623 lines
24 KiB
Python

import random
import time
from pathlib import Path
from typing import Any, Optional, Tuple
import numpy as np
from deap import algorithms, base, creator, tools
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from akkudoktoreos.config import AppConfig
from akkudoktoreos.devices.battery import (
EAutoParameters,
EAutoResult,
PVAkku,
PVAkkuParameters,
)
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Wechselrichter, WechselrichterParameters
from akkudoktoreos.prediction.ems import (
EnergieManagementSystem,
EnergieManagementSystemParameters,
SimulationResult,
)
from akkudoktoreos.prediction.self_consumption_probability import (
self_consumption_probability_interpolator,
)
from akkudoktoreos.utils.utils import NumpyEncoder
from akkudoktoreos.visualize import visualisiere_ergebnisse
class OptimizationParameters(BaseModel):
ems: EnergieManagementSystemParameters
pv_akku: PVAkkuParameters
wechselrichter: WechselrichterParameters = WechselrichterParameters()
eauto: Optional[EAutoParameters]
dishwasher: Optional[HomeApplianceParameters] = None
temperature_forecast: Optional[list[float]] = Field(
default=None,
description="An array of floats representing the temperature forecast in degrees Celsius for different time intervals.",
)
start_solution: Optional[list[float]] = Field(
default=None, description="Can be `null` or contain a previous solution (if available)."
)
@model_validator(mode="after")
def validate_list_length(self) -> Self:
arr_length = len(self.ems.pv_prognose_wh)
if self.temperature_forecast is not None and arr_length != len(self.temperature_forecast):
raise ValueError("Input lists have different lengths")
return self
@field_validator("start_solution")
def validate_start_solution(
cls, start_solution: Optional[list[float]]
) -> Optional[list[float]]:
if start_solution is not None and len(start_solution) < 2:
raise ValueError("Requires at least two values.")
return start_solution
class OptimizeResponse(BaseModel):
"""**Note**: The first value of "Last_Wh_per_hour", "Netzeinspeisung_Wh_per_hour", and "Netzbezug_Wh_per_hour", will be set to null in the JSON output and represented as NaN or None in the corresponding classes' data returns. This approach is adopted to ensure that the current hour's processing remains unchanged."""
ac_charge: list[float] = Field(
description="Array with AC charging values as relative power (0-1), other values set to 0."
)
dc_charge: list[float] = Field(
description="Array with DC charging values as relative power (0-1), other values set to 0."
)
discharge_allowed: list[int] = Field(
description="Array with discharge values (1 for discharge, 0 otherwise)."
)
eautocharge_hours_float: Optional[list[float]] = Field(description="TBD")
result: SimulationResult
eauto_obj: Optional[EAutoResult]
start_solution: Optional[list[float]] = Field(
default=None,
description="An array of binary values (0 or 1) representing a possible starting solution for the simulation.",
)
washingstart: Optional[int] = Field(
default=None,
description="Can be `null` or contain an object representing the start of washing (if applicable).",
)
@field_validator(
"ac_charge",
"dc_charge",
"discharge_allowed",
mode="before",
)
def convert_numpy(cls, field: Any) -> Any:
return NumpyEncoder.convert_numpy(field)[0]
@field_validator(
"eauto_obj",
mode="before",
)
def convert_eauto(cls, field: Any) -> Any:
if isinstance(field, PVAkku):
return EAutoResult(**field.to_dict())
return field
class optimization_problem:
def __init__(
self,
config: AppConfig,
verbose: bool = False,
fixed_seed: Optional[int] = None,
):
"""Initialize the optimization problem with the required parameters."""
self._config = config
self.prediction_hours = config.eos.prediction_hours
self.strafe = config.eos.penalty
self.opti_param: dict[str, Any] = {}
self.fixed_eauto_hours = config.eos.prediction_hours - config.eos.optimization_hours
self.possible_charge_values = config.eos.available_charging_rates_in_percentage
self.verbose = verbose
self.fix_seed = fixed_seed
self.optimize_ev = True
self.optimize_dc_charge = False
# Set a fixed seed for random operations if provided
if fixed_seed is not None:
random.seed(fixed_seed)
def decode_charge_discharge(
self, discharge_hours_bin: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Decode the input array into ac_charge, dc_charge, and discharge arrays."""
discharge_hours_bin_np = np.array(discharge_hours_bin)
len_ac = len(self._config.eos.available_charging_rates_in_percentage)
# Categorization:
# Idle: 0 .. len_ac-1
# Discharge: len_ac .. 2*len_ac - 1
# AC Charge: 2*len_ac .. 3*len_ac - 1
# DC optional: 3*len_ac (not allowed), 3*len_ac + 1 (allowed)
# Idle has no charge, Discharge has binary 1, AC Charge has corresponding values
# Idle states
idle_mask = (discharge_hours_bin_np >= 0) & (discharge_hours_bin_np < len_ac)
# Discharge states
discharge_mask = (discharge_hours_bin_np >= len_ac) & (discharge_hours_bin_np < 2 * len_ac)
# AC states
ac_mask = (discharge_hours_bin_np >= 2 * len_ac) & (discharge_hours_bin_np < 3 * len_ac)
ac_indices = (discharge_hours_bin_np[ac_mask] - 2 * len_ac).astype(int)
# DC states (if enabled)
if self.optimize_dc_charge:
dc_not_allowed_state = 3 * len_ac
dc_allowed_state = 3 * len_ac + 1
dc_charge = np.where(discharge_hours_bin_np == dc_allowed_state, 1, 0)
else:
dc_charge = np.ones_like(discharge_hours_bin_np, dtype=float)
# Generate the result arrays
discharge = np.zeros_like(discharge_hours_bin_np, dtype=int)
discharge[discharge_mask] = 1 # Set Discharge states to 1
ac_charge = np.zeros_like(discharge_hours_bin_np, dtype=float)
ac_charge[ac_mask] = [
self._config.eos.available_charging_rates_in_percentage[i] for i in ac_indices
]
# Idle is just 0, already default.
return ac_charge, dc_charge, discharge
def mutate(self, individual: list[int]) -> tuple[list[int]]:
"""Custom mutation function for the individual."""
# Calculate the number of states
len_ac = len(self._config.eos.available_charging_rates_in_percentage)
if self.optimize_dc_charge:
total_states = 3 * len_ac + 2
else:
total_states = 3 * len_ac
# 1. Mutating the charge_discharge part
charge_discharge_part = individual[: self.prediction_hours]
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
# Instead of a fixed clamping to 0..8 or 0..6 dynamically:
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1)
individual[: self.prediction_hours] = charge_discharge_mutated
# 2. Mutating the EV charge part, if active
if self.optimize_ev:
ev_charge_part = individual[self.prediction_hours : self.prediction_hours * 2]
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
ev_charge_part_mutated[self.prediction_hours - self.fixed_eauto_hours :] = [
0
] * self.fixed_eauto_hours
individual[self.prediction_hours : self.prediction_hours * 2] = ev_charge_part_mutated
# 3. Mutating the appliance start time, if applicable
if self.opti_param["home_appliance"] > 0:
appliance_part = [individual[-1]]
(appliance_part_mutated,) = self.toolbox.mutate_hour(appliance_part)
individual[-1] = appliance_part_mutated[0]
return (individual,)
# Method to create an individual based on the conditions
def create_individual(self) -> list[int]:
# Start with discharge states for the individual
individual_components = [
self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)
]
# Add EV charge index values if optimize_ev is True
if self.optimize_ev:
individual_components += [
self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)
]
# Add the start time of the household appliance if it's being optimized
if self.opti_param["home_appliance"] > 0:
individual_components += [self.toolbox.attr_int()]
return creator.Individual(individual_components)
def merge_individual(
self,
discharge_hours_bin: np.ndarray,
eautocharge_hours_index: Optional[np.ndarray],
washingstart_int: Optional[int],
) -> list[int]:
"""Merge the individual components back into a single solution list.
Parameters:
discharge_hours_bin (np.ndarray): Binary discharge hours.
eautocharge_hours_index (Optional[np.ndarray]): EV charge hours as integers, or None.
washingstart_int (Optional[int]): Dishwasher start time as integer, or None.
Returns:
list[int]: The merged individual solution as a list of integers.
"""
# Start with the discharge hours
individual = discharge_hours_bin.tolist()
# Add EV charge hours if applicable
if self.optimize_ev and eautocharge_hours_index is not None:
individual.extend(eautocharge_hours_index.tolist())
elif self.optimize_ev:
# Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu
individual.extend([0] * self.prediction_hours)
# Add dishwasher start time if applicable
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None:
individual.append(washingstart_int)
elif self.opti_param.get("home_appliance", 0) > 0:
# Falls ein Haushaltsgerät optimiert wird, aber kein Startzeitpunkt vorhanden ist
individual.append(0)
return individual
def split_individual(
self, individual: list[int]
) -> Tuple[np.ndarray, Optional[np.ndarray], Optional[int]]:
"""Split the individual solution into its components.
Components:
1. Discharge hours (binary as int NumPy array),
2. Electric vehicle charge hours (float as int NumPy array, if applicable),
3. Dishwasher start time (integer if applicable).
"""
# Discharge hours as a NumPy array of ints
discharge_hours_bin = np.array(individual[: self.prediction_hours], dtype=int)
# EV charge hours as a NumPy array of ints (if optimize_ev is True)
eautocharge_hours_index = (
np.array(individual[self.prediction_hours : self.prediction_hours * 2], dtype=int)
if self.optimize_ev
else None
)
# Washing machine start time as an integer (if applicable)
washingstart_int = (
int(individual[-1])
if self.opti_param and self.opti_param.get("home_appliance", 0) > 0
else None
)
return discharge_hours_bin, eautocharge_hours_index, washingstart_int
def setup_deap_environment(self, opti_param: dict[str, Any], start_hour: int) -> None:
"""Set up the DEAP environment with fitness and individual creation rules."""
self.opti_param = opti_param
# Remove existing definitions if any
for attr in ["FitnessMin", "Individual"]:
if attr in creator.__dict__:
del creator.__dict__[attr]
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
self.toolbox = base.Toolbox()
len_ac = len(self._config.eos.available_charging_rates_in_percentage)
# Total number of states without DC:
# Idle: len_ac states
# Discharge: len_ac states
# AC-Charge: len_ac states
# Total without DC: 3 * len_ac
# With DC: + 2 states
if self.optimize_dc_charge:
total_states = 3 * len_ac + 2
else:
total_states = 3 * len_ac
# State space: 0 .. (total_states - 1)
self.toolbox.register("attr_discharge_state", random.randint, 0, total_states - 1)
# EV attributes
if self.optimize_ev:
self.toolbox.register(
"attr_ev_charge_index",
random.randint,
0,
len_ac - 1,
)
# Household appliance start time
self.toolbox.register("attr_int", random.randint, start_hour, 23)
self.toolbox.register("individual", self.create_individual)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("mate", tools.cxTwoPoint)
# Mutation operator for charge/discharge states
self.toolbox.register(
"mutate_charge_discharge", tools.mutUniformInt, low=0, up=total_states - 1, indpb=0.2
)
# Mutation operator for EV states
self.toolbox.register(
"mutate_ev_charge_index",
tools.mutUniformInt,
low=0,
up=len_ac - 1,
indpb=0.2,
)
# Mutation for household appliance
self.toolbox.register("mutate_hour", tools.mutUniformInt, low=start_hour, up=23, indpb=0.2)
# Custom mutate function remains unchanged
self.toolbox.register("mutate", self.mutate)
self.toolbox.register("select", tools.selTournament, tournsize=3)
def evaluate_inner(
self, individual: list[int], ems: EnergieManagementSystem, start_hour: int
) -> dict[str, Any]:
"""Simulates the energy management system (EMS) using the provided individual solution.
This is an internal function.
"""
ems.reset()
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
individual
)
if washingstart_int is not None:
ems.set_home_appliance_start(washingstart_int, global_start_hour=start_hour)
ac, dc, discharge = self.decode_charge_discharge(discharge_hours_bin)
ems.set_akku_discharge_hours(discharge)
# Set DC charge hours only if DC optimization is enabled
if self.optimize_dc_charge:
ems.set_akku_dc_charge_hours(dc)
ems.set_akku_ac_charge_hours(ac)
if eautocharge_hours_index is not None:
eautocharge_hours_float = [
self._config.eos.available_charging_rates_in_percentage[i]
for i in eautocharge_hours_index
]
ems.set_ev_charge_hours(np.array(eautocharge_hours_float))
else:
ems.set_ev_charge_hours(np.full(self.prediction_hours, 0))
return ems.simuliere(start_hour)
def evaluate(
self,
individual: list[int],
ems: EnergieManagementSystem,
parameters: OptimizationParameters,
start_hour: int,
worst_case: bool,
) -> Tuple[float]:
"""Evaluate the fitness of an individual solution based on the simulation results."""
try:
o = self.evaluate_inner(individual, ems, start_hour)
except Exception as e:
return (100000.0,) # Return a high penalty in case of an exception
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
individual
)
# EV 100% & charge not allowed
if self.optimize_ev:
eauto_soc_per_hour = np.array(o.get("EAuto_SoC_pro_Stunde", [])) # Beispielkey
if eauto_soc_per_hour is None or eautocharge_hours_index is None:
raise ValueError("eauto_soc_per_hour or eautocharge_hours_index is None")
min_length = min(eauto_soc_per_hour.size, eautocharge_hours_index.size)
eauto_soc_per_hour_tail = eauto_soc_per_hour[-min_length:]
eautocharge_hours_index_tail = eautocharge_hours_index[-min_length:]
# Mask
invalid_charge_mask = (eauto_soc_per_hour_tail == 100) & (
eautocharge_hours_index_tail > 0
)
if np.any(invalid_charge_mask):
invalid_indices = np.where(invalid_charge_mask)[0]
if len(invalid_indices) > 1:
eautocharge_hours_index_tail[invalid_indices[1:]] = 0
eautocharge_hours_index[-min_length:] = eautocharge_hours_index_tail.tolist()
adjusted_individual = self.merge_individual(
discharge_hours_bin, eautocharge_hours_index, washingstart_int
)
individual[:] = adjusted_individual # Aktualisiere das ursprüngliche individual
# Berechnung weiterer Metriken
individual.extra_data = ( # type: ignore[attr-defined]
o["Gesamtbilanz_Euro"],
o["Gesamt_Verluste"],
parameters.eauto.min_soc_prozent - ems.eauto.ladezustand_in_prozent()
if parameters.eauto and ems.eauto
else 0,
)
# Adjust total balance with battery value and penalties for unmet SOC
restwert_akku = ems.akku.aktueller_energieinhalt() * parameters.ems.preis_euro_pro_wh_akku
gesamtbilanz += -restwert_akku
if self.optimize_ev:
gesamtbilanz += max(
0,
(
parameters.eauto.min_soc_prozent - ems.eauto.ladezustand_in_prozent()
if parameters.eauto and ems.eauto
else 0
)
* self.strafe,
)
return (gesamtbilanz,)
def optimize(
self, start_solution: Optional[list[float]] = None, ngen: int = 200
) -> Tuple[Any, dict[str, list[Any]]]:
"""Run the optimization process using a genetic algorithm."""
population = self.toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
if self.verbose:
print("Start optimize:", start_solution)
# Insert the start solution into the population if provided
if start_solution is not None:
for _ in range(10):
population.insert(0, creator.Individual(start_solution))
# Run the evolutionary algorithm
algorithms.eaMuPlusLambda(
population,
self.toolbox,
mu=100,
lambda_=150,
cxpb=0.6,
mutpb=0.4,
ngen=ngen,
stats=stats,
halloffame=hof,
verbose=self.verbose,
)
member: dict[str, list[float]] = {"bilanz": [], "verluste": [], "nebenbedingung": []}
for ind in population:
if hasattr(ind, "extra_data"):
extra_value1, extra_value2, extra_value3 = ind.extra_data
member["bilanz"].append(extra_value1)
member["verluste"].append(extra_value2)
member["nebenbedingung"].append(extra_value3)
return hof[0], member
def optimierung_ems(
self,
parameters: OptimizationParameters,
start_hour: int,
worst_case: bool = False,
ngen: int = 400,
) -> OptimizeResponse:
"""Perform EMS (Energy Management System) optimization and visualize results."""
einspeiseverguetung_euro_pro_wh = np.full(
self.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
)
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
sc = self_consumption_probability_interpolator(
Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
)
# Initialize PV and EV batteries
akku = PVAkku(
parameters.pv_akku,
hours=self.prediction_hours,
)
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
eauto: Optional[PVAkku] = None
if parameters.eauto:
eauto = PVAkku(
parameters.eauto,
hours=self.prediction_hours,
)
eauto.set_charge_per_hour(np.full(self.prediction_hours, 1))
self.optimize_ev = (
parameters.eauto.min_soc_prozent - parameters.eauto.start_soc_prozent >= 0
)
else:
self.optimize_ev = False
# Initialize household appliance if applicable
dishwasher = (
HomeAppliance(
parameters=parameters.dishwasher,
hours=self.prediction_hours,
)
if parameters.dishwasher is not None
else None
)
# Initialize the inverter and energy management system
wr = Wechselrichter(
parameters.wechselrichter,
akku,
self_consumption_predictor=sc,
)
ems = EnergieManagementSystem(
self._config.eos,
parameters.ems,
wechselrichter=wr,
eauto=eauto,
home_appliance=dishwasher,
)
# Setup the DEAP environment and optimization process
self.setup_deap_environment({"home_appliance": 1 if dishwasher else 0}, start_hour)
self.toolbox.register(
"evaluate",
lambda ind: self.evaluate(ind, ems, parameters, start_hour, worst_case),
)
if self.verbose == True:
start_time = time.time()
start_solution, extra_data = self.optimize(parameters.start_solution, ngen=ngen)
if self.verbose == True:
elapsed_time = time.time() - start_time
print(f"Time evaluate inner: {elapsed_time:.4f} sec.")
# Perform final evaluation on the best solution
o = self.evaluate_inner(start_solution, ems, start_hour)
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
start_solution
)
eautocharge_hours_float = (
[
self._config.eos.available_charging_rates_in_percentage[i]
for i in eautocharge_hours_index
]
if eautocharge_hours_index is not None
else None
)
ac_charge, dc_charge, discharge = self.decode_charge_discharge(discharge_hours_bin)
# Visualize the results
visualisiere_ergebnisse(
parameters.ems.gesamtlast,
parameters.ems.pv_prognose_wh,
parameters.ems.strompreis_euro_pro_wh,
o,
ac_charge,
dc_charge,
discharge,
parameters.temperature_forecast,
start_hour,
einspeiseverguetung_euro_pro_wh,
config=self._config,
extra_data=extra_data,
)
return OptimizeResponse(
**{
"ac_charge": ac_charge,
"dc_charge": dc_charge,
"discharge_allowed": discharge,
"eautocharge_hours_float": eautocharge_hours_float,
"result": SimulationResult(**o),
"eauto_obj": ems.eauto,
"start_solution": start_solution,
"washingstart": washingstart_int,
}
)