Files
EOS/src/akkudoktoreos/server/dash/demo.py
Bobby Noelte bd38b3c5ef
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
fix: logging, prediction update, multiple bugs (#584)
* Fix logging configuration issues that made logging stop operation. Switch to Loguru
  logging (from Python logging). Enable console and file logging with different log levels.
  Add logging documentation.

* Fix logging configuration and EOS configuration out of sync. Added tracking support
  for nested value updates of Pydantic models. This used to update the logging configuration
  when the EOS configurationm for logging is changed. Should keep logging config and EOS
  config in sync as long as all changes to the EOS logging configuration are done by
  set_nested_value(), which is the case for the REST API.

* Fix energy management task looping endlessly after the second update when trying to update
  the last_update datetime.

* Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance.

* Fix usage of model classes instead of model instances in nested value access when evaluation
  the value type that is associated to each key.

* Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider.

* Fix documentation qirks and add EOS Connect to integrations.

* Support deprecated fields in configuration in documentation generation and EOSdash.

* Enhance EOSdash demo to show BrightSky humidity data (that is often missing)

* Update documentation reference to German EOS installation videos.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-06-10 22:00:28 +02:00

281 lines
8.4 KiB
Python

import json
from pathlib import Path
from typing import Union
import pandas as pd
import requests
from bokeh.models import ColumnDataSource, LinearAxis, Range1d
from bokeh.plotting import figure
from monsterui.franken import FT, Grid, P
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
from akkudoktoreos.server.dash.bokeh import Bokeh
DIR_DEMODATA = Path(__file__).absolute().parent.joinpath("data")
FILE_DEMOCONFIG = DIR_DEMODATA.joinpath("democonfig.json")
if not FILE_DEMOCONFIG.exists():
raise ValueError(f"File does not exist: {FILE_DEMOCONFIG}")
# bar width for 1 hour bars (time given in millseconds)
BAR_WIDTH_1HOUR = 1000 * 60 * 60
def DemoPVForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["pvforecast"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"PV Power Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Power [W]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="pvforecast_ac_power",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="AC Power",
color="lightblue",
)
return Bokeh(plot)
def DemoElectricityPriceForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["elecprice"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["elecprice_marketprice_kwh"].min() - 0.1,
predictions["elecprice_marketprice_kwh"].max() + 0.1,
),
title=f"Electricity Price Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Price [€/kWh]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="elecprice_marketprice_kwh",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="Market Price",
color="lightblue",
)
return Bokeh(plot)
def DemoWeatherTempAirHumidity(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Air Temperature and Humidity Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Temperature [°C]",
sizing_mode="stretch_width",
height=400,
)
# Add secondary y-axis for humidity
plot.extra_y_ranges["humidity"] = Range1d(start=-5, end=105)
y2_axis = LinearAxis(y_range_name="humidity", axis_label="Relative Humidity [%]")
y2_axis.axis_label_text_color = "green"
plot.add_layout(y2_axis, "left")
plot.line(
"date_time", "weather_temp_air", source=source, legend_label="Air Temperature", color="blue"
)
plot.line(
"date_time",
"weather_relative_humidity",
source=source,
legend_label="Relative Humidity [%]",
color="green",
y_range_name="humidity",
)
return Bokeh(plot)
def DemoWeatherIrradiance(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Irradiance Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Irradiance [W/m2]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time",
"weather_ghi",
source=source,
legend_label="Global Horizontal Irradiance",
color="red",
)
plot.line(
"date_time",
"weather_dni",
source=source,
legend_label="Direct Normal Irradiance",
color="green",
)
plot.line(
"date_time",
"weather_dhi",
source=source,
legend_label="Diffuse Horizontal Irradiance",
color="blue",
)
return Bokeh(plot)
def DemoLoad(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["load"]["provider"]
if provider == "LoadAkkudoktor":
year_energy = config["load"]["provider_settings"]["loadakkudoktor_year_energy"]
provider = f"{provider}, {year_energy} kWh"
plot = figure(
x_axis_type="datetime",
title=f"Load Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Load [W]",
sizing_mode="stretch_width",
height=400,
)
# Add secondary y-axis for stddev
stddev_min = predictions["load_std"].min()
stddev_max = predictions["load_std"].max()
plot.extra_y_ranges["stddev"] = Range1d(start=stddev_min - 5, end=stddev_max + 5)
y2_axis = LinearAxis(y_range_name="stddev", axis_label="Load Standard Deviation [W]")
y2_axis.axis_label_text_color = "green"
plot.add_layout(y2_axis, "left")
plot.line(
"date_time",
"load_mean",
source=source,
legend_label="Load mean value",
color="red",
)
plot.line(
"date_time",
"load_mean_adjusted",
source=source,
legend_label="Load adjusted by measurement",
color="blue",
)
plot.line(
"date_time",
"load_std",
source=source,
legend_label="Load standard deviation",
color="green",
y_range_name="stddev",
)
return Bokeh(plot)
def Demo(eos_host: str, eos_port: Union[str, int]) -> str:
server = f"http://{eos_host}:{eos_port}"
# Get current configuration from server
try:
result = requests.get(f"{server}/v1/config", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve configuration from {server}: {err}, {detail}",
cls="text-center",
)
config = result.json()
# Set demo configuration
with FILE_DEMOCONFIG.open("r", encoding="utf-8") as fd:
democonfig = json.load(fd)
try:
result = requests.put(f"{server}/v1/config", json=democonfig, timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not set demo configuration on {server}: {err}, {detail}",
cls="text-center",
)
# Update all predictions
try:
result = requests.post(f"{server}/v1/prediction/update", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not update predictions on {server}: {err}, {detail}",
cls="text-center",
)
# Get Forecasts
try:
params = {
"keys": [
"pvforecast_ac_power",
"elecprice_marketprice_kwh",
"weather_relative_humidity",
"weather_temp_air",
"weather_ghi",
"weather_dni",
"weather_dhi",
"load_mean",
"load_std",
"load_mean_adjusted",
],
}
result = requests.get(f"{server}/v1/prediction/dataframe", params=params, timeout=10)
result.raise_for_status()
predictions = PydanticDateTimeDataFrame(**result.json()).to_dataframe()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve predictions from {server}: {err}, {detail}",
cls="text-center",
)
except Exception as err:
return P(
f"Can not retrieve predictions from {server}: {err}",
cls="text-center",
)
# Reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return Grid(
DemoPVForecast(predictions, democonfig),
DemoElectricityPriceForecast(predictions, democonfig),
DemoWeatherTempAirHumidity(predictions, democonfig),
DemoWeatherIrradiance(predictions, democonfig),
DemoLoad(predictions, democonfig),
cols_max=2,
)