Files
EOS/tests/test_geneticsimulation2.py
Bobby Noelte 3599088dce
Some checks are pending
docker-build / platform-excludes (push) Waiting to run
docker-build / build (push) Blocked by required conditions
docker-build / merge (push) Blocked by required conditions
pre-commit / pre-commit (push) Waiting to run
Run Pytest on Pull Request / test (push) Waiting to run
chore: eosdash improve plan display (#739)
* chore: improve plan solution display

Add genetic optimization results to general solution provided by EOSdash plan display.

Add total results.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

* fix: genetic battery and home appliance device simulation

Fix genetic solution to make ac_charge, dc_charge, discharge, ev_charge or
home appliance start time reflect what the simulation was doing. Sometimes
the simulation decided to charge less or to start the appliance at another
time and this was not brought back to e.g. ac_charge.

Make home appliance simulation activate time window for the next day if it can not be
run today.

Improve simulation speed.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

---------

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-11-08 15:42:18 +01:00

291 lines
9.2 KiB
Python

import numpy as np
import pytest
from akkudoktoreos.devices.genetic.battery import Battery
from akkudoktoreos.devices.genetic.homeappliance import HomeAppliance
from akkudoktoreos.devices.genetic.inverter import Inverter
from akkudoktoreos.optimization.genetic.genetic import GeneticSimulation
from akkudoktoreos.optimization.genetic.geneticdevices import (
ElectricVehicleParameters,
HomeApplianceParameters,
InverterParameters,
SolarPanelBatteryParameters,
)
from akkudoktoreos.optimization.genetic.geneticparams import (
GeneticEnergyManagementParameters,
GeneticOptimizationParameters,
)
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSimulationResult
from akkudoktoreos.utils.datetimeutil import (
TimeWindow,
TimeWindowSequence,
to_duration,
to_time,
)
start_hour = 0
# Example initialization of necessary components
@pytest.fixture
def genetic_simulation_2(config_eos) -> GeneticSimulation:
"""Fixture to create an EnergyManagement instance with given test parameters."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
)
assert config_eos.prediction.hours == 48
assert config_eos.optimization.horizon_hours == 24
# Initialize the battery and the inverter
akku = Battery(
SolarPanelBatteryParameters(
device_id="battery1",
capacity_wh=5000,
initial_soc_percentage=80,
min_soc_percentage=10,
),
prediction_hours = config_eos.prediction.hours,
)
akku.reset()
inverter = Inverter(
InverterParameters(device_id="inverter1", max_power_wh=10000, battery_id=akku.parameters.device_id),
battery = akku,
)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
device_id="dishwasher1",
consumption_wh=2000,
duration_h=2,
time_windows=None,
),
optimization_hours = config_eos.optimization.horizon_hours,
prediction_hours = config_eos.prediction.hours,
)
# Example initialization of electric car battery
eauto = Battery(
ElectricVehicleParameters(
device_id="ev1", capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
),
prediction_hours = config_eos.prediction.hours,
)
# Parameters based on previous example data
pv_prognose_wh = [0.0] * config_eos.prediction.hours
pv_prognose_wh[10] = 5000.0
pv_prognose_wh[11] = 5000.0
strompreis_euro_pro_wh = [0.001] * config_eos.prediction.hours
strompreis_euro_pro_wh[0:10] = [0.00001] * 10
strompreis_euro_pro_wh[11:15] = [0.00005] * 4
strompreis_euro_pro_wh[20] = 0.00001
einspeiseverguetung_euro_pro_wh = [0.00007] * len(strompreis_euro_pro_wh)
preis_euro_pro_wh_akku = 0.0001
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Initialize the energy management system with the respective parameters
simulation = GeneticSimulation()
simulation.prepare(
GeneticEnergyManagementParameters(
pv_prognose_wh=pv_prognose_wh,
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
gesamtlast=gesamtlast,
),
optimization_hours = config_eos.optimization.horizon_hours,
prediction_hours = config_eos.prediction.hours,
inverter=inverter,
ev=eauto,
home_appliance=home_appliance,
)
ac = np.full(config_eos.prediction.hours, 0.0)
ac[20] = 1
simulation.ac_charge_hours = ac
dc = np.full(config_eos.prediction.hours, 0.0)
dc[11] = 1
simulation.dc_charge_hours = dc
simulation.home_appliance_start_hour = 2
return simulation
def test_simulation(genetic_simulation_2):
"""Test the EnergyManagement simulation method."""
simulation = genetic_simulation_2
# Simulate starting from hour 0 (this value can be adjusted)
result = simulation.simulate(start_hour=start_hour)
# --- Pls do not remove! ---
# visualisiere_ergebnisse(
# simulation.gesamtlast,
# simulation.pv_prognose_wh,
# simulation.strompreis_euro_pro_wh,
# result,
# simulation.akku.discharge_array+simulation.akku.charge_array,
# None,
# simulation.pv_prognose_wh,
# start_hour,
# 48,
# np.full(48, 0.0),
# filename="visualization_results.pdf",
# extra_data=None,
# )
# Assertions to validate results
assert result is not None, "Result should not be None"
assert isinstance(result, dict), "Result should be a dictionary"
assert GeneticSimulationResult(**result) is not None
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
"""
Check the result of the simulation based on expected values.
"""
# Example result returned from the simulation (used for assertions)
assert result is not None, "Result should not be None."
# Check that the result is a dictionary
assert isinstance(result, dict), "Result should be a dictionary."
# Verify that the expected keys are present in the result
expected_keys = [
"Last_Wh_pro_Stunde",
"Netzeinspeisung_Wh_pro_Stunde",
"Netzbezug_Wh_pro_Stunde",
"Kosten_Euro_pro_Stunde",
"akku_soc_pro_stunde",
"Einnahmen_Euro_pro_Stunde",
"Gesamtbilanz_Euro",
"EAuto_SoC_pro_Stunde",
"Gesamteinnahmen_Euro",
"Gesamtkosten_Euro",
"Verluste_Pro_Stunde",
"Gesamt_Verluste",
"Home_appliance_wh_per_hour",
]
for key in expected_keys:
assert key in result, f"The key '{key}' should be present in the result."
# Check the length of the main arrays
assert len(result["Last_Wh_pro_Stunde"]) == 48, (
"The length of 'Last_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 48, (
"The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
)
assert len(result["Netzbezug_Wh_pro_Stunde"]) == 48, (
"The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
)
assert len(result["Kosten_Euro_pro_Stunde"]) == 48, (
"The length of 'Kosten_Euro_pro_Stunde' should be 48."
)
assert len(result["akku_soc_pro_stunde"]) == 48, (
"The length of 'akku_soc_pro_stunde' should be 48."
)
# Verfify DC and AC Charge Bins
assert abs(result["akku_soc_pro_stunde"][2] - 80.0) < 1e-5, (
"'akku_soc_pro_stunde[2]' should be 80.0."
)
assert abs(result["akku_soc_pro_stunde"][10] - 80.0) < 1e-5, (
"'akku_soc_pro_stunde[10]' should be 80."
)
assert abs(result["Netzeinspeisung_Wh_pro_Stunde"][10] - 3946.93) < 1e-3, (
"'Netzeinspeisung_Wh_pro_Stunde[11]' should be 3946.93."
)
assert abs(result["Netzeinspeisung_Wh_pro_Stunde"][11] - 2799.7263636361786) < 1e-3, (
"'Netzeinspeisung_Wh_pro_Stunde[11]' should be 2799.7263636361786."
)
assert abs(result["akku_soc_pro_stunde"][20] - 100) < 1e-5, (
"'akku_soc_pro_stunde[20]' should be 100."
)
assert abs(result["Last_Wh_pro_Stunde"][20] - 1050.98) < 1e-3, (
"'Last_Wh_pro_Stunde[20]' should be 1050.98."
)
print("All tests passed successfully.")
def test_set_parameters(genetic_simulation_2):
"""Test the set_parameters method of EnergyManagement."""
simulation = genetic_simulation_2
# Check if parameters are set correctly
assert simulation.load_energy_array is not None, "load_energy_array should not be None"
assert simulation.pv_prediction_wh is not None, "pv_prediction_wh should not be None"
assert simulation.elect_price_hourly is not None, "elect_price_hourly should not be None"
assert simulation.elect_revenue_per_hour_arr is not None, (
"elect_revenue_per_hour_arr should not be None"
)
def test_reset(genetic_simulation_2):
"""Test the reset method of EnergyManagement."""
simulation = genetic_simulation_2
simulation.reset()
assert simulation.ev.current_soc_percentage() == simulation.ev.parameters.initial_soc_percentage, "EV SOC should be reset to initial value"
assert simulation.battery.current_soc_percentage() == simulation.battery.parameters.initial_soc_percentage, (
"Battery SOC should be reset to initial value"
)