EOS/single_test_prediction.py
Bobby Noelte 31bd2de18b Fix config and prediction revamp. (#259)
Extend single_test_optimization.py to be able to use real world data from new prediction classes.
- .venv/bin/python single_test_optimization.py --real_world --verbose
Can also be run with profiling "--profile".

Add single_test_prediction.py to fetch predictions from remote prediction providers
- .venv/bin/python single_test_prediction.py --verbose --provider-id PVForecastAkkudoktor | more
- .venv/bin/python single_test_prediction.py --verbose --provider-id LoadAkkudoktor | more
- .venv/bin/python single_test_prediction.py --verbose --provider-id ElecPriceAkkudoktor | more
- .venv/bin/python single_test_prediction.py --verbose --provider-id BrightSky | more
- .venv/bin/python single_test_prediction.py --verbose --provider-id ClearOutside | more
Can also be run with profiling "--profile".

single_test_optimization.py is an example on how to retrieve prediction data for optimization and
use it to set up the optimization parameters.

Changes:
- load: Only one load provider at a time (vs. 5 before)

Bug fixes:
- prediction: only use providers that are enabled to retrieve or set data.
- prediction: fix pre pendulum format strings
- dataabc: Prevent error when resampling data with no datasets.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-16 20:26:08 +01:00

171 lines
5.4 KiB
Python

#!/usr/bin/env python3
import argparse
import cProfile
import pstats
import sys
import time
from akkudoktoreos.config.config import get_config
from akkudoktoreos.prediction.prediction import get_prediction
config_eos = get_config()
prediction_eos = get_prediction()
def config_pvforecast() -> dict:
"""Configure settings for PV forecast."""
settings = {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
"pvforecast4_peakpower": None,
}
return settings
def config_weather() -> dict:
"""Configure settings for weather forecast."""
settings = {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
}
return settings
def config_elecprice() -> dict:
"""Configure settings for electricity price forecast."""
settings = {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
}
return settings
def config_load() -> dict:
"""Configure settings for load forecast."""
settings = {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
}
return settings
def run_prediction(provider_id: str, verbose: bool = False) -> str:
"""Run the prediction.
Args:
provider_id (str): ID of prediction provider.
verbose (bool, optional): Whether to print verbose output. Defaults to False.
Returns:
dict: Prediction result as a dictionary
"""
# Initialize the oprediction
config_eos = get_config()
prediction_eos = get_prediction()
if verbose:
print(f"\nProvider ID: {provider_id}")
if provider_id in ("PVForecastAkkudoktor",):
settings = config_pvforecast()
settings["pvforecast_provider"] = provider_id
elif provider_id in ("BrightSky", "ClearOutside"):
settings = config_weather()
settings["weather_provider"] = provider_id
elif provider_id in ("ElecPriceAkkudoktor",):
settings = config_elecprice()
settings["elecprice_provider"] = provider_id
elif provider_id in ("LoadAkkudoktor",):
settings = config_elecprice()
settings["loadakkudoktor_year_energy"] = 1000
settings["load_provider"] = provider_id
else:
raise ValueError(f"Unknown provider '{provider_id}'.")
config_eos.merge_settings_from_dict(settings)
prediction_eos.update_data()
# Return result of prediction
provider = prediction_eos.provider_by_id(provider_id)
if verbose:
for key in provider.record_keys:
print(f"\n{key}\n----------")
print(f"Array: {provider.key_to_array(key)}")
return provider.model_dump_json(indent=4)
def main():
"""Main function to run the optimization script with optional profiling."""
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
parser.add_argument(
"--verbose", action="store_true", help="Enable verbose output during optimization"
)
parser.add_argument("--provider-id", type=str, default=0, help="Provider ID of prediction")
args = parser.parse_args()
if args.profile:
# Run with profiling
profiler = cProfile.Profile()
try:
result = profiler.runcall(
run_prediction, provider_id=args.provider_id, verbose=args.verbose
)
# Print profiling statistics
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
# Print result
print("\nPrediction Result:")
print(result)
except Exception as e:
print(f"Error during prediction: {e}", file=sys.stderr)
sys.exit(1)
else:
# Run without profiling
try:
start_time = time.time()
result = run_prediction(provider_id=args.provider_id, verbose=args.verbose)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
print("\nPrediction Result:")
print(result)
except Exception as e:
print(f"Error during prediction: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()