mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-11 11:56:17 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
* Fix logging configuration issues that made logging stop operation. Switch to Loguru logging (from Python logging). Enable console and file logging with different log levels. Add logging documentation. * Fix logging configuration and EOS configuration out of sync. Added tracking support for nested value updates of Pydantic models. This used to update the logging configuration when the EOS configurationm for logging is changed. Should keep logging config and EOS config in sync as long as all changes to the EOS logging configuration are done by set_nested_value(), which is the case for the REST API. * Fix energy management task looping endlessly after the second update when trying to update the last_update datetime. * Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance. * Fix usage of model classes instead of model instances in nested value access when evaluation the value type that is associated to each key. * Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider. * Fix documentation qirks and add EOS Connect to integrations. * Support deprecated fields in configuration in documentation generation and EOSdash. * Enhance EOSdash demo to show BrightSky humidity data (that is often missing) * Update documentation reference to German EOS installation videos. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
529 lines
22 KiB
Python
529 lines
22 KiB
Python
import traceback
|
|
from typing import Any, ClassVar, Optional
|
|
|
|
import numpy as np
|
|
from loguru import logger
|
|
from numpydantic import NDArray, Shape
|
|
from pendulum import DateTime
|
|
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
|
|
from typing_extensions import Self
|
|
|
|
from akkudoktoreos.core.cache import CacheUntilUpdateStore
|
|
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
|
|
from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel
|
|
from akkudoktoreos.devices.battery import Battery
|
|
from akkudoktoreos.devices.generic import HomeAppliance
|
|
from akkudoktoreos.devices.inverter import Inverter
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
|
from akkudoktoreos.utils.utils import NumpyEncoder
|
|
|
|
|
|
class EnergyManagementParameters(ParametersBaseModel):
|
|
pv_prognose_wh: list[float] = Field(
|
|
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
|
|
)
|
|
strompreis_euro_pro_wh: list[float] = Field(
|
|
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
|
|
)
|
|
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
|
|
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
|
|
)
|
|
preis_euro_pro_wh_akku: float = Field(
|
|
description="A float representing the cost of battery energy per watt-hour."
|
|
)
|
|
gesamtlast: list[float] = Field(
|
|
description="An array of floats representing the total load (consumption) in watts for different time intervals."
|
|
)
|
|
|
|
@model_validator(mode="after")
|
|
def validate_list_length(self) -> Self:
|
|
pv_prognose_length = len(self.pv_prognose_wh)
|
|
if (
|
|
pv_prognose_length != len(self.strompreis_euro_pro_wh)
|
|
or pv_prognose_length != len(self.gesamtlast)
|
|
or (
|
|
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
|
|
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
|
|
)
|
|
):
|
|
raise ValueError("Input lists have different lengths")
|
|
return self
|
|
|
|
|
|
class SimulationResult(ParametersBaseModel):
|
|
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
|
|
|
|
Last_Wh_pro_Stunde: list[Optional[float]] = Field(description="TBD")
|
|
EAuto_SoC_pro_Stunde: list[Optional[float]] = Field(
|
|
description="The state of charge of the EV for each hour."
|
|
)
|
|
Einnahmen_Euro_pro_Stunde: list[Optional[float]] = Field(
|
|
description="The revenue from grid feed-in or other sources in euros per hour."
|
|
)
|
|
Gesamt_Verluste: float = Field(
|
|
description="The total losses in watt-hours over the entire period."
|
|
)
|
|
Gesamtbilanz_Euro: float = Field(
|
|
description="The total balance of revenues minus costs in euros."
|
|
)
|
|
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
|
|
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
|
|
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
|
|
description="The energy consumption of a household appliance in watt-hours per hour."
|
|
)
|
|
Kosten_Euro_pro_Stunde: list[Optional[float]] = Field(
|
|
description="The costs in euros per hour."
|
|
)
|
|
Netzbezug_Wh_pro_Stunde: list[Optional[float]] = Field(
|
|
description="The grid energy drawn in watt-hours per hour."
|
|
)
|
|
Netzeinspeisung_Wh_pro_Stunde: list[Optional[float]] = Field(
|
|
description="The energy fed into the grid in watt-hours per hour."
|
|
)
|
|
Verluste_Pro_Stunde: list[Optional[float]] = Field(
|
|
description="The losses in watt-hours per hour."
|
|
)
|
|
akku_soc_pro_stunde: list[Optional[float]] = Field(
|
|
description="The state of charge of the battery (not the EV) in percentage per hour."
|
|
)
|
|
Electricity_price: list[Optional[float]] = Field(
|
|
description="Used Electricity Price, including predictions"
|
|
)
|
|
|
|
@field_validator(
|
|
"Last_Wh_pro_Stunde",
|
|
"Netzeinspeisung_Wh_pro_Stunde",
|
|
"akku_soc_pro_stunde",
|
|
"Netzbezug_Wh_pro_Stunde",
|
|
"Kosten_Euro_pro_Stunde",
|
|
"Einnahmen_Euro_pro_Stunde",
|
|
"EAuto_SoC_pro_Stunde",
|
|
"Verluste_Pro_Stunde",
|
|
"Home_appliance_wh_per_hour",
|
|
"Electricity_price",
|
|
mode="before",
|
|
)
|
|
def convert_numpy(cls, field: Any) -> Any:
|
|
return NumpyEncoder.convert_numpy(field)[0]
|
|
|
|
|
|
class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
|
|
# Disable validation on assignment to speed up simulation runs.
|
|
model_config = ConfigDict(
|
|
validate_assignment=False,
|
|
)
|
|
|
|
# Start datetime.
|
|
_start_datetime: ClassVar[Optional[DateTime]] = None
|
|
|
|
# last run datetime. Used by energy management task
|
|
_last_datetime: ClassVar[Optional[DateTime]] = None
|
|
|
|
@computed_field # type: ignore[prop-decorator]
|
|
@property
|
|
def start_datetime(self) -> DateTime:
|
|
"""The starting datetime of the current or latest energy management."""
|
|
if EnergyManagement._start_datetime is None:
|
|
EnergyManagement.set_start_datetime()
|
|
return EnergyManagement._start_datetime
|
|
|
|
@classmethod
|
|
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
|
|
"""Set the start datetime for the next energy management cycle.
|
|
|
|
If no datetime is provided, the current datetime is used.
|
|
|
|
The start datetime is always rounded down to the nearest hour
|
|
(i.e., setting minutes, seconds, and microseconds to zero).
|
|
|
|
Args:
|
|
start_datetime (Optional[DateTime]): The datetime to set as the start.
|
|
If None, the current datetime is used.
|
|
|
|
Returns:
|
|
DateTime: The adjusted start datetime.
|
|
"""
|
|
if start_datetime is None:
|
|
start_datetime = to_datetime()
|
|
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
|
|
return cls._start_datetime
|
|
|
|
# -------------------------
|
|
# TODO: Take from prediction
|
|
# -------------------------
|
|
|
|
load_energy_array: Optional[NDArray[Shape["*"], float]] = Field(
|
|
default=None,
|
|
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
|
|
)
|
|
pv_prediction_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
|
default=None,
|
|
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
|
|
)
|
|
elect_price_hourly: Optional[NDArray[Shape["*"], float]] = Field(
|
|
default=None,
|
|
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
|
|
)
|
|
elect_revenue_per_hour_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
|
default=None,
|
|
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
|
|
)
|
|
|
|
# -------------------------
|
|
# TODO: Move to devices
|
|
# -------------------------
|
|
|
|
battery: Optional[Battery] = Field(default=None, description="TBD.")
|
|
ev: Optional[Battery] = Field(default=None, description="TBD.")
|
|
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
|
|
inverter: Optional[Inverter] = Field(default=None, description="TBD.")
|
|
|
|
# -------------------------
|
|
# TODO: Move to devices
|
|
# -------------------------
|
|
|
|
ac_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
|
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
|
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
|
if hasattr(self, "_initialized"):
|
|
return
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def set_parameters(
|
|
self,
|
|
parameters: EnergyManagementParameters,
|
|
ev: Optional[Battery] = None,
|
|
home_appliance: Optional[HomeAppliance] = None,
|
|
inverter: Optional[Inverter] = None,
|
|
) -> None:
|
|
self.load_energy_array = np.array(parameters.gesamtlast, float)
|
|
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
|
|
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
|
|
self.elect_revenue_per_hour_arr = (
|
|
parameters.einspeiseverguetung_euro_pro_wh
|
|
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
|
else np.full(
|
|
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
|
|
)
|
|
)
|
|
if inverter:
|
|
self.battery = inverter.battery
|
|
else:
|
|
self.battery = None
|
|
self.ev = ev
|
|
self.home_appliance = home_appliance
|
|
self.inverter = inverter
|
|
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
|
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0)
|
|
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
|
|
|
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
|
if self.battery:
|
|
self.battery.set_discharge_per_hour(ds)
|
|
|
|
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
|
self.ac_charge_hours = ds
|
|
|
|
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
|
|
self.dc_charge_hours = ds
|
|
|
|
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
|
|
self.ev_charge_hours = ds
|
|
|
|
def set_home_appliance_start(self, ds: int, global_start_hour: int = 0) -> None:
|
|
if self.home_appliance:
|
|
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
|
|
|
|
def reset(self) -> None:
|
|
if self.ev:
|
|
self.ev.reset()
|
|
if self.battery:
|
|
self.battery.reset()
|
|
|
|
def run(
|
|
self,
|
|
start_hour: Optional[int] = None,
|
|
force_enable: Optional[bool] = False,
|
|
force_update: Optional[bool] = False,
|
|
) -> None:
|
|
"""Run energy management.
|
|
|
|
Sets `start_datetime` to current hour, updates the configuration and the prediction, and
|
|
starts simulation at current hour.
|
|
|
|
Args:
|
|
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
|
to now.
|
|
force_enable (bool, optional): If True, forces to update even if disabled. This
|
|
is mostly relevant to prediction providers.
|
|
force_update (bool, optional): If True, forces to update the data even if still cached.
|
|
"""
|
|
# Throw away any cached results of the last run.
|
|
CacheUntilUpdateStore().clear()
|
|
self.set_start_hour(start_hour=start_hour)
|
|
|
|
# Check for run definitions
|
|
if self.start_datetime is None:
|
|
error_msg = "Start datetime unknown."
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
if self.config.prediction.hours is None:
|
|
error_msg = "Prediction hours unknown."
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
if self.config.optimization.hours is None:
|
|
error_msg = "Optimization hours unknown."
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
|
|
self.prediction.update_data(force_enable=force_enable, force_update=force_update)
|
|
# TODO: Create optimisation problem that calls into devices.update_data() for simulations.
|
|
|
|
logger.info("Energy management run (crippled version - prediction update only)")
|
|
|
|
def manage_energy(self) -> None:
|
|
"""Repeating task for managing energy.
|
|
|
|
This task should be executed by the server regularly (e.g., every 10 seconds)
|
|
to ensure proper energy management. Configuration changes to the energy management interval
|
|
will only take effect if this task is executed.
|
|
|
|
- Initializes and runs the energy management for the first time if it has never been run
|
|
before.
|
|
- If the energy management interval is not configured or invalid (NaN), the task will not
|
|
trigger any repeated energy management runs.
|
|
- Compares the current time with the last run time and runs the energy management if the
|
|
interval has elapsed.
|
|
- Logs any exceptions that occur during the initialization or execution of the energy
|
|
management.
|
|
|
|
Note: The task maintains the interval even if some intervals are missed.
|
|
"""
|
|
current_datetime = to_datetime()
|
|
interval = self.config.ems.interval # interval maybe changed in between
|
|
|
|
if EnergyManagement._last_datetime is None:
|
|
# Never run before
|
|
try:
|
|
# Remember energy run datetime.
|
|
EnergyManagement._last_datetime = current_datetime
|
|
# Try to run a first energy management. May fail due to config incomplete.
|
|
self.run()
|
|
except Exception as e:
|
|
trace = "".join(traceback.TracebackException.from_exception(e).format())
|
|
message = f"EOS init: {e}\n{trace}"
|
|
logger.error(message)
|
|
return
|
|
|
|
if interval is None or interval == float("nan"):
|
|
# No Repetition
|
|
return
|
|
|
|
if (
|
|
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
|
|
< interval
|
|
):
|
|
# Wait for next run
|
|
return
|
|
|
|
try:
|
|
self.run()
|
|
except Exception as e:
|
|
trace = "".join(traceback.TracebackException.from_exception(e).format())
|
|
message = f"EOS run: {e}\n{trace}"
|
|
logger.error(message)
|
|
|
|
# Remember the energy management run - keep on interval even if we missed some intervals
|
|
while (
|
|
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
|
|
>= interval
|
|
):
|
|
EnergyManagement._last_datetime = EnergyManagement._last_datetime.add(seconds=interval)
|
|
|
|
def set_start_hour(self, start_hour: Optional[int] = None) -> None:
|
|
"""Sets start datetime to given hour.
|
|
|
|
Args:
|
|
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
|
to now.
|
|
"""
|
|
if start_hour is None:
|
|
self.set_start_datetime()
|
|
else:
|
|
start_datetime = to_datetime().set(hour=start_hour, minute=0, second=0, microsecond=0)
|
|
self.set_start_datetime(start_datetime)
|
|
|
|
def simulate_start_now(self) -> dict[str, Any]:
|
|
start_hour = to_datetime().now().hour
|
|
return self.simulate(start_hour)
|
|
|
|
def simulate(self, start_hour: int) -> dict[str, Any]:
|
|
"""Simulate energy usage and costs for the given start hour.
|
|
|
|
akku_soc_pro_stunde begin of the hour, initial hour state!
|
|
last_wh_pro_stunde integral of last hour (end state)
|
|
"""
|
|
# Check for simulation integrity
|
|
required_attrs = [
|
|
"load_energy_array",
|
|
"pv_prediction_wh",
|
|
"elect_price_hourly",
|
|
"ev_charge_hours",
|
|
"ac_charge_hours",
|
|
"dc_charge_hours",
|
|
"elect_revenue_per_hour_arr",
|
|
]
|
|
missing_data = [
|
|
attr.replace("_", " ").title() for attr in required_attrs if getattr(self, attr) is None
|
|
]
|
|
|
|
if missing_data:
|
|
logger.error("Mandatory data missing - %s", ", ".join(missing_data))
|
|
raise ValueError(f"Mandatory data missing: {', '.join(missing_data)}")
|
|
|
|
# Pre-fetch data
|
|
load_energy_array = np.array(self.load_energy_array)
|
|
pv_prediction_wh = np.array(self.pv_prediction_wh)
|
|
elect_price_hourly = np.array(self.elect_price_hourly)
|
|
ev_charge_hours = np.array(self.ev_charge_hours)
|
|
ac_charge_hours = np.array(self.ac_charge_hours)
|
|
dc_charge_hours = np.array(self.dc_charge_hours)
|
|
elect_revenue_per_hour_arr = np.array(self.elect_revenue_per_hour_arr)
|
|
|
|
# Fetch objects
|
|
battery = self.battery
|
|
if battery is None:
|
|
raise ValueError(f"battery not set: {battery}")
|
|
ev = self.ev
|
|
home_appliance = self.home_appliance
|
|
inverter = self.inverter
|
|
|
|
if not (len(load_energy_array) == len(pv_prediction_wh) == len(elect_price_hourly)):
|
|
error_msg = f"Array sizes do not match: Load Curve = {len(load_energy_array)}, PV Forecast = {len(pv_prediction_wh)}, Electricity Price = {len(elect_price_hourly)}"
|
|
logger.error(error_msg)
|
|
raise ValueError(error_msg)
|
|
|
|
end_hour = len(load_energy_array)
|
|
total_hours = end_hour - start_hour
|
|
|
|
# Pre-allocate arrays for the results, optimized for speed
|
|
loads_energy_per_hour = np.full((total_hours), np.nan)
|
|
feedin_energy_per_hour = np.full((total_hours), np.nan)
|
|
consumption_energy_per_hour = np.full((total_hours), np.nan)
|
|
costs_per_hour = np.full((total_hours), np.nan)
|
|
revenue_per_hour = np.full((total_hours), np.nan)
|
|
soc_per_hour = np.full((total_hours), np.nan)
|
|
soc_ev_per_hour = np.full((total_hours), np.nan)
|
|
losses_wh_per_hour = np.full((total_hours), np.nan)
|
|
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
|
|
electricity_price_per_hour = np.full((total_hours), np.nan)
|
|
|
|
# Set initial state
|
|
soc_per_hour[0] = battery.current_soc_percentage()
|
|
if ev:
|
|
soc_ev_per_hour[0] = ev.current_soc_percentage()
|
|
|
|
for hour in range(start_hour, end_hour):
|
|
hour_idx = hour - start_hour
|
|
|
|
# save begin states
|
|
soc_per_hour[hour_idx] = battery.current_soc_percentage()
|
|
|
|
if ev:
|
|
soc_ev_per_hour[hour_idx] = ev.current_soc_percentage()
|
|
|
|
# Accumulate loads and PV generation
|
|
consumption = load_energy_array[hour]
|
|
losses_wh_per_hour[hour_idx] = 0.0
|
|
|
|
# Home appliances
|
|
if home_appliance:
|
|
ha_load = home_appliance.get_load_for_hour(hour)
|
|
consumption += ha_load
|
|
home_appliance_wh_per_hour[hour_idx] = ha_load
|
|
|
|
# E-Auto handling
|
|
if ev and ev_charge_hours[hour] > 0:
|
|
loaded_energy_ev, verluste_eauto = ev.charge_energy(
|
|
None, hour, relative_power=ev_charge_hours[hour]
|
|
)
|
|
consumption += loaded_energy_ev
|
|
losses_wh_per_hour[hour_idx] += verluste_eauto
|
|
|
|
# Process inverter logic
|
|
energy_feedin_grid_actual = energy_consumption_grid_actual = losses = eigenverbrauch = (
|
|
0.0
|
|
)
|
|
|
|
hour_ac_charge = ac_charge_hours[hour]
|
|
hour_dc_charge = dc_charge_hours[hour]
|
|
hourly_electricity_price = elect_price_hourly[hour]
|
|
hourly_energy_revenue = elect_revenue_per_hour_arr[hour]
|
|
|
|
battery.set_charge_allowed_for_hour(hour_dc_charge, hour)
|
|
|
|
if inverter:
|
|
energy_produced = pv_prediction_wh[hour]
|
|
(
|
|
energy_feedin_grid_actual,
|
|
energy_consumption_grid_actual,
|
|
losses,
|
|
eigenverbrauch,
|
|
) = inverter.process_energy(energy_produced, consumption, hour)
|
|
|
|
# AC PV Battery Charge
|
|
if hour_ac_charge > 0.0:
|
|
battery.set_charge_allowed_for_hour(1, hour)
|
|
battery_charged_energy_actual, battery_losses_actual = battery.charge_energy(
|
|
None, hour, relative_power=hour_ac_charge
|
|
)
|
|
|
|
total_battery_energy = battery_charged_energy_actual + battery_losses_actual
|
|
consumption += total_battery_energy
|
|
energy_consumption_grid_actual += total_battery_energy
|
|
losses_wh_per_hour[hour_idx] += battery_losses_actual
|
|
|
|
# Update hourly arrays
|
|
feedin_energy_per_hour[hour_idx] = energy_feedin_grid_actual
|
|
consumption_energy_per_hour[hour_idx] = energy_consumption_grid_actual
|
|
losses_wh_per_hour[hour_idx] += losses
|
|
loads_energy_per_hour[hour_idx] = consumption
|
|
electricity_price_per_hour[hour_idx] = hourly_electricity_price
|
|
|
|
# Financial calculations
|
|
costs_per_hour[hour_idx] = energy_consumption_grid_actual * hourly_electricity_price
|
|
revenue_per_hour[hour_idx] = energy_feedin_grid_actual * hourly_energy_revenue
|
|
|
|
total_cost = np.nansum(costs_per_hour)
|
|
total_losses = np.nansum(losses_wh_per_hour)
|
|
total_revenue = np.nansum(revenue_per_hour)
|
|
|
|
# Prepare output dictionary
|
|
return {
|
|
"Last_Wh_pro_Stunde": loads_energy_per_hour,
|
|
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
|
|
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
|
|
"Kosten_Euro_pro_Stunde": costs_per_hour,
|
|
"akku_soc_pro_stunde": soc_per_hour,
|
|
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
|
|
"Gesamtbilanz_Euro": total_cost - total_revenue,
|
|
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
|
|
"Gesamteinnahmen_Euro": total_revenue,
|
|
"Gesamtkosten_Euro": total_cost,
|
|
"Verluste_Pro_Stunde": losses_wh_per_hour,
|
|
"Gesamt_Verluste": total_losses,
|
|
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
|
|
"Electricity_price": electricity_price_per_hour,
|
|
}
|
|
|
|
|
|
# Initialize the Energy Management System, it is a singleton.
|
|
ems = EnergyManagement()
|
|
|
|
|
|
def get_ems() -> EnergyManagement:
|
|
"""Gets the EOS Energy Management System."""
|
|
return ems
|