EOS/modules/class_load_corrector.py

235 lines
12 KiB
Python

import json,sys, os
from datetime import datetime, timedelta, timezone
import numpy as np
from pprint import pprint
import pandas as pd
import matplotlib.pyplot as plt
# from sklearn.model_selection import train_test_split, GridSearchCV
# from sklearn.ensemble import GradientBoostingRegressor
# from xgboost import XGBRegressor
# from statsmodels.tsa.statespace.sarimax import SARIMAX
# from tensorflow.keras.models import Sequential
# from tensorflow.keras.layers import Dense, LSTM
# from tensorflow.keras.optimizers import Adam
# from sklearn.preprocessing import MinMaxScaler
# from sklearn.metrics import mean_squared_error, r2_score
import mariadb
# from sqlalchemy import create_engine
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
# Fügen Sie den übergeordneten Pfad zum sys.path hinzu
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import *
from modules.class_load import *
class LoadPredictionAdjuster:
def __init__(self, measured_data, predicted_data, load_forecast):
self.measured_data = measured_data
self.predicted_data = predicted_data
self.load_forecast = load_forecast
self.merged_data = self._merge_data()
self.train_data = None
self.test_data = None
self.weekday_diff = None
self.weekend_diff = None
def _remove_outliers(self, data, threshold=2):
# Berechne den Z-Score der 'Last'-Daten
data['Z-Score'] = np.abs((data['Last'] - data['Last'].mean()) / data['Last'].std())
# Filtere die Daten nach dem Schwellenwert
filtered_data = data[data['Z-Score'] < threshold]
return filtered_data.drop(columns=['Z-Score'])
def _merge_data(self):
merged_data = pd.merge(self.measured_data, self.predicted_data, on='time', how='inner')
merged_data['Hour'] = merged_data['time'].dt.hour
merged_data['DayOfWeek'] = merged_data['time'].dt.dayofweek
return merged_data
def calculate_weighted_mean(self, train_period_weeks=9, test_period_weeks=1):
self.merged_data = self._remove_outliers(self.merged_data)
train_end_date = self.merged_data['time'].max() - pd.Timedelta(weeks=test_period_weeks)
train_start_date = train_end_date - pd.Timedelta(weeks=train_period_weeks)
test_start_date = train_end_date + pd.Timedelta(hours=1)
test_end_date = test_start_date + pd.Timedelta(weeks=test_period_weeks) - pd.Timedelta(hours=1)
self.train_data = self.merged_data[(self.merged_data['time'] >= train_start_date) & (self.merged_data['time'] <= train_end_date)]
self.test_data = self.merged_data[(self.merged_data['time'] >= test_start_date) & (self.merged_data['time'] <= test_end_date)]
self.train_data['Difference'] = self.train_data['Last'] - self.train_data['Last Pred']
weekdays_train_data = self.train_data[self.train_data['DayOfWeek'] < 5]
weekends_train_data = self.train_data[self.train_data['DayOfWeek'] >= 5]
self.weekday_diff = weekdays_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
self.weekend_diff = weekends_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
def _weighted_mean_diff(self, data):
train_end_date = self.train_data['time'].max()
weights = 1 / (train_end_date - data['time']).dt.days.replace(0, np.nan)
weighted_mean = (data['Difference'] * weights).sum() / weights.sum()
return weighted_mean
def adjust_predictions(self):
self.train_data['Adjusted Pred'] = self.train_data.apply(self._adjust_row, axis=1)
self.test_data['Adjusted Pred'] = self.test_data.apply(self._adjust_row, axis=1)
def _adjust_row(self, row):
if row['DayOfWeek'] < 5:
return row['Last Pred'] + self.weekday_diff.get(row['Hour'], 0)
else:
return row['Last Pred'] + self.weekend_diff.get(row['Hour'], 0)
def plot_results(self):
self._plot_data(self.train_data, 'Training')
self._plot_data(self.test_data, 'Testing')
def _plot_data(self, data, data_type):
plt.figure(figsize=(14, 7))
plt.plot(data['time'], data['Last'], label=f'Actual Last - {data_type}', color='blue')
plt.plot(data['time'], data['Last Pred'], label=f'Predicted Last - {data_type}', color='red', linestyle='--')
plt.plot(data['time'], data['Adjusted Pred'], label=f'Adjusted Predicted Last - {data_type}', color='green', linestyle=':')
plt.xlabel('Time')
plt.ylabel('Load')
plt.title(f'Actual vs Predicted vs Adjusted Predicted Load ({data_type} Data)')
plt.legend()
plt.grid(True)
plt.show()
def evaluate_model(self):
mse = mean_squared_error(self.test_data['Last'], self.test_data['Adjusted Pred'])
r2 = r2_score(self.test_data['Last'], self.test_data['Adjusted Pred'])
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
def predict_next_hours(self, hours_ahead):
last_date = self.merged_data['time'].max()
future_dates = [last_date + pd.Timedelta(hours=i) for i in range(1, hours_ahead + 1)]
future_df = pd.DataFrame({'time': future_dates})
future_df['Hour'] = future_df['time'].dt.hour
future_df['DayOfWeek'] = future_df['time'].dt.dayofweek
future_df['Last Pred'] = future_df['time'].apply(self._forecast_next_hours)
future_df['Adjusted Pred'] = future_df.apply(self._adjust_row, axis=1)
return future_df
def _forecast_next_hours(self, timestamp):
date_str = timestamp.strftime('%Y-%m-%d')
hour = timestamp.hour
daily_forecast = self.load_forecast.get_daily_stats(date_str)
return daily_forecast[0][hour] if hour < len(daily_forecast[0]) else np.nan
class LastEstimator:
def __init__(self):
self.conn_params = db_config
self.conn = mariadb.connect(**self.conn_params)
def fetch_data(self, start_date, end_date):
queries = {
"Stromzaehler": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
"PV": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS PV FROM data WHERE topic = 'solarallpower' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
"Batterie_Strom_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Strom_PIP FROM pip WHERE topic = 'battery_current' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
"Batterie_Volt_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Volt_PIP FROM pip WHERE topic = 'battery_voltage' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
"Stromzaehler_Raus": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler_Raus FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung raus' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
"Wallbox": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Wallbox_Leistung FROM wallbox WHERE topic = 'power_total' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
}
dataframes = {}
for key, query in queries.items():
dataframes[key] = pd.read_sql(query, self.conn)
return dataframes
def calculate_last(self, dataframes):
# Batterie_Leistung = Batterie_Strom_PIP * Batterie_Volt_PIP
dataframes["Batterie_Leistung"] = dataframes["Batterie_Strom_PIP"].merge(dataframes["Batterie_Volt_PIP"], on="timestamp", how="outer")
dataframes["Batterie_Leistung"]["Batterie_Leistung"] = dataframes["Batterie_Leistung"]["Batterie_Strom_PIP"] * dataframes["Batterie_Leistung"]["Batterie_Volt_PIP"]
# Stromzaehler_Saldo = Stromzaehler - Stromzaehler_Raus
dataframes["Stromzaehler_Saldo"] = dataframes["Stromzaehler"].merge(dataframes["Stromzaehler_Raus"], on="timestamp", how="outer")
dataframes["Stromzaehler_Saldo"]["Stromzaehler_Saldo"] = dataframes["Stromzaehler_Saldo"]["Stromzaehler"] - dataframes["Stromzaehler_Saldo"]["Stromzaehler_Raus"]
# Stromzaehler_Saldo - Batterie_Leistung
dataframes["Netzleistung"] = dataframes["Stromzaehler_Saldo"].merge(dataframes["Batterie_Leistung"], on="timestamp", how="outer")
dataframes["Netzleistung"]["Netzleistung"] = dataframes["Netzleistung"]["Stromzaehler_Saldo"] - dataframes["Netzleistung"]["Batterie_Leistung"]
# Füge die Wallbox-Leistung hinzu
dataframes["Netzleistung"] = dataframes["Netzleistung"].merge(dataframes["Wallbox"], on="timestamp", how="left")
dataframes["Netzleistung"]["Wallbox_Leistung"] = dataframes["Netzleistung"]["Wallbox_Leistung"].fillna(0) # Fülle fehlende Werte mit 0
# Last = Netzleistung + PV
# Berechne die endgültige Last
dataframes["Last"] = dataframes["Netzleistung"].merge(dataframes["PV"], on="timestamp", how="outer")
dataframes["Last"]["Last_ohneWallbox"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"]
dataframes["Last"]["Last"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"] - dataframes["Last"]["Wallbox_Leistung"]
return dataframes["Last"].dropna()
def get_last(self, start_date, end_date):
dataframes = self.fetch_data(start_date, end_date)
last_df = self.calculate_last(dataframes)
return last_df
if __name__ == '__main__':
estimator = LastEstimator()
start_date = "2024-06-01"
end_date = "2024-08-01"
last_df = estimator.get_last(start_date, end_date)
selected_columns = last_df[['timestamp', 'Last']]
selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
# Drop rows with NaN values
cleaned_data = selected_columns.dropna()
print(cleaned_data)
# Create an instance of LoadForecast
lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000)
# Initialize an empty DataFrame to hold the forecast data
forecast_list = []
# Loop through each day in the date range
for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
date_str = single_date.strftime('%Y-%m-%d')
daily_forecast = lf.get_daily_stats(date_str)
mean_values = daily_forecast[0] # Extract the mean values
hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
forecast_list.append(daily_forecast_df)
# Concatenate all daily forecasts into a single DataFrame
forecast_df = pd.concat(forecast_list, ignore_index=True)
# Create an instance of the LoadPredictionAdjuster class
adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
# Calculate the weighted mean differences
adjuster.calculate_weighted_mean()
# Adjust the predictions
adjuster.adjust_predictions()
# Plot the results
adjuster.plot_results()
# Evaluate the model
adjuster.evaluate_model()
# Predict the next x hours
future_predictions = adjuster.predict_next_hours(48)
print(future_predictions)