mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-25 06:46:25 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
* chore: improve plan solution display Add genetic optimization results to general solution provided by EOSdash plan display. Add total results. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com> * fix: genetic battery and home appliance device simulation Fix genetic solution to make ac_charge, dc_charge, discharge, ev_charge or home appliance start time reflect what the simulation was doing. Sometimes the simulation decided to charge less or to start the appliance at another time and this was not brought back to e.g. ac_charge. Make home appliance simulation activate time window for the next day if it can not be run today. Improve simulation speed. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com> --------- Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
281 lines
11 KiB
Python
281 lines
11 KiB
Python
from typing import Any, Iterator, Optional
|
||
|
||
import numpy as np
|
||
|
||
from akkudoktoreos.devices.devices import BATTERY_DEFAULT_CHARGE_RATES
|
||
from akkudoktoreos.optimization.genetic.geneticdevices import (
|
||
BaseBatteryParameters,
|
||
SolarPanelBatteryParameters,
|
||
)
|
||
|
||
|
||
class Battery:
|
||
"""Represents a battery device with methods to simulate energy charging and discharging."""
|
||
|
||
def __init__(self, parameters: BaseBatteryParameters, prediction_hours: int):
|
||
self.parameters = parameters
|
||
self.prediction_hours = prediction_hours
|
||
self._setup()
|
||
|
||
def _setup(self) -> None:
|
||
"""Sets up the battery parameters based on provided parameters."""
|
||
self.capacity_wh = self.parameters.capacity_wh
|
||
self.initial_soc_percentage = self.parameters.initial_soc_percentage
|
||
self.charging_efficiency = self.parameters.charging_efficiency
|
||
self.discharging_efficiency = self.parameters.discharging_efficiency
|
||
|
||
# Charge rates, in case of None use default
|
||
self.charge_rates = BATTERY_DEFAULT_CHARGE_RATES
|
||
if self.parameters.charge_rates:
|
||
charge_rates = np.array(self.parameters.charge_rates, dtype=float)
|
||
charge_rates = np.unique(charge_rates)
|
||
charge_rates.sort()
|
||
self.charge_rates = charge_rates
|
||
|
||
# Only assign for storage battery
|
||
self.min_soc_percentage = (
|
||
self.parameters.min_soc_percentage
|
||
if isinstance(self.parameters, SolarPanelBatteryParameters)
|
||
else 0
|
||
)
|
||
self.max_soc_percentage = self.parameters.max_soc_percentage
|
||
|
||
# Initialize state of charge
|
||
if self.parameters.max_charge_power_w is not None:
|
||
self.max_charge_power_w = self.parameters.max_charge_power_w
|
||
else:
|
||
self.max_charge_power_w = self.capacity_wh # TODO this should not be equal capacity_wh
|
||
self.discharge_array = np.full(self.prediction_hours, 0)
|
||
self.charge_array = np.full(self.prediction_hours, 0)
|
||
self.soc_wh = (self.initial_soc_percentage / 100) * self.capacity_wh
|
||
self.min_soc_wh = (self.min_soc_percentage / 100) * self.capacity_wh
|
||
self.max_soc_wh = (self.max_soc_percentage / 100) * self.capacity_wh
|
||
|
||
def _lower_charge_rates_desc(self, start_rate: float) -> Iterator[float]:
|
||
"""Yield all charge rates lower than a given rate in descending order.
|
||
|
||
Args:
|
||
charge_rates (np.ndarray): Sorted 1D array of available charge rates.
|
||
start_rate (float): The reference charge rate.
|
||
|
||
Yields:
|
||
float: Charge rates lower than `start_rate`, in descending order.
|
||
"""
|
||
charge_rates_fast = self.charge_rates
|
||
|
||
# Find the insertion index for start_rate (left-most position)
|
||
idx = np.searchsorted(charge_rates_fast, start_rate, side="left")
|
||
|
||
# Yield values before idx in reverse (descending)
|
||
return (charge_rates_fast[j] for j in range(idx - 1, -1, -1))
|
||
|
||
def to_dict(self) -> dict[str, Any]:
|
||
"""Converts the object to a dictionary representation."""
|
||
return {
|
||
"device_id": self.parameters.device_id,
|
||
"capacity_wh": self.capacity_wh,
|
||
"initial_soc_percentage": self.initial_soc_percentage,
|
||
"soc_wh": self.soc_wh,
|
||
"hours": self.prediction_hours,
|
||
"discharge_array": self.discharge_array,
|
||
"charge_array": self.charge_array,
|
||
"charging_efficiency": self.charging_efficiency,
|
||
"discharging_efficiency": self.discharging_efficiency,
|
||
"max_charge_power_w": self.max_charge_power_w,
|
||
}
|
||
|
||
def reset(self) -> None:
|
||
"""Resets the battery state to its initial values."""
|
||
self.soc_wh = (self.initial_soc_percentage / 100) * self.capacity_wh
|
||
self.soc_wh = min(max(self.soc_wh, self.min_soc_wh), self.max_soc_wh)
|
||
self.discharge_array = np.full(self.prediction_hours, 0)
|
||
self.charge_array = np.full(self.prediction_hours, 0)
|
||
|
||
def set_discharge_per_hour(self, discharge_array: np.ndarray) -> None:
|
||
"""Sets the discharge values for each hour."""
|
||
if len(discharge_array) != self.prediction_hours:
|
||
raise ValueError(
|
||
f"Discharge array must have exactly {self.prediction_hours} elements. Got {len(discharge_array)} elements."
|
||
)
|
||
self.discharge_array = np.array(discharge_array)
|
||
|
||
def set_charge_per_hour(self, charge_array: np.ndarray) -> None:
|
||
"""Sets the charge values for each hour."""
|
||
if len(charge_array) != self.prediction_hours:
|
||
raise ValueError(
|
||
f"Charge array must have exactly {self.prediction_hours} elements. Got {len(charge_array)} elements."
|
||
)
|
||
self.charge_array = np.array(charge_array)
|
||
|
||
def current_soc_percentage(self) -> float:
|
||
"""Calculates the current state of charge in percentage."""
|
||
return (self.soc_wh / self.capacity_wh) * 100
|
||
|
||
def discharge_energy(self, wh: float, hour: int) -> tuple[float, float]:
|
||
"""Discharge energy from the battery.
|
||
|
||
Discharge is limited by:
|
||
* Requested delivered energy
|
||
* Remaining energy above minimum SoC
|
||
* Maximum discharge power
|
||
* Discharge efficiency
|
||
|
||
Args:
|
||
wh (float): Requested delivered energy in watt-hours.
|
||
hour (int): Time index. If `self.discharge_array[hour] == 0`,
|
||
no discharge occurs.
|
||
|
||
Returns:
|
||
tuple[float, float]:
|
||
delivered_wh (float): Actual delivered energy [Wh].
|
||
losses_wh (float): Conversion losses [Wh].
|
||
|
||
"""
|
||
if self.discharge_array[hour] == 0:
|
||
return 0.0, 0.0
|
||
|
||
# Raw extractable energy above minimum SoC
|
||
raw_available_wh = max(self.soc_wh - self.min_soc_wh, 0.0)
|
||
|
||
# Maximum raw discharge due to power limit
|
||
max_raw_wh = self.max_charge_power_w # TODO rename to max_discharge_power_w
|
||
|
||
# Actual raw withdrawal (internal)
|
||
raw_withdrawal_wh = min(raw_available_wh, max_raw_wh)
|
||
|
||
# Convert raw to delivered
|
||
max_deliverable_wh = raw_withdrawal_wh * self.discharging_efficiency
|
||
|
||
# Cap by requested delivered energy
|
||
delivered_wh = min(wh, max_deliverable_wh)
|
||
|
||
# Effective raw withdrawal based on what is delivered
|
||
raw_used_wh = delivered_wh / self.discharging_efficiency
|
||
|
||
# Update SoC
|
||
self.soc_wh -= raw_used_wh
|
||
self.soc_wh = max(self.soc_wh, self.min_soc_wh)
|
||
|
||
# Losses
|
||
losses_wh = raw_used_wh - delivered_wh
|
||
|
||
return delivered_wh, losses_wh
|
||
|
||
def charge_energy(
|
||
self,
|
||
wh: Optional[float],
|
||
hour: int,
|
||
charge_factor: float = 0.0,
|
||
) -> tuple[float, float]:
|
||
"""Charge energy into the battery.
|
||
|
||
Two **exclusive** modes:
|
||
|
||
Mode 1:
|
||
- `wh is not None` and `charge_factor == 0`
|
||
→ The raw requested charge energy is `wh` (pre-efficiency).
|
||
→ If remaining capacity is insufficient, charging is automatically limited.
|
||
→ No exception is raised due to capacity limits.
|
||
|
||
Mode 2:
|
||
- `wh is None` and `charge_factor > 0`
|
||
→ The raw requested energy is `max_charge_power_w * charge_factor`.
|
||
→ If the request exceeds remaining capacity, the algorithm tries to
|
||
find a lower charge_factor that is compatible. If such a charge factor
|
||
exists, this hour’s charge_factor is replaced.
|
||
→ If no charge factor can accommodate charging, the request is ignored
|
||
(`(0.0, 0.0)` is returned) and a penalty is applied elsewhere.
|
||
|
||
Charging is constrained by:
|
||
• Available SoC headroom (max_soc_wh − soc_wh)
|
||
• max_charge_power_w
|
||
• charging_efficiency
|
||
|
||
Args:
|
||
wh (float | None):
|
||
Requested raw energy [Wh] before efficiency.
|
||
Must be provided only for Mode 1 (charge_factor must be 0).
|
||
|
||
hour (int):
|
||
Time index. If charging is disabled at this hour (charge_array[hour] == 0),
|
||
returns `(0.0, 0.0)`.
|
||
|
||
charge_factor (float):
|
||
Fraction (0–1) of max charge power.
|
||
Must be >0 only in Mode 2 (`wh is None`).
|
||
|
||
Returns:
|
||
tuple[float, float]:
|
||
stored_wh : float
|
||
Energy stored after efficiency [Wh].
|
||
losses_wh : float
|
||
Conversion losses [Wh].
|
||
|
||
Raises:
|
||
ValueError:
|
||
- If the mode is ambiguous (neither Mode 1 nor Mode 2).
|
||
- If the final new SoC would exceed capacity_wh.
|
||
|
||
Notes:
|
||
stored_wh = raw_input_wh * charging_efficiency
|
||
losses_wh = raw_input_wh − stored_wh
|
||
"""
|
||
# Charging allowed in this hour?
|
||
if hour is not None and self.charge_array[hour] == 0:
|
||
return 0.0, 0.0
|
||
|
||
# Provide fast (3x..5x) local read access (vs. self.xxx) for repetitive read access
|
||
soc_wh_fast = self.soc_wh
|
||
max_charge_power_w_fast = self.max_charge_power_w
|
||
charging_efficiency_fast = self.charging_efficiency
|
||
|
||
# Decide mode & determine raw_request_wh and raw_charge_wh
|
||
if wh is not None and charge_factor == 0.0: # mode 1
|
||
raw_request_wh = wh
|
||
raw_charge_wh = max(self.max_soc_wh - soc_wh_fast, 0.0) / charging_efficiency_fast
|
||
elif wh is None and charge_factor > 0.0: # mode 2
|
||
raw_request_wh = max_charge_power_w_fast * charge_factor
|
||
raw_charge_wh = max(self.max_soc_wh - soc_wh_fast, 0.0) / charging_efficiency_fast
|
||
if raw_request_wh > raw_charge_wh:
|
||
# Use a lower charge factor
|
||
lower_charge_factors = self._lower_charge_rates_desc(charge_factor)
|
||
for charge_factor in lower_charge_factors:
|
||
raw_request_wh = max_charge_power_w_fast * charge_factor
|
||
if raw_request_wh <= raw_charge_wh:
|
||
self.charge_array[hour] = charge_factor
|
||
break
|
||
if raw_request_wh > raw_charge_wh:
|
||
# ignore request - penalty for missing SoC will be applied
|
||
self.charge_array[hour] = 0
|
||
return 0.0, 0.0
|
||
else:
|
||
raise ValueError(
|
||
f"{self.parameters.device_id}: charge_energy must be called either "
|
||
"with wh != None and charge_factor == 0, or with wh == None and charge_factor > 0."
|
||
)
|
||
|
||
# Remaining capacity
|
||
max_raw_wh = min(raw_charge_wh, max_charge_power_w_fast)
|
||
|
||
# Actual raw intake
|
||
raw_input_wh = raw_request_wh if raw_request_wh < max_raw_wh else max_raw_wh
|
||
|
||
# Apply efficiency
|
||
stored_wh = raw_input_wh * charging_efficiency_fast
|
||
new_soc = soc_wh_fast + stored_wh
|
||
|
||
if new_soc > self.capacity_wh:
|
||
raise ValueError(
|
||
f"{self.parameters.device_id}: SoC {new_soc} Wh exceeds capacity {self.capacity_wh} Wh"
|
||
)
|
||
|
||
self.soc_wh = new_soc
|
||
losses_wh = raw_input_wh - stored_wh
|
||
|
||
return stored_wh, losses_wh
|
||
|
||
def current_energy_content(self) -> float:
|
||
"""Returns the current usable energy in the battery."""
|
||
usable_energy = (self.soc_wh - self.min_soc_wh) * self.discharging_efficiency
|
||
return max(usable_energy, 0.0)
|