EOS/src/akkudoktoreos/visualize.py
Dominique Lasserre 2f5f844018
Migrate from Flask to FastAPI (#163)
* Migrate from Flask to FastAPI

 * FastAPI migration:
    - Use pydantic model classes as input parameters to the
      data/calculation classes.
    - Interface field names changed to constructor parameter names (for
      simplicity only during transition, should be updated in a followup
      PR).
    - Add basic interface requirements (e.g. some values > 0, etc.).
 * Update tests for new data format.
 * Python requirement down to 3.9 (TypeGuard no longer needed)
 * Makefile: Add helpful targets (e.g. development server with reload)

* Move API doc from README to pydantic model classes (swagger)

 * Link to swagger.io with own openapi.yml.
 * Commit openapi.json and check with pytest for changes so the
   documentation is always up-to-date.

* Streamline docker

* FastAPI: Run startup action on dev server

 * Fix config for /strompreis, endpoint still broken however.

* test_openapi: Compare against docs/.../openapi.json

* Move fastapi to server/ submodule

 * See #187 for new repository structure.
2024-11-15 22:27:25 +01:00

358 lines
11 KiB
Python

import datetime
# Set the backend for matplotlib to Agg
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from akkudoktoreos.class_sommerzeit import ist_dst_wechsel
from akkudoktoreos.config import AppConfig, SetupIncomplete
matplotlib.use("Agg")
def visualisiere_ergebnisse(
gesamtlast,
pv_forecast,
strompreise,
ergebnisse,
ac, # AC charging allowed
dc, # DC charging allowed
discharge, # Discharge allowed
temperature,
start_hour,
einspeiseverguetung_euro_pro_wh,
config: AppConfig,
filename="visualization_results.pdf",
extra_data=None,
):
#####################
# 24-hour visualization
#####################
output_dir = config.working_dir / config.directories.output
if not output_dir.is_dir():
raise SetupIncomplete(f"Output path does not exist: {output_dir}.")
output_file = output_dir.joinpath(filename)
with PdfPages(output_file) as pdf:
# Load and PV generation
plt.figure(figsize=(14, 14))
plt.subplot(3, 3, 1)
hours = np.arange(0, config.eos.prediction_hours)
gesamtlast_array = np.array(gesamtlast)
# Plot individual loads
plt.plot(hours, gesamtlast_array, label="Load (Wh)", marker="o")
# Calculate and plot total load
plt.plot(
hours,
gesamtlast_array,
label="Total Load (Wh)",
marker="o",
linewidth=2,
linestyle="--",
)
plt.xlabel("Hour")
plt.ylabel("Load (Wh)")
plt.title("Load Profiles")
plt.grid(True)
plt.legend()
# PV forecast
plt.subplot(3, 2, 3)
plt.plot(hours, pv_forecast, label="PV Generation (Wh)", marker="x")
plt.title("PV Forecast")
plt.xlabel("Hour of the Day")
plt.ylabel("Wh")
plt.legend()
plt.grid(True)
# Feed-in remuneration
plt.subplot(3, 2, 4)
plt.plot(
hours,
einspeiseverguetung_euro_pro_wh,
label="Remuneration (€/Wh)",
marker="x",
)
plt.title("Remuneration")
plt.xlabel("Hour of the Day")
plt.ylabel("€/Wh")
plt.legend()
plt.grid(True)
# Temperature forecast
plt.subplot(3, 2, 5)
plt.title("Temperature Forecast (°C)")
plt.plot(hours, temperature, label="Temperature (°C)", marker="x")
plt.xlabel("Hour of the Day")
plt.ylabel("°C")
plt.legend()
plt.grid(True)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
#####################
# Start hour visualization
#####################
plt.figure(figsize=(14, 10))
if ist_dst_wechsel(datetime.datetime.now()):
hours = np.arange(start_hour, config.eos.prediction_hours - 1)
else:
hours = np.arange(start_hour, config.eos.prediction_hours)
# Energy flow, grid feed-in, and grid consumption
plt.subplot(3, 2, 1)
# Plot with transparency (alpha) and different linestyles
plt.plot(
hours,
ergebnisse["Last_Wh_pro_Stunde"],
label="Load (Wh)",
marker="o",
linestyle="-",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Haushaltsgeraet_wh_pro_stunde"],
label="Household Device (Wh)",
marker="o",
linestyle="--",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Netzeinspeisung_Wh_pro_Stunde"],
label="Grid Feed-in (Wh)",
marker="x",
linestyle=":",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Netzbezug_Wh_pro_Stunde"],
label="Grid Consumption (Wh)",
marker="^",
linestyle="-.",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Verluste_Pro_Stunde"],
label="Losses (Wh)",
marker="^",
linestyle="-",
alpha=0.8,
)
# Title and labels
plt.title("Energy Flow per Hour")
plt.xlabel("Hour")
plt.ylabel("Energy (Wh)")
# Show legend with a higher number of columns to avoid overlap
plt.legend(ncol=2)
# Electricity prices
hours_p = np.arange(0, len(strompreise))
plt.subplot(3, 2, 3)
plt.plot(
hours_p,
strompreise,
label="Electricity Price (€/Wh)",
color="purple",
marker="s",
)
plt.title("Electricity Prices")
plt.xlabel("Hour of the Day")
plt.ylabel("Price (€/Wh)")
plt.legend()
plt.grid(True)
# State of charge for batteries
plt.subplot(3, 2, 2)
plt.plot(hours, ergebnisse["akku_soc_pro_stunde"], label="PV Battery (%)", marker="x")
plt.plot(
hours,
ergebnisse["EAuto_SoC_pro_Stunde"],
label="E-Car Battery (%)",
marker="x",
)
plt.legend(loc="upper left", bbox_to_anchor=(1, 1)) # Place legend outside the plot
plt.grid(True, which="both", axis="x") # Grid for every hour
# Plot for AC, DC charging, and Discharge status using bar charts
ax1 = plt.subplot(3, 2, 5)
hours = np.arange(0, config.eos.prediction_hours)
# Plot AC charging as bars (relative values between 0 and 1)
plt.bar(hours, ac, width=0.4, label="AC Charging (relative)", color="blue", alpha=0.6)
# Plot DC charging as bars (relative values between 0 and 1)
plt.bar(
hours + 0.4, dc, width=0.4, label="DC Charging (relative)", color="green", alpha=0.6
)
# Plot Discharge as bars (0 or 1, binary values)
plt.bar(
hours,
discharge,
width=0.4,
label="Discharge Allowed",
color="red",
alpha=0.6,
bottom=np.maximum(ac, dc),
)
# Configure the plot
ax1.legend(loc="upper left")
ax1.set_xlim(0, config.eos.prediction_hours)
ax1.set_xlabel("Hour")
ax1.set_ylabel("Relative Power (0-1) / Discharge (0 or 1)")
ax1.set_title("AC/DC Charging and Discharge Overview")
ax1.grid(True)
if ist_dst_wechsel(datetime.datetime.now()):
hours = np.arange(start_hour, config.eos.prediction_hours - 1)
else:
hours = np.arange(start_hour, config.eos.prediction_hours)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
# Financial overview
fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots
total_costs = ergebnisse["Gesamtkosten_Euro"]
total_revenue = ergebnisse["Gesamteinnahmen_Euro"]
total_balance = ergebnisse["Gesamtbilanz_Euro"]
losses = ergebnisse["Gesamt_Verluste"]
# Costs and revenues per hour on the first axis (axs[0])
costs = ergebnisse["Kosten_Euro_pro_Stunde"]
revenues = ergebnisse["Einnahmen_Euro_pro_Stunde"]
# Plot costs
axs[0].plot(
hours,
costs,
label="Costs (Euro)",
marker="o",
color="red",
)
# Annotate costs
for hour, value in enumerate(costs):
if value is None or np.isnan(value):
value = 0
axs[0].annotate(
f"{value:.2f}",
(hour, value),
textcoords="offset points",
xytext=(0, 5),
ha="center",
fontsize=8,
color="red",
)
# Plot revenues
axs[0].plot(
hours,
revenues,
label="Revenue (Euro)",
marker="x",
color="green",
)
# Annotate revenues
for hour, value in enumerate(revenues):
if value is None or np.isnan(value):
value = 0
axs[0].annotate(
f"{value:.2f}",
(hour, value),
textcoords="offset points",
xytext=(0, 5),
ha="center",
fontsize=8,
color="green",
)
# Title and labels
axs[0].set_title("Financial Balance per Hour")
axs[0].set_xlabel("Hour")
axs[0].set_ylabel("Euro")
axs[0].legend()
axs[0].grid(True)
# Summary of finances on the second axis (axs[1])
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
values = [total_costs, total_revenue, total_balance]
colors = ["red" if value > 0 else "green" for value in values]
axs[1].bar(labels, values, color=colors)
axs[1].set_title("Financial Overview")
axs[1].set_ylabel("Euro")
# Second axis (ax2) for losses, shared with axs[1]
ax2 = axs[1].twinx()
ax2.bar("Total Losses", losses, color="blue")
ax2.set_ylabel("Losses [Wh]", color="blue")
ax2.tick_params(axis="y", labelcolor="blue")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
# Additional data visualization if provided
if extra_data is not None:
plt.figure(figsize=(14, 10))
plt.subplot(1, 2, 1)
f1 = np.array(extra_data["verluste"])
f2 = np.array(extra_data["bilanz"])
n1 = np.array(extra_data["nebenbedingung"])
scatter = plt.scatter(f1, f2, c=n1, cmap="viridis")
# Add color legend
plt.colorbar(scatter, label="Constraint")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
plt.figure(figsize=(14, 10))
filtered_losses = np.array(
[
v
for v, n in zip(extra_data["verluste"], extra_data["nebenbedingung"])
if n < 0.01
]
)
filtered_balance = np.array(
[b for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"]) if n < 0.01]
)
if filtered_losses.size != 0:
best_loss = min(filtered_losses)
worst_loss = max(filtered_losses)
best_balance = min(filtered_balance)
worst_balance = max(filtered_balance)
data = [filtered_losses, filtered_balance]
labels = ["Losses", "Balance"]
# Create plots
fig, axs = plt.subplots(
1, 2, figsize=(10, 6), sharey=False
) # Two subplots, separate y-axes
# First violin plot for losses
axs[0].violinplot(data[0], positions=[1], showmeans=True, showmedians=True)
axs[0].set(xticks=[1], xticklabels=["Losses"])
# Second violin plot for balance
axs[1].violinplot(data[1], positions=[1], showmeans=True, showmedians=True)
axs[1].set(xticks=[1], xticklabels=["Balance"])
# Fine-tuning
plt.tight_layout()
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the figure