mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 00:45:22 +00:00
Add documentation that covers: - configuration - prediction Add Python scripts that support automatic documentation generation for configuration data defined with pydantic. Adapt EOS configuration to provide more methods for REST API and automatic documentation generation. Adapt REST API to allow for EOS configuration file load and save. Sort REST API on generation of openapi markdown for docs. Move logutil to core/logging to allow configuration of logging by standard config. Make Akkudoktor predictions always start extraction of prediction data at start of day. Previously extraction started at actual hour. This is to support the code that assumes prediction data to start at start of day. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
206 lines
6.0 KiB
Python
206 lines
6.0 KiB
Python
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
import pendulum
|
|
import pytest
|
|
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.measurement.measurement import MeasurementDataRecord, get_measurement
|
|
from akkudoktoreos.prediction.loadakkudoktor import (
|
|
LoadAkkudoktor,
|
|
LoadAkkudoktorCommonSettings,
|
|
)
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
|
|
|
|
|
|
@pytest.fixture
|
|
def load_provider(config_eos):
|
|
"""Fixture to initialise the LoadAkkudoktor instance."""
|
|
settings = {
|
|
"load_provider": "LoadAkkudoktor",
|
|
"load_name": "Akkudoktor Profile",
|
|
"loadakkudoktor_year_energy": "1000",
|
|
}
|
|
config_eos.merge_settings_from_dict(settings)
|
|
return LoadAkkudoktor()
|
|
|
|
|
|
@pytest.fixture
|
|
def measurement_eos():
|
|
"""Fixture to initialise the Measurement instance."""
|
|
measurement = get_measurement()
|
|
load0_mr = 500
|
|
load1_mr = 500
|
|
dt = to_datetime("2024-01-01T00:00:00")
|
|
interval = to_duration("1 hour")
|
|
for i in range(25):
|
|
measurement.records.append(
|
|
MeasurementDataRecord(
|
|
date_time=dt,
|
|
measurement_load0_mr=load0_mr,
|
|
measurement_load1_mr=load1_mr,
|
|
)
|
|
)
|
|
dt += interval
|
|
load0_mr += 50
|
|
load1_mr += 50
|
|
assert compare_datetimes(measurement.min_datetime, to_datetime("2024-01-01T00:00:00")).equal
|
|
assert compare_datetimes(measurement.max_datetime, to_datetime("2024-01-02T00:00:00")).equal
|
|
return measurement
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_load_profiles_file(tmp_path):
|
|
"""Fixture to create a mock load profiles file."""
|
|
load_profiles_path = tmp_path / "load_profiles.npz"
|
|
np.savez(
|
|
load_profiles_path,
|
|
yearly_profiles=np.random.rand(365, 24), # Random load profiles
|
|
yearly_profiles_std=np.random.rand(365, 24), # Random standard deviation
|
|
)
|
|
return load_profiles_path
|
|
|
|
|
|
def test_loadakkudoktor_settings_validator():
|
|
"""Test the field validator for `loadakkudoktor_year_energy`."""
|
|
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234)
|
|
assert isinstance(settings.loadakkudoktor_year_energy, float)
|
|
assert settings.loadakkudoktor_year_energy == 1234.0
|
|
|
|
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234.56)
|
|
assert isinstance(settings.loadakkudoktor_year_energy, float)
|
|
assert settings.loadakkudoktor_year_energy == 1234.56
|
|
|
|
|
|
def test_loadakkudoktor_provider_id(load_provider):
|
|
"""Test the `provider_id` class method."""
|
|
assert load_provider.provider_id() == "LoadAkkudoktor"
|
|
|
|
|
|
@patch("akkudoktoreos.prediction.loadakkudoktor.np.load")
|
|
def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, load_provider):
|
|
"""Test the `load_data` method."""
|
|
# Mock numpy load to return data similar to what would be in the file
|
|
mock_np_load.return_value = {
|
|
"yearly_profiles": np.ones((365, 24)),
|
|
"yearly_profiles_std": np.zeros((365, 24)),
|
|
}
|
|
|
|
# Test data loading
|
|
data_year_energy = load_provider.load_data()
|
|
assert data_year_energy is not None
|
|
assert data_year_energy.shape == (365, 2, 24)
|
|
|
|
|
|
def test_load_data_from_file(load_provider):
|
|
"""Test `load_data` loads data from the profiles file."""
|
|
data_year_energy = load_provider.load_data()
|
|
assert data_year_energy is not None
|
|
|
|
|
|
@patch("akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor.load_data")
|
|
def test_update_data(mock_load_data, load_provider):
|
|
"""Test the `_update` method."""
|
|
mock_load_data.return_value = np.random.rand(365, 2, 24)
|
|
|
|
# Mock methods for updating values
|
|
ems_eos = get_ems()
|
|
ems_eos.set_start_datetime(pendulum.datetime(2024, 1, 1))
|
|
|
|
# Assure there are no prediction records
|
|
load_provider.clear()
|
|
assert len(load_provider) == 0
|
|
|
|
# Execute the method
|
|
load_provider._update_data()
|
|
|
|
# Validate that update_value is called
|
|
assert len(load_provider) > 0
|
|
|
|
|
|
def test_calculate_adjustment(load_provider, measurement_eos):
|
|
"""Test `_calculate_adjustment` for various scenarios."""
|
|
data_year_energy = np.random.rand(365, 2, 24)
|
|
|
|
# Call the method and validate results
|
|
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
|
|
assert weekday_adjust.shape == (24,)
|
|
assert weekend_adjust.shape == (24,)
|
|
|
|
data_year_energy = np.zeros((365, 2, 24))
|
|
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
|
|
|
|
assert weekday_adjust.shape == (24,)
|
|
expected = np.array(
|
|
[
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
100.0,
|
|
]
|
|
)
|
|
np.testing.assert_array_equal(weekday_adjust, expected)
|
|
|
|
assert weekend_adjust.shape == (24,)
|
|
expected = np.array(
|
|
[
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
]
|
|
)
|
|
np.testing.assert_array_equal(weekend_adjust, expected)
|
|
|
|
|
|
def test_load_provider_adjustments_with_mock_data(load_provider):
|
|
"""Test full integration of adjustments with mock data."""
|
|
with patch(
|
|
"akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor._calculate_adjustment"
|
|
) as mock_adjust:
|
|
mock_adjust.return_value = (np.zeros(24), np.zeros(24))
|
|
|
|
# Test execution
|
|
load_provider._update_data()
|
|
assert mock_adjust.called
|