EOS/tests/test_class_ems.py
2024-12-21 14:57:11 +01:00

356 lines
9.3 KiB
Python

from pathlib import Path
import numpy as np
import pytest
from akkudoktoreos.config import AppConfig
from akkudoktoreos.devices.battery import EAutoParameters, PVAkku, PVAkkuParameters
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Wechselrichter, WechselrichterParameters
from akkudoktoreos.prediction.ems import (
EnergieManagementSystem,
EnergieManagementSystemParameters,
SimulationResult,
)
from akkudoktoreos.prediction.self_consumption_probability import (
self_consumption_probability_interpolator,
)
prediction_hours = 48
optimization_hours = 24
start_hour = 1
# Example initialization of necessary components
@pytest.fixture
def create_ems_instance(tmp_config: AppConfig) -> EnergieManagementSystem:
"""Fixture to create an EnergieManagementSystem instance with given test parameters."""
# Initialize the battery and the inverter
akku = PVAkku(
PVAkkuParameters(kapazitaet_wh=5000, start_soc_prozent=80, min_soc_prozent=10),
hours=prediction_hours,
)
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
sc = self_consumption_probability_interpolator(
Path(__file__).parent.resolve()
/ ".."
/ "src"
/ "akkudoktoreos"
/ "data"
/ "regular_grid_interpolator.pkl"
)
akku.reset()
wechselrichter = Wechselrichter(
WechselrichterParameters(max_leistung_wh=10000), akku, self_consumption_predictor=sc
)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
consumption_wh=2000,
duration_h=2,
),
hours=prediction_hours,
)
home_appliance.set_starting_time(2)
# Example initialization of electric car battery
eauto = PVAkku(
EAutoParameters(kapazitaet_wh=26400, start_soc_prozent=10, min_soc_prozent=10),
hours=prediction_hours,
)
eauto.set_charge_per_hour(np.full(prediction_hours, 1))
# Parameters based on previous example data
pv_prognose_wh = [
0,
0,
0,
0,
0,
0,
0,
8.05,
352.91,
728.51,
930.28,
1043.25,
1106.74,
1161.69,
6018.82,
5519.07,
3969.88,
3017.96,
1943.07,
1007.17,
319.67,
7.88,
0,
0,
0,
0,
0,
0,
0,
0,
0,
5.04,
335.59,
705.32,
1121.12,
1604.79,
2157.38,
1433.25,
5718.49,
4553.96,
3027.55,
2574.46,
1720.4,
963.4,
383.3,
0,
0,
0,
]
strompreis_euro_pro_wh = [
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
]
einspeiseverguetung_euro_pro_wh = 0.00007
preis_euro_pro_wh_akku = 0.0001
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Initialize the energy management system with the respective parameters
ems = EnergieManagementSystem(
tmp_config.eos,
EnergieManagementSystemParameters(
pv_prognose_wh=pv_prognose_wh,
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
gesamtlast=gesamtlast,
),
wechselrichter=wechselrichter,
eauto=eauto,
home_appliance=home_appliance,
)
return ems
def test_simulation(create_ems_instance):
"""Test the EnergieManagementSystem simulation method."""
ems = create_ems_instance
# Simulate starting from hour 1 (this value can be adjusted)
result = ems.simuliere(start_stunde=start_hour)
# visualisiere_ergebnisse(
# ems.gesamtlast,
# ems.pv_prognose_wh,
# ems.strompreis_euro_pro_wh,
# result,
# ems.akku.discharge_array+ems.akku.charge_array,
# None,
# ems.pv_prognose_wh,
# start_hour,
# 48,
# np.full(48, 0.0),
# filename="visualization_results.pdf",
# extra_data=None,
# )
# Assertions to validate results
assert result is not None, "Result should not be None"
assert isinstance(result, dict), "Result should be a dictionary"
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
"""
Check the result of the simulation based on expected values.
"""
# Example result returned from the simulation (used for assertions)
assert result is not None, "Result should not be None."
# Check that the result is a dictionary
assert isinstance(result, dict), "Result should be a dictionary."
assert SimulationResult(**result) is not None
# Check the length of the main arrays
assert (
len(result["Last_Wh_pro_Stunde"]) == 47
), "The length of 'Last_Wh_pro_Stunde' should be 48."
assert (
len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 47
), "The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
assert (
len(result["Netzbezug_Wh_pro_Stunde"]) == 47
), "The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
assert (
len(result["Kosten_Euro_pro_Stunde"]) == 47
), "The length of 'Kosten_Euro_pro_Stunde' should be 48."
assert (
len(result["akku_soc_pro_stunde"]) == 47
), "The length of 'akku_soc_pro_stunde' should be 48."
# Verify specific values in the 'Last_Wh_pro_Stunde' array
assert (
result["Last_Wh_pro_Stunde"][1] == 1527.13
), "The value at index 1 of 'Last_Wh_pro_Stunde' should be 1527.13."
assert (
result["Last_Wh_pro_Stunde"][2] == 1468.88
), "The value at index 2 of 'Last_Wh_pro_Stunde' should be 1468.88."
assert (
result["Last_Wh_pro_Stunde"][12] == 1132.03
), "The value at index 12 of 'Last_Wh_pro_Stunde' should be 1132.03."
# Verify that the value at index 0 is 'None'
# Check that 'Netzeinspeisung_Wh_pro_Stunde' and 'Netzbezug_Wh_pro_Stunde' are consistent
assert (
result["Netzbezug_Wh_pro_Stunde"][1] == 0
), "The value at index 1 of 'Netzbezug_Wh_pro_Stunde' should be 0."
# Verify the total balance
assert (
abs(result["Gesamtbilanz_Euro"] - 1.7880374129090917) < 1e-5
), "Total balance should be 1.7880374129090917."
# Check total revenue and total costs
assert (
abs(result["Gesamteinnahmen_Euro"] - 1.3169784090909087) < 1e-5
), "Total revenue should be 1.3169784090909087."
assert (
abs(result["Gesamtkosten_Euro"] - 3.1050158220000004) < 1e-5
), "Total costs should be 3.1050158220000004 ."
# Check the losses
assert (
abs(result["Gesamt_Verluste"] - 2615.222727272727) < 1e-5
), "Total losses should be 2615.222727272727 ."
# Check the values in 'akku_soc_pro_stunde'
assert (
result["akku_soc_pro_stunde"][-1] == 28.675
), "The value at index -1 of 'akku_soc_pro_stunde' should be 28.675."
assert (
result["akku_soc_pro_stunde"][1] == 25.379090909090905
), "The value at index 1 of 'akku_soc_pro_stunde' should be 25.379090909090905."
# Check home appliances
assert (
sum(ems.home_appliance.get_load_curve()) == 2000
), "The sum of 'ems.home_appliance.get_load_curve()' should be 2000."
assert (
np.nansum(
np.where(
result["Home_appliance_wh_per_hour"] is None,
np.nan,
np.array(result["Home_appliance_wh_per_hour"]),
)
)
== 2000
), "The sum of 'Home_appliance_wh_per_hour' should be 2000."
print("All tests passed successfully.")