Files
EOS/tests/test_geneticsimulation.py
Bobby Noelte 3599088dce
Some checks are pending
docker-build / platform-excludes (push) Waiting to run
docker-build / build (push) Blocked by required conditions
docker-build / merge (push) Blocked by required conditions
pre-commit / pre-commit (push) Waiting to run
Run Pytest on Pull Request / test (push) Waiting to run
chore: eosdash improve plan display (#739)
* chore: improve plan solution display

Add genetic optimization results to general solution provided by EOSdash plan display.

Add total results.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

* fix: genetic battery and home appliance device simulation

Fix genetic solution to make ac_charge, dc_charge, discharge, ev_charge or
home appliance start time reflect what the simulation was doing. Sometimes
the simulation decided to charge less or to start the appliance at another
time and this was not brought back to e.g. ac_charge.

Make home appliance simulation activate time window for the next day if it can not be
run today.

Improve simulation speed.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

---------

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-11-08 15:42:18 +01:00

381 lines
10 KiB
Python

import numpy as np
import pytest
from akkudoktoreos.devices.genetic.battery import Battery
from akkudoktoreos.devices.genetic.homeappliance import HomeAppliance
from akkudoktoreos.devices.genetic.inverter import Inverter
from akkudoktoreos.optimization.genetic.genetic import GeneticSimulation
from akkudoktoreos.optimization.genetic.geneticdevices import (
ElectricVehicleParameters,
HomeApplianceParameters,
InverterParameters,
SolarPanelBatteryParameters,
)
from akkudoktoreos.optimization.genetic.geneticparams import (
GeneticEnergyManagementParameters,
GeneticOptimizationParameters,
)
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSimulationResult
from akkudoktoreos.utils.datetimeutil import (
TimeWindow,
TimeWindowSequence,
to_duration,
to_time,
)
start_hour = 1
# Example initialization of necessary components
@pytest.fixture
def genetic_simulation(config_eos) -> GeneticSimulation:
"""Fixture to create an EnergyManagement instance with given test parameters."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
)
assert config_eos.prediction.hours == 48
assert config_eos.optimization.horizon_hours == 24
# Initialize the battery and the inverter
akku = Battery(
SolarPanelBatteryParameters(
device_id="battery1",
capacity_wh=5000,
initial_soc_percentage=80,
min_soc_percentage=10,
),
prediction_hours = config_eos.prediction.hours,
)
akku.reset()
inverter = Inverter(
InverterParameters(device_id="inverter1", max_power_wh=10000, battery_id=akku.parameters.device_id),
battery = akku,
)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
device_id="dishwasher1",
consumption_wh=2000,
duration_h=2,
time_windows=None,
),
optimization_hours = config_eos.optimization.horizon_hours,
prediction_hours = config_eos.prediction.hours,
)
# Example initialization of electric car battery
eauto = Battery(
ElectricVehicleParameters(
device_id="ev1", capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
),
prediction_hours = config_eos.prediction.hours,
)
eauto.set_charge_per_hour(np.full(config_eos.prediction.hours, 1))
# Parameters based on previous example data
pv_prognose_wh = [
0,
0,
0,
0,
0,
0,
0,
8.05,
352.91,
728.51,
930.28,
1043.25,
1106.74,
1161.69,
6018.82,
5519.07,
3969.88,
3017.96,
1943.07,
1007.17,
319.67,
7.88,
0,
0,
0,
0,
0,
0,
0,
0,
0,
5.04,
335.59,
705.32,
1121.12,
1604.79,
2157.38,
1433.25,
5718.49,
4553.96,
3027.55,
2574.46,
1720.4,
963.4,
383.3,
0,
0,
0,
]
strompreis_euro_pro_wh = [
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
]
einspeiseverguetung_euro_pro_wh = 0.00007
preis_euro_pro_wh_akku = 0.0001
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Initialize the energy management system with the respective parameters
simulation = GeneticSimulation()
simulation.prepare(
GeneticEnergyManagementParameters(
pv_prognose_wh=pv_prognose_wh,
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
gesamtlast=gesamtlast,
),
optimization_hours = config_eos.optimization.horizon_hours,
prediction_hours = config_eos.prediction.hours,
inverter=inverter,
ev=eauto,
home_appliance=home_appliance,
)
# Init for test
assert simulation.ac_charge_hours is not None
assert simulation.dc_charge_hours is not None
assert simulation.bat_discharge_hours is not None
assert simulation.ev_charge_hours is not None
simulation.ac_charge_hours[start_hour] = 1.0
simulation.dc_charge_hours[start_hour] = 1.0
simulation.bat_discharge_hours[start_hour] = 1.0
simulation.ev_charge_hours[start_hour] = 1.0
simulation.home_appliance_start_hour = 2
return simulation
def test_simulation(genetic_simulation):
"""Test the EnergyManagement simulation method."""
simulation = genetic_simulation
# Simulate starting from hour 1 (this value can be adjusted)
result = simulation.simulate(start_hour=start_hour)
# visualisiere_ergebnisse(
# simulation.gesamtlast,
# simulation.pv_prognose_wh,
# simulation.strompreis_euro_pro_wh,
# result,
# simulation.akku.discharge_array+simulation.akku.charge_array,
# None,
# simulation.pv_prognose_wh,
# start_hour,
# 48,
# np.full(48, 0.0),
# filename="visualization_results.pdf",
# extra_data=None,
# )
# Assertions to validate results
assert result is not None, "Result should not be None"
assert isinstance(result, dict), "Result should be a dictionary"
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
"""
Check the result of the simulation based on expected values.
"""
# Example result returned from the simulation (used for assertions)
assert result is not None, "Result should not be None."
# Check that the result is a dictionary
assert isinstance(result, dict), "Result should be a dictionary."
assert GeneticSimulationResult(**result) is not None
# Check the length of the main arrays
assert len(result["Last_Wh_pro_Stunde"]) == 47, (
"The length of 'Last_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 47, (
"The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzbezug_Wh_pro_Stunde"]) == 47, (
"The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
)
assert len(result["Kosten_Euro_pro_Stunde"]) == 47, (
"The length of 'Kosten_Euro_pro_Stunde' should be 48."
)
assert len(result["akku_soc_pro_stunde"]) == 47, (
"The length of 'akku_soc_pro_stunde' should be 48."
)
# Verify specific values in the 'Last_Wh_pro_Stunde' array
assert result["Last_Wh_pro_Stunde"][1] == 1527.13, (
"The value at index 1 of 'Last_Wh_pro_Stunde' should be 1527.13."
)
assert result["Last_Wh_pro_Stunde"][2] == 1468.88, (
"The value at index 2 of 'Last_Wh_pro_Stunde' should be 1468.88."
)
assert result["Last_Wh_pro_Stunde"][12] == 1132.03, (
"The value at index 12 of 'Last_Wh_pro_Stunde' should be 1132.03."
)
# Verify that the value at index 0 is 'None'
# Check that 'Netzeinspeisung_Wh_pro_Stunde' and 'Netzbezug_Wh_pro_Stunde' are consistent
assert result["Netzbezug_Wh_pro_Stunde"][1] == 1527.13, (
"The value at index 1 of 'Netzbezug_Wh_pro_Stunde' should be 1527.13."
)
# Verify the total balance
assert abs(result["Gesamtbilanz_Euro"] - 6.612835813556755) < 1e-5, (
"Total balance should be 6.612835813556755."
)
# Check total revenue and total costs
assert abs(result["Gesamteinnahmen_Euro"] - 1.964301131937134) < 1e-5, (
"Total revenue should be 1.964301131937134."
)
assert abs(result["Gesamtkosten_Euro"] - 8.577136945493889) < 1e-5, (
"Total costs should be 8.577136945493889 ."
)
# Check the losses
assert abs(result["Gesamt_Verluste"] - 1620.0) < 1e-5, (
"Total losses should be 1620.0 ."
)
# Check the values in 'akku_soc_pro_stunde'
assert result["akku_soc_pro_stunde"][-1] == 98.0, (
"The value at index -1 of 'akku_soc_pro_stunde' should be 98.0."
)
assert result["akku_soc_pro_stunde"][1] == 98.0, (
"The value at index 1 of 'akku_soc_pro_stunde' should be 98.0."
)
# Check home appliances
assert sum(simulation.home_appliance.get_load_curve()) == 2000, (
"The sum of 'simulation.home_appliance.get_load_curve()' should be 2000."
)
assert (
np.nansum(
np.where(
result["Home_appliance_wh_per_hour"] is None,
np.nan,
np.array(result["Home_appliance_wh_per_hour"]),
)
)
== 2000
), "The sum of 'Home_appliance_wh_per_hour' should be 2000."
print("All tests passed successfully.")