EOS/tests/test_loadakkudoktor.py
Bobby Noelte d4e31d556a
Add Documentation 2 (#334)
Add documentation that covers:

- configuration
- prediction

Add Python scripts that support automatic documentation generation for
configuration data defined with pydantic.

Adapt EOS configuration to provide more methods for REST API and
automatic documentation generation.

Adapt REST API to allow for EOS configuration file load and save.
Sort REST API on generation of openapi markdown for docs.

Move logutil to core/logging to allow configuration of logging by standard config.

Make Akkudoktor predictions always start extraction of prediction data at start of day.
Previously extraction started at actual hour. This is to support the code that assumes
prediction data to start at start of day.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-01-05 14:41:07 +01:00

206 lines
6.0 KiB
Python

from unittest.mock import patch
import numpy as np
import pendulum
import pytest
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.measurement.measurement import MeasurementDataRecord, get_measurement
from akkudoktoreos.prediction.loadakkudoktor import (
LoadAkkudoktor,
LoadAkkudoktorCommonSettings,
)
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
@pytest.fixture
def load_provider(config_eos):
"""Fixture to initialise the LoadAkkudoktor instance."""
settings = {
"load_provider": "LoadAkkudoktor",
"load_name": "Akkudoktor Profile",
"loadakkudoktor_year_energy": "1000",
}
config_eos.merge_settings_from_dict(settings)
return LoadAkkudoktor()
@pytest.fixture
def measurement_eos():
"""Fixture to initialise the Measurement instance."""
measurement = get_measurement()
load0_mr = 500
load1_mr = 500
dt = to_datetime("2024-01-01T00:00:00")
interval = to_duration("1 hour")
for i in range(25):
measurement.records.append(
MeasurementDataRecord(
date_time=dt,
measurement_load0_mr=load0_mr,
measurement_load1_mr=load1_mr,
)
)
dt += interval
load0_mr += 50
load1_mr += 50
assert compare_datetimes(measurement.min_datetime, to_datetime("2024-01-01T00:00:00")).equal
assert compare_datetimes(measurement.max_datetime, to_datetime("2024-01-02T00:00:00")).equal
return measurement
@pytest.fixture
def mock_load_profiles_file(tmp_path):
"""Fixture to create a mock load profiles file."""
load_profiles_path = tmp_path / "load_profiles.npz"
np.savez(
load_profiles_path,
yearly_profiles=np.random.rand(365, 24), # Random load profiles
yearly_profiles_std=np.random.rand(365, 24), # Random standard deviation
)
return load_profiles_path
def test_loadakkudoktor_settings_validator():
"""Test the field validator for `loadakkudoktor_year_energy`."""
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234)
assert isinstance(settings.loadakkudoktor_year_energy, float)
assert settings.loadakkudoktor_year_energy == 1234.0
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234.56)
assert isinstance(settings.loadakkudoktor_year_energy, float)
assert settings.loadakkudoktor_year_energy == 1234.56
def test_loadakkudoktor_provider_id(load_provider):
"""Test the `provider_id` class method."""
assert load_provider.provider_id() == "LoadAkkudoktor"
@patch("akkudoktoreos.prediction.loadakkudoktor.np.load")
def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, load_provider):
"""Test the `load_data` method."""
# Mock numpy load to return data similar to what would be in the file
mock_np_load.return_value = {
"yearly_profiles": np.ones((365, 24)),
"yearly_profiles_std": np.zeros((365, 24)),
}
# Test data loading
data_year_energy = load_provider.load_data()
assert data_year_energy is not None
assert data_year_energy.shape == (365, 2, 24)
def test_load_data_from_file(load_provider):
"""Test `load_data` loads data from the profiles file."""
data_year_energy = load_provider.load_data()
assert data_year_energy is not None
@patch("akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor.load_data")
def test_update_data(mock_load_data, load_provider):
"""Test the `_update` method."""
mock_load_data.return_value = np.random.rand(365, 2, 24)
# Mock methods for updating values
ems_eos = get_ems()
ems_eos.set_start_datetime(pendulum.datetime(2024, 1, 1))
# Assure there are no prediction records
load_provider.clear()
assert len(load_provider) == 0
# Execute the method
load_provider._update_data()
# Validate that update_value is called
assert len(load_provider) > 0
def test_calculate_adjustment(load_provider, measurement_eos):
"""Test `_calculate_adjustment` for various scenarios."""
data_year_energy = np.random.rand(365, 2, 24)
# Call the method and validate results
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
assert weekend_adjust.shape == (24,)
data_year_energy = np.zeros((365, 2, 24))
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
expected = np.array(
[
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
]
)
np.testing.assert_array_equal(weekday_adjust, expected)
assert weekend_adjust.shape == (24,)
expected = np.array(
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
np.testing.assert_array_equal(weekend_adjust, expected)
def test_load_provider_adjustments_with_mock_data(load_provider):
"""Test full integration of adjustments with mock data."""
with patch(
"akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor._calculate_adjustment"
) as mock_adjust:
mock_adjust.return_value = (np.zeros(24), np.zeros(24))
# Test execution
load_provider._update_data()
assert mock_adjust.called