Files
EOS/src/akkudoktoreos/measurement/measurement.py
Bobby Noelte d4e31d556a Add Documentation 2 (#334)
Add documentation that covers:

- configuration
- prediction

Add Python scripts that support automatic documentation generation for
configuration data defined with pydantic.

Adapt EOS configuration to provide more methods for REST API and
automatic documentation generation.

Adapt REST API to allow for EOS configuration file load and save.
Sort REST API on generation of openapi markdown for docs.

Move logutil to core/logging to allow configuration of logging by standard config.

Make Akkudoktor predictions always start extraction of prediction data at start of day.
Previously extraction started at actual hour. This is to support the code that assumes
prediction data to start at start of day.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-01-05 14:41:07 +01:00

264 lines
10 KiB
Python

"""Measurement module to provide and store measurements.
This module provides a `Measurement` class to manage and update a sequence of
data records for measurements.
The measurements can be added programmatically or imported from a file or JSON string.
"""
from typing import Any, ClassVar, List, Optional
import numpy as np
from numpydantic import NDArray, Shape
from pendulum import DateTime, Duration
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.dataabc import DataImportMixin, DataRecord, DataSequence
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class MeasurementCommonSettings(SettingsBaseModel):
measurement_load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source (e.g. 'Household', 'Heat Pump')"
)
measurement_load1_name: Optional[str] = Field(
default=None, description="Name of the load1 source (e.g. 'Household', 'Heat Pump')"
)
measurement_load2_name: Optional[str] = Field(
default=None, description="Name of the load2 source (e.g. 'Household', 'Heat Pump')"
)
measurement_load3_name: Optional[str] = Field(
default=None, description="Name of the load3 source (e.g. 'Household', 'Heat Pump')"
)
measurement_load4_name: Optional[str] = Field(
default=None, description="Name of the load4 source (e.g. 'Household', 'Heat Pump')"
)
class MeasurementDataRecord(DataRecord):
"""Represents a measurement data record containing various measurements at a specific datetime.
Attributes:
date_time (Optional[DateTime]): The datetime of the record.
"""
# Single loads, to be aggregated to total load
measurement_load0_mr: Optional[float] = Field(
default=None, ge=0, description="Load0 meter reading [kWh]"
)
measurement_load1_mr: Optional[float] = Field(
default=None, ge=0, description="Load1 meter reading [kWh]"
)
measurement_load2_mr: Optional[float] = Field(
default=None, ge=0, description="Load2 meter reading [kWh]"
)
measurement_load3_mr: Optional[float] = Field(
default=None, ge=0, description="Load3 meter reading [kWh]"
)
measurement_load4_mr: Optional[float] = Field(
default=None, ge=0, description="Load4 meter reading [kWh]"
)
measurement_max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
measurement_grid_export_mr: Optional[float] = Field(
default=None, ge=0, description="Export to grid meter reading [kWh]"
)
measurement_grid_import_mr: Optional[float] = Field(
default=None, ge=0, description="Import from grid meter reading [kWh]"
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def measurement_loads(self) -> List[str]:
"""Compute a list of active loads."""
active_loads = []
# Loop through measurement_loadx
for i in range(self.measurement_max_loads):
load_attr = f"measurement_load{i}_mr"
# Check if either attribute is set and add to active loads
if getattr(self, load_attr, None):
active_loads.append(load_attr)
return active_loads
class Measurement(SingletonMixin, DataImportMixin, DataSequence):
"""Singleton class that holds measurement data records.
Measurements can be provided programmatically or read from JSON string or file.
"""
records: List[MeasurementDataRecord] = Field(
default_factory=list, description="List of measurement data records"
)
topics: ClassVar[List[str]] = [
"measurement_load",
]
def _interval_count(
self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration
) -> int:
"""Calculate number of intervals between two datetimes.
Args:
start_datetime: Starting datetime
end_datetime: Ending datetime
interval: Time duration for each interval
Returns:
Number of intervals as integer
Raises:
ValueError: If end_datetime is before start_datetime
ValueError: If interval is zero or negative
"""
if end_datetime < start_datetime:
raise ValueError("end_datetime must be after start_datetime")
if interval.total_seconds() <= 0:
raise ValueError("interval must be positive")
# Calculate difference in seconds
diff_seconds = end_datetime.diff(start_datetime).total_seconds()
interval_seconds = interval.total_seconds()
# Return ceiling of division to include partial intervals
return int(np.ceil(diff_seconds / interval_seconds))
def name_to_key(self, name: str, topic: str) -> Optional[str]:
"""Provides measurement key for given name and topic."""
topic = topic.lower()
if topic not in self.topics:
return None
topic_keys = [key for key in self.config.config_keys if key.startswith(topic)]
key = None
if topic == "measurement_load":
for config_key in topic_keys:
if config_key.endswith("_name") and getattr(self.config, config_key) == name:
key = topic + config_key[len(topic) : len(topic) + 1] + "_mr"
break
if key is not None and key not in self.record_keys:
# Should never happen
error_msg = f"Key '{key}' not available."
logger.error(error_msg)
raise KeyError(error_msg)
return key
def _energy_from_meter_readings(
self,
key: str,
start_datetime: DateTime,
end_datetime: DateTime,
interval: Duration,
) -> NDArray[Shape["*"], Any]:
"""Calculate an energy values array indexed by fixed time intervals from energy metering data within an optional date range.
Args:
key: Key for energy meter readings.
start_datetime (datetime): The start date for filtering the energy data (inclusive).
end_datetime (datetime): The end date for filtering the energy data (exclusive).
interval (duration): The fixed time interval.
Returns:
np.ndarray: A NumPy Array of the energy [kWh] per interval values calculated from
the meter readings.
"""
# Add one interval to end_datetime to assure we have a energy value interval for all
# datetimes from start_datetime (inclusive) to end_datetime (exclusive)
end_datetime += interval
size = self._interval_count(start_datetime, end_datetime, interval)
energy_mr_array = self.key_to_array(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
)
if energy_mr_array.size != size:
logging_msg = (
f"'{key}' meter reading array size: {energy_mr_array.size}"
f" does not fit to expected size: {size}, {energy_mr_array}"
)
if energy_mr_array.size != 0:
logger.error(logging_msg)
raise ValueError(logging_msg)
logger.debug(logging_msg)
energy_array = np.zeros(size - 1)
elif np.any(energy_mr_array == None):
# 'key_to_array()' creates None values array if no data records are available.
# Array contains None value -> ignore
debug_msg = f"'{key}' meter reading None: {energy_mr_array}"
logger.debug(debug_msg)
energy_array = np.zeros(size - 1)
else:
# Calculate load per interval
debug_msg = f"'{key}' meter reading: {energy_mr_array}"
logger.debug(debug_msg)
energy_array = np.diff(energy_mr_array)
debug_msg = f"'{key}' energy calculation: {energy_array}"
logger.debug(debug_msg)
return energy_array
def load_total(
self,
start_datetime: Optional[DateTime] = None,
end_datetime: Optional[DateTime] = None,
interval: Optional[Duration] = None,
) -> NDArray[Shape["*"], Any]:
"""Calculate a total load energy values array indexed by fixed time intervals from load metering data within an optional date range.
Args:
start_datetime (datetime, optional): The start date for filtering the load data (inclusive).
end_datetime (datetime, optional): The end date for filtering the load data (exclusive).
interval (duration, optional): The fixed time interval. Defaults to 1 hour.
Returns:
np.ndarray: A NumPy Array of the total load energy [kWh] per interval values calculated from
the load meter readings.
"""
if len(self) < 1:
# No data available
if start_datetime is None or end_datetime is None:
size = 0
else:
size = self._interval_count(start_datetime, end_datetime, interval)
return np.zeros(size)
if interval is None:
interval = to_duration("1 hour")
if start_datetime is None:
start_datetime = self[0].date_time
if end_datetime is None:
end_datetime = self[-1].date_time
size = self._interval_count(start_datetime, end_datetime, interval)
load_total_array = np.zeros(size)
# Loop through measurement_load<x>_mr
for i in range(self.record_class().measurement_max_loads):
key = f"measurement_load{i}_mr"
# Calculate load per interval
load_array = self._energy_from_meter_readings(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
)
# Add calculated load to total load
load_total_array += load_array
debug_msg = f"Total load '{key}' calculation: {load_total_array}"
logger.debug(debug_msg)
return load_total_array
def get_measurement() -> Measurement:
"""Gets the EOS measurement data."""
return Measurement()