOptimizationParameters,
start_hour: Annotated[
Optional[int], Query(description="Defaults to current hour of the day.")
] = None,
ngen: Annotated[
Optional[int], Query(description="Number of indivuals to generate for genetic algorithm.")
] = None,
) -> GeneticSolution:
"""Deprecated: Optimize.
Endpoint to handle optimization.
Note:
Use automatic optimization instead.
"""
if start_hour is None:
start_datetime = None
else:
start_datetime = to_datetime().set(hour=start_hour)
# Ensure there is only one optimization/ energy management run at a time
try:
await ems_eos.run(
start_datetime=start_datetime,
mode=EnergyManagementMode.OPTIMIZATION,
genetic_parameters=parameters,
genetic_individuals=ngen,
)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Optimize error: {e}.")
solution = ems_eos.genetic_solution()
if solution is None:
raise HTTPException(status_code=400, detail="Optimize error: no solution stored by run.")
return solution
@app.get("/visualization_results.pdf", response_class=PdfResponse, tags=["optimize"])
def get_pdf() -> PdfResponse:
# Endpoint to serve the generated PDF with visualization results
output_path = config_eos.general.data_output_path
if output_path is None or not output_path.is_dir():
raise HTTPException(status_code=404, detail=f"Output path does not exist: {output_path}.")
file_path = output_path / "visualization_results.pdf"
if not file_path.is_file():
raise HTTPException(status_code=404, detail="No visualization result available.")
return PdfResponse(file_path)
@app.get("/site-map", include_in_schema=False)
def site_map() -> RedirectResponse:
return RedirectResponse(url="/docs")
# Keep the redirect last to handle all requests that are not taken by the Rest API.
@app.delete("/{path:path}", include_in_schema=False)
async def redirect_delete(request: Request, path: str) -> Response:
return redirect(request, path)
@app.get("/{path:path}", include_in_schema=False)
async def redirect_get(request: Request, path: str) -> Response:
return redirect(request, path)
@app.post("/{path:path}", include_in_schema=False)
async def redirect_post(request: Request, path: str) -> Response:
return redirect(request, path)
@app.put("/{path:path}", include_in_schema=False)
async def redirect_put(request: Request, path: str) -> Response:
return redirect(request, path)
def redirect(request: Request, path: str) -> Union[HTMLResponse, RedirectResponse]:
# Path is not for EOSdash
if not (path.startswith("eosdash") or path == ""):
host = config_eos.server.eosdash_host
if host is None:
host = config_eos.server.host
host = str(host)
port = config_eos.server.eosdash_port
if port is None:
port = 8504
if host == "0.0.0.0": # noqa: S104
# Use IP of EOS host
host = get_host_ip()
url = f"http://{host}:{port}/"
error_page = create_error_page(
status_code="404",
error_title="Page Not Found",
error_message=f"""<pre>
URL is unknown: '{request.url}'
Did you want to connect to <a href="{url}" class="back-button">EOSdash</a>?
</pre>
""",
error_details="Unknown URL",
)
return HTMLResponse(content=error_page, status_code=404)
host = str(config_eos.server.eosdash_host)
if host == "0.0.0.0": # noqa: S104
# Use IP of EOS host
host = get_host_ip()
if host and config_eos.server.eosdash_port:
# Redirect to EOSdash server
url = f"http://{host}:{config_eos.server.eosdash_port}/{path}"
return RedirectResponse(url=url, status_code=303)
# Redirect the root URL to the site map
return RedirectResponse(url="/docs", status_code=303)
def run_eos() -> None:
"""Run the EOS server with the specified configurations.
Starts the EOS server using the Uvicorn ASGI server. Logs an error and exits if
binding to the host and port fails.
Returns:
None
"""
# Wait for EOS port to be free - e.g. in case of restart
wait_for_port_free(port, timeout=120, waiting_app_name="EOS")
try:
# Let uvicorn run the fastAPI app
uvicorn.run(
"akkudoktoreos.server.eos:app",
host=str(config_eos.server.host),
port=config_eos.server.port,
log_level="info", # Fix log level for uvicorn to info
access_log=True, # Fix server access logging to True
reload=reload,
)
except Exception as e:
logger.exception("Failed to start uvicorn server.")
raise e
def main() -> None:
"""Parse command-line arguments and start the EOS server with the specified options.
This function sets up the argument parser to accept command-line arguments for
host, port, log_level, access_log, and reload. It uses default values from the
config_eos module if arguments are not provided. After parsing the arguments,
it starts the EOS server with the specified configurations.
Command-line Arguments:
--host (str): Host for the EOS server (default: value from config).
--port (int): Port for the EOS server (default: value from config).
--log_level (str): Log level for the server console. Options: "critical", "error", "warning", "info", "debug", "trace" (default: "info").
--reload (bool): Enable or disable auto-reload. Useful for development. Options: True or False (default: False).
"""
try:
run_eos()
except Exception as ex:
error_msg = f"Failed to run EOS: {ex}"
logger.error(error_msg)
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()