mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-08 22:46:27 +00:00
Some checks are pending
docker-build / platform-excludes (push) Waiting to run
docker-build / build (push) Blocked by required conditions
docker-build / merge (push) Blocked by required conditions
pre-commit / pre-commit (push) Waiting to run
Run Pytest on Pull Request / test (push) Waiting to run
* chore: improve plan solution display Add genetic optimization results to general solution provided by EOSdash plan display. Add total results. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com> * fix: genetic battery and home appliance device simulation Fix genetic solution to make ac_charge, dc_charge, discharge, ev_charge or home appliance start time reflect what the simulation was doing. Sometimes the simulation decided to charge less or to start the appliance at another time and this was not brought back to e.g. ac_charge. Make home appliance simulation activate time window for the next day if it can not be run today. Improve simulation speed. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com> --------- Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
291 lines
9.2 KiB
Python
291 lines
9.2 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from akkudoktoreos.devices.genetic.battery import Battery
|
|
from akkudoktoreos.devices.genetic.homeappliance import HomeAppliance
|
|
from akkudoktoreos.devices.genetic.inverter import Inverter
|
|
from akkudoktoreos.optimization.genetic.genetic import GeneticSimulation
|
|
from akkudoktoreos.optimization.genetic.geneticdevices import (
|
|
ElectricVehicleParameters,
|
|
HomeApplianceParameters,
|
|
InverterParameters,
|
|
SolarPanelBatteryParameters,
|
|
)
|
|
from akkudoktoreos.optimization.genetic.geneticparams import (
|
|
GeneticEnergyManagementParameters,
|
|
GeneticOptimizationParameters,
|
|
)
|
|
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSimulationResult
|
|
from akkudoktoreos.utils.datetimeutil import (
|
|
TimeWindow,
|
|
TimeWindowSequence,
|
|
to_duration,
|
|
to_time,
|
|
)
|
|
|
|
start_hour = 0
|
|
|
|
|
|
# Example initialization of necessary components
|
|
@pytest.fixture
|
|
def genetic_simulation_2(config_eos) -> GeneticSimulation:
|
|
"""Fixture to create an EnergyManagement instance with given test parameters."""
|
|
# Assure configuration holds the correct values
|
|
config_eos.merge_settings_from_dict(
|
|
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
|
|
)
|
|
assert config_eos.prediction.hours == 48
|
|
assert config_eos.optimization.horizon_hours == 24
|
|
|
|
# Initialize the battery and the inverter
|
|
akku = Battery(
|
|
SolarPanelBatteryParameters(
|
|
device_id="battery1",
|
|
capacity_wh=5000,
|
|
initial_soc_percentage=80,
|
|
min_soc_percentage=10,
|
|
),
|
|
prediction_hours = config_eos.prediction.hours,
|
|
)
|
|
akku.reset()
|
|
|
|
inverter = Inverter(
|
|
InverterParameters(device_id="inverter1", max_power_wh=10000, battery_id=akku.parameters.device_id),
|
|
battery = akku,
|
|
)
|
|
|
|
# Household device (currently not used, set to None)
|
|
home_appliance = HomeAppliance(
|
|
HomeApplianceParameters(
|
|
device_id="dishwasher1",
|
|
consumption_wh=2000,
|
|
duration_h=2,
|
|
time_windows=None,
|
|
),
|
|
optimization_hours = config_eos.optimization.horizon_hours,
|
|
prediction_hours = config_eos.prediction.hours,
|
|
)
|
|
|
|
# Example initialization of electric car battery
|
|
eauto = Battery(
|
|
ElectricVehicleParameters(
|
|
device_id="ev1", capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
|
|
),
|
|
prediction_hours = config_eos.prediction.hours,
|
|
)
|
|
|
|
# Parameters based on previous example data
|
|
pv_prognose_wh = [0.0] * config_eos.prediction.hours
|
|
pv_prognose_wh[10] = 5000.0
|
|
pv_prognose_wh[11] = 5000.0
|
|
|
|
strompreis_euro_pro_wh = [0.001] * config_eos.prediction.hours
|
|
strompreis_euro_pro_wh[0:10] = [0.00001] * 10
|
|
strompreis_euro_pro_wh[11:15] = [0.00005] * 4
|
|
strompreis_euro_pro_wh[20] = 0.00001
|
|
|
|
einspeiseverguetung_euro_pro_wh = [0.00007] * len(strompreis_euro_pro_wh)
|
|
preis_euro_pro_wh_akku = 0.0001
|
|
|
|
gesamtlast = [
|
|
676.71,
|
|
876.19,
|
|
527.13,
|
|
468.88,
|
|
531.38,
|
|
517.95,
|
|
483.15,
|
|
472.28,
|
|
1011.68,
|
|
995.00,
|
|
1053.07,
|
|
1063.91,
|
|
1320.56,
|
|
1132.03,
|
|
1163.67,
|
|
1176.82,
|
|
1216.22,
|
|
1103.78,
|
|
1129.12,
|
|
1178.71,
|
|
1050.98,
|
|
988.56,
|
|
912.38,
|
|
704.61,
|
|
516.37,
|
|
868.05,
|
|
694.34,
|
|
608.79,
|
|
556.31,
|
|
488.89,
|
|
506.91,
|
|
804.89,
|
|
1141.98,
|
|
1056.97,
|
|
992.46,
|
|
1155.99,
|
|
827.01,
|
|
1257.98,
|
|
1232.67,
|
|
871.26,
|
|
860.88,
|
|
1158.03,
|
|
1222.72,
|
|
1221.04,
|
|
949.99,
|
|
987.01,
|
|
733.99,
|
|
592.97,
|
|
]
|
|
|
|
# Initialize the energy management system with the respective parameters
|
|
simulation = GeneticSimulation()
|
|
simulation.prepare(
|
|
GeneticEnergyManagementParameters(
|
|
pv_prognose_wh=pv_prognose_wh,
|
|
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
|
|
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
|
|
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
|
|
gesamtlast=gesamtlast,
|
|
),
|
|
optimization_hours = config_eos.optimization.horizon_hours,
|
|
prediction_hours = config_eos.prediction.hours,
|
|
inverter=inverter,
|
|
ev=eauto,
|
|
home_appliance=home_appliance,
|
|
)
|
|
|
|
ac = np.full(config_eos.prediction.hours, 0.0)
|
|
ac[20] = 1
|
|
simulation.ac_charge_hours = ac
|
|
dc = np.full(config_eos.prediction.hours, 0.0)
|
|
dc[11] = 1
|
|
simulation.dc_charge_hours = dc
|
|
simulation.home_appliance_start_hour = 2
|
|
|
|
return simulation
|
|
|
|
|
|
def test_simulation(genetic_simulation_2):
|
|
"""Test the EnergyManagement simulation method."""
|
|
simulation = genetic_simulation_2
|
|
|
|
# Simulate starting from hour 0 (this value can be adjusted)
|
|
result = simulation.simulate(start_hour=start_hour)
|
|
|
|
# --- Pls do not remove! ---
|
|
# visualisiere_ergebnisse(
|
|
# simulation.gesamtlast,
|
|
# simulation.pv_prognose_wh,
|
|
# simulation.strompreis_euro_pro_wh,
|
|
# result,
|
|
# simulation.akku.discharge_array+simulation.akku.charge_array,
|
|
# None,
|
|
# simulation.pv_prognose_wh,
|
|
# start_hour,
|
|
# 48,
|
|
# np.full(48, 0.0),
|
|
# filename="visualization_results.pdf",
|
|
# extra_data=None,
|
|
# )
|
|
|
|
# Assertions to validate results
|
|
assert result is not None, "Result should not be None"
|
|
assert isinstance(result, dict), "Result should be a dictionary"
|
|
assert GeneticSimulationResult(**result) is not None
|
|
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
|
|
|
|
"""
|
|
Check the result of the simulation based on expected values.
|
|
"""
|
|
# Example result returned from the simulation (used for assertions)
|
|
assert result is not None, "Result should not be None."
|
|
|
|
# Check that the result is a dictionary
|
|
assert isinstance(result, dict), "Result should be a dictionary."
|
|
|
|
# Verify that the expected keys are present in the result
|
|
expected_keys = [
|
|
"Last_Wh_pro_Stunde",
|
|
"Netzeinspeisung_Wh_pro_Stunde",
|
|
"Netzbezug_Wh_pro_Stunde",
|
|
"Kosten_Euro_pro_Stunde",
|
|
"akku_soc_pro_stunde",
|
|
"Einnahmen_Euro_pro_Stunde",
|
|
"Gesamtbilanz_Euro",
|
|
"EAuto_SoC_pro_Stunde",
|
|
"Gesamteinnahmen_Euro",
|
|
"Gesamtkosten_Euro",
|
|
"Verluste_Pro_Stunde",
|
|
"Gesamt_Verluste",
|
|
"Home_appliance_wh_per_hour",
|
|
]
|
|
|
|
for key in expected_keys:
|
|
assert key in result, f"The key '{key}' should be present in the result."
|
|
|
|
# Check the length of the main arrays
|
|
assert len(result["Last_Wh_pro_Stunde"]) == 48, (
|
|
"The length of 'Last_Wh_pro_Stunde' should be 48."
|
|
)
|
|
assert len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 48, (
|
|
"The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
|
|
)
|
|
assert len(result["Netzbezug_Wh_pro_Stunde"]) == 48, (
|
|
"The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
|
|
)
|
|
assert len(result["Kosten_Euro_pro_Stunde"]) == 48, (
|
|
"The length of 'Kosten_Euro_pro_Stunde' should be 48."
|
|
)
|
|
assert len(result["akku_soc_pro_stunde"]) == 48, (
|
|
"The length of 'akku_soc_pro_stunde' should be 48."
|
|
)
|
|
|
|
# Verfify DC and AC Charge Bins
|
|
assert abs(result["akku_soc_pro_stunde"][2] - 80.0) < 1e-5, (
|
|
"'akku_soc_pro_stunde[2]' should be 80.0."
|
|
)
|
|
assert abs(result["akku_soc_pro_stunde"][10] - 80.0) < 1e-5, (
|
|
"'akku_soc_pro_stunde[10]' should be 80."
|
|
)
|
|
|
|
assert abs(result["Netzeinspeisung_Wh_pro_Stunde"][10] - 3946.93) < 1e-3, (
|
|
"'Netzeinspeisung_Wh_pro_Stunde[11]' should be 3946.93."
|
|
)
|
|
|
|
assert abs(result["Netzeinspeisung_Wh_pro_Stunde"][11] - 2799.7263636361786) < 1e-3, (
|
|
"'Netzeinspeisung_Wh_pro_Stunde[11]' should be 2799.7263636361786."
|
|
)
|
|
|
|
assert abs(result["akku_soc_pro_stunde"][20] - 100) < 1e-5, (
|
|
"'akku_soc_pro_stunde[20]' should be 100."
|
|
)
|
|
assert abs(result["Last_Wh_pro_Stunde"][20] - 1050.98) < 1e-3, (
|
|
"'Last_Wh_pro_Stunde[20]' should be 1050.98."
|
|
)
|
|
|
|
print("All tests passed successfully.")
|
|
|
|
|
|
def test_set_parameters(genetic_simulation_2):
|
|
"""Test the set_parameters method of EnergyManagement."""
|
|
simulation = genetic_simulation_2
|
|
|
|
# Check if parameters are set correctly
|
|
assert simulation.load_energy_array is not None, "load_energy_array should not be None"
|
|
assert simulation.pv_prediction_wh is not None, "pv_prediction_wh should not be None"
|
|
assert simulation.elect_price_hourly is not None, "elect_price_hourly should not be None"
|
|
assert simulation.elect_revenue_per_hour_arr is not None, (
|
|
"elect_revenue_per_hour_arr should not be None"
|
|
)
|
|
|
|
|
|
def test_reset(genetic_simulation_2):
|
|
"""Test the reset method of EnergyManagement."""
|
|
simulation = genetic_simulation_2
|
|
simulation.reset()
|
|
assert simulation.ev.current_soc_percentage() == simulation.ev.parameters.initial_soc_percentage, "EV SOC should be reset to initial value"
|
|
assert simulation.battery.current_soc_percentage() == simulation.battery.parameters.initial_soc_percentage, (
|
|
"Battery SOC should be reset to initial value"
|
|
)
|