EOS/tests/test_class_optimize.py
Dominique Lasserre 75987db9e1 Reasonable defaults, isolate tests, EOS_LOGGING_LEVEL, EOS_CONFIG_DIR
* Add EOS_CONFIG_DIR to set config dir (relative path to EOS_DIR or
   absolute path).
    - config_folder_path read-only
    - config_file_path read-only
 * Default values to support app start with empty config:
    - latitude/longitude (Berlin)
    - optimization_ev_available_charge_rates_percent (null, so model
      default value is used)
    - Enable Akkudoktor electricity price forecast (docker-compose).
 * Fix some endpoints (empty data, remove unused params, fix types).
 * cacheutil: Use cache dir. Closes #240
 * Support EOS_LOGGING_LEVEL environment variable to set log level.
 * tests: All tests use separate temporary config
    - Add pytest switch --check-config-side-effect to check user
      config file existence after each test. Will also fail if user config
      existed before test execution (but will only check after the test has
      run).
      Enable flag in github workflow.
    - Globally mock platformdirs in config module. Now no longer required
      to patch individually.
      Function calls to config instance (e.g. merge_settings_from_dict)
      were unaffected previously.
 * Set Berlin as default location (default config/docker-compose).
2024-12-30 13:41:39 +01:00

102 lines
3.4 KiB
Python

import json
from pathlib import Path
from typing import Any
from unittest.mock import patch
import pytest
from akkudoktoreos.config.config import ConfigEOS
from akkudoktoreos.optimization.genetic import (
OptimizationParameters,
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.utils.visualize import (
prepare_visualize, # Import the new prepare_visualize
)
DIR_TESTDATA = Path(__file__).parent / "testdata"
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
assert set(actual) == set(expected)
for key, value in expected.items():
if isinstance(value, dict):
assert isinstance(actual[key], dict)
compare_dict(actual[key], value)
elif isinstance(value, list):
assert isinstance(actual[key], list)
assert actual[key] == pytest.approx(value)
else:
assert actual[key] == pytest.approx(value)
@pytest.mark.parametrize(
"fn_in, fn_out, ngen",
[
("optimize_input_1.json", "optimize_result_1.json", 3),
("optimize_input_2.json", "optimize_result_2.json", 3),
("optimize_input_2.json", "optimize_result_2_full.json", 400),
],
)
def test_optimize(
fn_in: str,
fn_out: str,
ngen: int,
config_eos: ConfigEOS,
is_full_run: bool,
):
"""Test optimierung_ems."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
# Load input and output data
file = DIR_TESTDATA / fn_in
with file.open("r") as f_in:
input_data = OptimizationParameters(**json.load(f_in))
file = DIR_TESTDATA / fn_out
# In case a new test case is added, we don't want to fail here, so the new output is written to disk before
try:
with file.open("r") as f_out:
expected_result = OptimizeResponse(**json.load(f_out))
except FileNotFoundError:
pass
opt_class = optimization_problem(fixed_seed=42)
start_hour = 10
# Activate with pytest --full-run
if ngen > 10 and not is_full_run:
pytest.skip()
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
with patch(
"akkudoktoreos.utils.visualize.prepare_visualize",
side_effect=lambda parameters, results, *args, **kwargs: prepare_visualize(
parameters, results, filename=visualize_filename, **kwargs
),
) as prepare_visualize_patch:
# Call the optimization function
ergebnis = opt_class.optimierung_ems(
parameters=input_data, start_hour=start_hour, ngen=ngen
)
# Write test output to file, so we can take it as new data on intended change
with open(DIR_TESTDATA / f"new_{fn_out}", "w") as f_out:
f_out.write(ergebnis.model_dump_json(indent=4, exclude_unset=True))
assert ergebnis.result.Gesamtbilanz_Euro == pytest.approx(
expected_result.result.Gesamtbilanz_Euro
)
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
# The function creates a visualization result PDF as a side-effect.
prepare_visualize_patch.assert_called_once()
assert Path(visualize_filename).exists()