mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
* Migrate from Flask to FastAPI * FastAPI migration: - Use pydantic model classes as input parameters to the data/calculation classes. - Interface field names changed to constructor parameter names (for simplicity only during transition, should be updated in a followup PR). - Add basic interface requirements (e.g. some values > 0, etc.). * Update tests for new data format. * Python requirement down to 3.9 (TypeGuard no longer needed) * Makefile: Add helpful targets (e.g. development server with reload) * Move API doc from README to pydantic model classes (swagger) * Link to swagger.io with own openapi.yml. * Commit openapi.json and check with pytest for changes so the documentation is always up-to-date. * Streamline docker * FastAPI: Run startup action on dev server * Fix config for /strompreis, endpoint still broken however. * test_openapi: Compare against docs/.../openapi.json * Move fastapi to server/ submodule * See #187 for new repository structure.
65 lines
2.5 KiB
Python
65 lines
2.5 KiB
Python
import numpy as np
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class HaushaltsgeraetParameters(BaseModel):
|
|
verbrauch_wh: int = Field(
|
|
gt=0,
|
|
description="An integer representing the energy consumption of a household device in watt-hours.",
|
|
)
|
|
dauer_h: int = Field(
|
|
gt=0,
|
|
description="An integer representing the usage duration of a household device in hours.",
|
|
)
|
|
|
|
|
|
class Haushaltsgeraet:
|
|
def __init__(self, parameters: HaushaltsgeraetParameters, hours=24):
|
|
self.hours = hours # Total duration for which the planning is done
|
|
self.verbrauch_wh = (
|
|
parameters.verbrauch_wh # Total energy consumption of the device in kWh
|
|
)
|
|
self.dauer_h = parameters.dauer_h # Duration of use in hours
|
|
self.lastkurve = np.zeros(self.hours) # Initialize the load curve with zeros
|
|
|
|
def set_startzeitpunkt(self, start_hour, global_start_hour=0):
|
|
"""Sets the start time of the device and generates the corresponding load curve.
|
|
|
|
:param start_hour: The hour at which the device should start.
|
|
"""
|
|
self.reset()
|
|
# Check if the duration of use is within the available time frame
|
|
if start_hour + self.dauer_h > self.hours:
|
|
raise ValueError("The duration of use exceeds the available time frame.")
|
|
if start_hour < global_start_hour:
|
|
raise ValueError("The start time is earlier than the available time frame.")
|
|
|
|
# Calculate power per hour based on total consumption and duration
|
|
leistung_pro_stunde = self.verbrauch_wh / self.dauer_h # Convert to watt-hours
|
|
|
|
# Set the power for the duration of use in the load curve array
|
|
self.lastkurve[start_hour : start_hour + self.dauer_h] = leistung_pro_stunde
|
|
|
|
def reset(self):
|
|
"""Resets the load curve."""
|
|
self.lastkurve = np.zeros(self.hours)
|
|
|
|
def get_lastkurve(self):
|
|
"""Returns the current load curve."""
|
|
return self.lastkurve
|
|
|
|
def get_last_fuer_stunde(self, hour):
|
|
"""Returns the load for a specific hour.
|
|
|
|
:param hour: The hour for which the load is queried.
|
|
:return: The load in watts for the specified hour.
|
|
"""
|
|
if hour < 0 or hour >= self.hours:
|
|
raise ValueError("The specified hour is outside the available time frame.")
|
|
|
|
return self.lastkurve[hour]
|
|
|
|
def spaetestmoeglicher_startzeitpunkt(self):
|
|
"""Returns the latest possible start time at which the device can still run completely."""
|
|
return self.hours - self.dauer_h
|