Files
EOS/scripts/generate_config_md.py
Bobby Noelte 6df2b8ba93 fix: generate config markdown
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-30 14:18:41 +01:00

381 lines
14 KiB
Python
Executable File

#!.venv/bin/python
"""Utility functions for Configuration specification generation."""
import argparse
import json
import os
import re
import sys
import textwrap
from pathlib import Path
from typing import Any, Type, Union
from loguru import logger
from pydantic.fields import ComputedFieldInfo, FieldInfo
from pydantic_core import PydanticUndefined
from akkudoktoreos.config.config import ConfigEOS, GeneralSettings, get_config
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.datetimeutil import to_datetime
documented_types: set[PydanticBaseModel] = set()
undocumented_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
global_config_dict: dict[str, Any] = dict()
def get_title(config: PydanticBaseModel) -> str:
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return config.__doc__.strip().splitlines()[0].strip(".")
def get_body(config: PydanticBaseModel) -> str:
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return textwrap.dedent("\n".join(config.__doc__.strip().splitlines()[1:])).strip()
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
resolved_types: list[tuple[type, list[str]]] = []
origin = getattr(field_type, "__origin__", field_type)
if origin is Union:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types))
elif origin is list:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types + ["list"]))
else:
resolved_types.append((field_type, parent_types))
return resolved_types
def get_example_or_default(field_name: str, field_info: FieldInfo, example_ix: int) -> Any:
"""Generate a default value for a field, considering constraints."""
if field_info.examples is not None:
try:
return field_info.examples[example_ix]
except IndexError:
return field_info.examples[-1]
if field_info.default is not None:
return field_info.default
raise NotImplementedError(f"No default or example provided '{field_name}': {field_info}")
def get_model_structure_from_examples(
model_class: type[PydanticBaseModel], multiple: bool
) -> list[dict[str, Any]]:
"""Create a model instance with default or example values, respecting constraints."""
example_max_length = 1
# Get first field with examples (non-default) to get example_max_length
if multiple:
for _, field_info in model_class.model_fields.items():
if field_info.examples is not None:
example_max_length = len(field_info.examples)
break
example_data: list[dict[str, Any]] = [{} for _ in range(example_max_length)]
for field_name, field_info in model_class.model_fields.items():
if field_info.deprecated:
continue
for example_ix in range(example_max_length):
example_data[example_ix][field_name] = get_example_or_default(
field_name, field_info, example_ix
)
return example_data
def create_model_from_examples(
model_class: PydanticBaseModel, multiple: bool
) -> list[PydanticBaseModel]:
"""Create a model instance with default or example values, respecting constraints."""
return [
model_class(**data) for data in get_model_structure_from_examples(model_class, multiple)
]
def build_nested_structure(keys: list[str], value: Any) -> Any:
if not keys:
return value
current_key = keys[0]
if current_key == "list":
return [build_nested_structure(keys[1:], value)]
else:
return {current_key: build_nested_structure(keys[1:], value)}
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
default_value = ""
if regular_field:
if (val := field_info.default) is not PydanticUndefined:
default_value = val
else:
default_value = "required"
else:
default_value = "N/A"
return default_value
def get_type_name(field_type: type) -> str:
type_name = str(field_type).replace("typing.", "").replace("pathlib._local", "pathlib")
if type_name.startswith("<class"):
type_name = field_type.__name__
return type_name
def generate_config_table_md(
config: PydanticBaseModel,
toplevel_keys: list[str],
prefix: str,
toplevel: bool = False,
extra_config: bool = False,
) -> str:
"""Generate a markdown table for given configurations.
Args:
config (PydanticBaseModel): PydanticBaseModel configuration definition.
prefix (str): Prefix for table entries.
Returns:
str: The markdown table as a string.
"""
table = ""
if toplevel:
title = get_title(config)
heading_level = "###" if extra_config else "##"
env_header = ""
env_header_underline = ""
env_width = ""
if not extra_config:
env_header = "| Environment Variable "
env_header_underline = "| -------------------- "
env_width = "20 "
table += f"{heading_level} {title}\n\n"
body = get_body(config)
if body:
table += body
table += "\n\n"
table += (
":::{table} "
+ f"{'::'.join(toplevel_keys)}\n:widths: 10 {env_width}10 5 5 30\n:align: left\n\n"
)
table += f"| Name {env_header}| Type | Read-Only | Default | Description |\n"
table += f"| ---- {env_header_underline}| ---- | --------- | ------- | ----------- |\n"
for field_name, field_info in list(config.model_fields.items()) + list(
config.model_computed_fields.items()
):
regular_field = isinstance(field_info, FieldInfo)
config_name = field_name if extra_config else field_name.upper()
field_type = field_info.annotation if regular_field else field_info.return_type
default_value = get_default_value(field_info, regular_field)
description = field_info.description if field_info.description else "-"
deprecated = field_info.deprecated if field_info.deprecated else None
read_only = "rw" if regular_field else "ro"
type_name = get_type_name(field_type)
env_entry = ""
if not extra_config:
if regular_field:
env_entry = f"| `{prefix}{config_name}` "
else:
env_entry = "| "
if deprecated:
if isinstance(deprecated, bool):
description = "Deprecated!"
else:
description = deprecated
table += f"| {field_name} {env_entry}| `{type_name}` | `{read_only}` | `{default_value}` | {description} |\n"
# inner_types: dict[type[PydanticBaseModel], tuple[str, list[str]]] = dict()
inner_types: dict[Any, tuple[str, list[str]]] = dict()
def extract_nested_models(subtype: Any, subprefix: str, parent_types: list[str]):
"""Extract nested models."""
if subtype in inner_types.keys():
return
nested_types = resolve_nested_types(subtype, [])
for nested_type, nested_parent_types in nested_types:
# Nested type may be of type class, enum, typing.Any
if isinstance(nested_type, type) and issubclass(nested_type, PydanticBaseModel):
# Nested type is a subclass of PydanticBaseModel
new_parent_types = parent_types + nested_parent_types
if "list" in parent_types:
new_prefix = ""
else:
new_prefix = f"{subprefix}"
inner_types.setdefault(nested_type, (new_prefix, new_parent_types))
# Handle normal fields
for nested_field_name, nested_field_info in nested_type.model_fields.items():
nested_field_type = nested_field_info.annotation
if new_prefix:
new_prefix += f"{nested_field_name.upper()}__"
extract_nested_models(
nested_field_type,
new_prefix,
new_parent_types + [nested_field_name],
)
# Do not extract computed fields
extract_nested_models(field_type, f"{prefix}{config_name}__", toplevel_keys + [field_name])
for new_type, info in inner_types.items():
if new_type not in documented_types:
undocumented_types.setdefault(new_type, (info[0], info[1]))
if toplevel:
table += ":::\n\n" # Add an empty line after the table
has_examples_list = toplevel_keys[-1] == "list"
instance_list = create_model_from_examples(config, has_examples_list)
if instance_list:
ins_dict_list = []
ins_out_dict_list = []
for ins in instance_list:
# Transform to JSON (and manually to dict) to use custom serializers and then merge with parent keys
ins_json = ins.model_dump_json(include_computed_fields=False)
ins_dict_list.append(json.loads(ins_json))
ins_out_json = ins.model_dump_json(include_computed_fields=True)
ins_out_dict_list.append(json.loads(ins_out_json))
same_output = ins_out_dict_list == ins_dict_list
same_output_str = "/Output" if same_output else ""
table += f"#{heading_level} Example Input{same_output_str}\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
input_dict = build_nested_structure(toplevel_keys[:-1], ins_dict_list)
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list
else:
input_dict = build_nested_structure(toplevel_keys, ins_dict_list[0])
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list[0]
table += textwrap.indent(json.dumps(input_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
if not same_output:
table += f"#{heading_level} Example Output\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
output_dict = build_nested_structure(toplevel_keys[:-1], ins_out_dict_list)
else:
output_dict = build_nested_structure(toplevel_keys, ins_out_dict_list[0])
table += textwrap.indent(json.dumps(output_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
while undocumented_types:
extra_config_type, extra_info = undocumented_types.popitem()
documented_types.add(extra_config_type)
table += generate_config_table_md(
extra_config_type, extra_info[1], extra_info[0], True, True
)
return table
def generate_config_md(config_eos: ConfigEOS) -> str:
"""Generate configuration specification in Markdown with extra tables for prefixed values.
Returns:
str: The Markdown representation of the configuration spec.
"""
# Fix file path for general settings to not show local/test file path
GeneralSettings._config_file_path = Path(
"/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
)
GeneralSettings._config_folder_path = config_eos.general.config_file_path.parent
markdown = "# Configuration Table\n\n"
# Generate tables for each top level config
for field_name, field_info in config_eos.__class__.model_fields.items():
field_type = field_info.annotation
markdown += generate_config_table_md(
field_type, [field_name], f"EOS_{field_name.upper()}__", True
)
# Full config
markdown += "## Full example Config\n\n"
markdown += "```{eval-rst}\n"
markdown += ".. code-block:: json\n\n"
# Test for valid config first
config_eos.merge_settings_from_dict(global_config_dict)
markdown += textwrap.indent(json.dumps(global_config_dict, indent=4), " ")
markdown += "\n"
markdown += "```\n\n"
# Assure there is no double \n at end of file
markdown = markdown.rstrip("\n")
markdown += "\n"
# Assure log path does not leak to documentation
markdown = re.sub(
r'(?<=["\'])/[^"\']*/output/eos\.log(?=["\'])',
'/home/user/.local/share/net.akkudoktoreos.net/output/eos.log',
markdown
)
# Assure timezone name does not leak to documentation
tz_name = to_datetime().timezone_name
markdown = re.sub(re.escape(tz_name), "Europe/Berlin", markdown, flags=re.IGNORECASE)
# Also replace UTC, as GitHub CI always is on UTC
markdown = re.sub(re.escape("UTC"), "Europe/Berlin", markdown, flags=re.IGNORECASE)
return markdown
def main():
"""Main function to run the generation of the Configuration specification as Markdown."""
parser = argparse.ArgumentParser(description="Generate Configuration Specification as Markdown")
parser.add_argument(
"--output-file",
type=str,
default=None,
help="File to write the Configuration Specification to",
)
args = parser.parse_args()
config_eos = get_config()
try:
config_md = generate_config_md(config_eos)
if os.name == "nt":
config_md = config_md.replace("\\\\", "/")
if args.output_file:
# Write to file
with open(args.output_file, "w", encoding="utf-8", newline="\n") as f:
f.write(config_md)
else:
# Write to std output
print(config_md)
except Exception as e:
print(f"Error during Configuration Specification generation: {e}", file=sys.stderr)
# keep throwing error to debug potential problems (e.g. invalid examples)
raise e
if __name__ == "__main__":
main()