EOS/tests/test_dataabc.py
Bobby Noelte 830af85fca Fix2 config and predictions revamp. (#281)
measurement:

- Add new measurement class to hold real world measurements.
- Handles load meter readings, grid import and export meter readings.
- Aggregates load meter readings aka. measurements to total load.
- Can import measurements from files, pandas datetime series,
    pandas datetime dataframes, simple daetime arrays and
    programmatically.
- Maybe expanded to other measurement values.
- Should be used for load prediction adaptions by real world
    measurements.

core/coreabc:

- Add mixin class to access measurements

core/pydantic:

- Add pydantic models for pandas datetime series and dataframes.
- Add pydantic models for simple datetime array

core/dataabc:

- Provide DataImport mixin class for generic import handling.
    Imports from JSON string and files. Imports from pandas datetime dataframes
    and simple datetime arrays. Signature of import method changed to
    allow import datetimes to be given programmatically and by data content.
- Use pydantic models for datetime series, dataframes, arrays
- Validate generic imports by pydantic models
- Provide new attributes min_datetime and max_datetime for DataSequence.
- Add parameter dropna to drop NAN/ None values when creating lists, pandas series
    or numpy array from DataSequence.

config/config:

- Add common settings for the measurement module.

predictions/elecpriceakkudoktor:

- Use mean values of last 7 days to fill prediction values not provided by
    akkudoktor.net (only provides 24 values).

prediction/loadabc:

- Extend the generic prediction keys by 'load_total_adjusted' for load predictions
    that adjust the predicted total load by measured load values.

prediction/loadakkudoktor:

- Extend the Akkudoktor load prediction by load adjustment using measured load
    values.

prediction/load_aggregator:

- Module removed. Load aggregation is now handled by the measurement module.

prediction/load_corrector:

- Module removed. Load correction (aka. adjustment of load prediction by
    measured load energy) is handled by the LoadAkkudoktor prediction and
    the generic 'load_mean_adjusted' prediction key.

prediction/load_forecast:

- Module removed. Functionality now completely handled by the LoadAkkudoktor
    prediction.

utils/cacheutil:

- Use pydantic.
- Fix potential bug in ttl (time to live) duration handling.

utils/datetimeutil:

- Added missing handling of pendulum.DateTime and pendulum.Duration instances
    as input. Handled before as datetime.datetime and datetime.timedelta.

utils/visualize:

- Move main to generate_example_report() for better testing support.

server/server:

- Added new configuration option server_fastapi_startup_server_fasthtml
  to make startup of FastHTML server by FastAPI server conditional.

server/fastapi_server:

- Add APIs for measurements
- Improve APIs to provide or take pandas datetime series and
    datetime dataframes controlled by pydantic model.
- Improve APIs to provide or take simple datetime data arrays
    controlled by pydantic model.
- Move fastAPI server API to v1 for new APIs.
- Update pre v1 endpoints to use new prediction and measurement capabilities.
- Only start FastHTML server if 'server_fastapi_startup_server_fasthtml'
    config option is set.

tests:

- Adapt import tests to changed import method signature
- Adapt server test to use the v1 API
- Extend the dataabc test to test for array generation from data
    with several data interval scenarios.
- Extend the datetimeutil test to also test for correct handling
    of to_datetime() providing now().
- Adapt LoadAkkudoktor test for new adjustment calculation.
- Adapt visualization test to use example report function instead of visualize.py
    run as process.
- Removed test_load_aggregator. Functionality is now tested in test_measurement.
- Added tests for measurement module

docs:

- Remove sphinxcontrib-openapi as it prevents build of documentation.
    "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema
    for t in schema["anyOf"]: KeyError: 'anyOf'"

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00

787 lines
32 KiB
Python

from datetime import datetime, timezone
from typing import Any, ClassVar, List, Optional, Union
import numpy as np
import pandas as pd
import pendulum
import pytest
from pydantic import Field, ValidationError
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.dataabc import (
DataBase,
DataContainer,
DataImportProvider,
DataProvider,
DataRecord,
DataSequence,
)
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
# Derived classes for testing
# ---------------------------
class DerivedConfig(SettingsBaseModel):
env_var: Optional[int] = Field(default=None, description="Test config by environment var")
instance_field: Optional[str] = Field(default=None, description="Test config by instance field")
class_constant: Optional[int] = Field(default=None, description="Test config by class constant")
class DerivedBase(DataBase):
instance_field: Optional[str] = Field(default=None, description="Field Value")
class_constant: ClassVar[int] = 30
class DerivedRecord(DataRecord):
data_value: Optional[float] = Field(default=None, description="Data Value")
class DerivedSequence(DataSequence):
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
class DerivedDataProvider(DataProvider):
"""A concrete subclass of DataProvider for testing purposes."""
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
provider_enabled: ClassVar[bool] = False
provider_updated: ClassVar[bool] = False
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
# Implement abstract methods for test purposes
def provider_id(self) -> str:
return "DerivedDataProvider"
def enabled(self) -> bool:
return self.provider_enabled
def _update_data(self, force_update: Optional[bool] = False) -> None:
# Simulate update logic
DerivedDataProvider.provider_updated = True
class DerivedDataImportProvider(DataImportProvider):
"""A concrete subclass of DataImportProvider for testing purposes."""
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
provider_enabled: ClassVar[bool] = False
provider_updated: ClassVar[bool] = False
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
# Implement abstract methods for test purposes
def provider_id(self) -> str:
return "DerivedDataImportProvider"
def enabled(self) -> bool:
return self.provider_enabled
def _update_data(self, force_update: Optional[bool] = False) -> None:
# Simulate update logic
DerivedDataImportProvider.provider_updated = True
class DerivedDataContainer(DataContainer):
providers: List[Union[DerivedDataProvider, DataProvider]] = Field(
default_factory=list, description="List of data providers"
)
# Tests
# ----------
class TestDataBase:
@pytest.fixture
def base(self, reset_config, monkeypatch):
# Provide default values for configuration
derived = DerivedBase()
derived.config.update()
return derived
def test_get_config_value_key_error(self, base):
with pytest.raises(AttributeError):
base.config.non_existent_key
class TestDataRecord:
def create_test_record(self, date, value):
"""Helper function to create a test DataRecord."""
return DerivedRecord(date_time=date, data_value=value)
def test_getitem(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
assert record["data_value"] == 10.0
def test_setitem(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
record["data_value"] = 20.0
assert record.data_value == 20.0
def test_delitem(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
record.data_value = 20.0
del record["data_value"]
assert record.data_value is None
def test_len(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
record.date_time = None
record.data_value = 20.0
assert len(record) == 2
def test_to_dict(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
record.data_value = 20.0
record_dict = record.to_dict()
assert "data_value" in record_dict
assert record_dict["data_value"] == 20.0
record2 = DerivedRecord.from_dict(record_dict)
assert record2 == record
def test_to_json(self):
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
record.data_value = 20.0
json_str = record.to_json()
assert "data_value" in json_str
assert "20.0" in json_str
record2 = DerivedRecord.from_json(json_str)
assert record2 == record
class TestDataSequence:
@pytest.fixture
def sequence(self):
sequence0 = DerivedSequence()
assert len(sequence0) == 0
return sequence0
@pytest.fixture
def sequence2(self):
sequence = DerivedSequence()
record1 = self.create_test_record(datetime(1970, 1, 1), 1970)
record2 = self.create_test_record(datetime(1971, 1, 1), 1971)
sequence.append(record1)
sequence.append(record2)
assert len(sequence) == 2
return sequence
def create_test_record(self, date, value):
"""Helper function to create a test DataRecord."""
return DerivedRecord(date_time=date, data_value=value)
# Test cases
def test_getitem(self, sequence):
assert len(sequence) == 0
record = self.create_test_record("2024-01-01 00:00:00", 0)
sequence.insert_by_datetime(record)
assert isinstance(sequence[0], DerivedRecord)
def test_setitem(self, sequence2):
new_record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 1)
sequence2[0] = new_record
assert sequence2[0].date_time == datetime(2024, 1, 3, tzinfo=timezone.utc)
def test_set_record_at_index(self, sequence2):
record1 = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 1)
record2 = self.create_test_record(datetime(2023, 11, 5), 0.8)
sequence2[1] = record1
assert sequence2[1].date_time == datetime(2024, 1, 3, tzinfo=timezone.utc)
sequence2[0] = record2
assert len(sequence2) == 2
assert sequence2[0] == record2
def test_insert_duplicate_date_record(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 5), 0.9) # Duplicate date
sequence.insert_by_datetime(record1)
sequence.insert_by_datetime(record2)
assert len(sequence) == 1
assert sequence[0].data_value == 0.9 # Record should have merged with new value
def test_sort_by_datetime_ascending(self, sequence):
"""Test sorting records in ascending order by date_time."""
records = [
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
]
for i, record in enumerate(records):
sequence.insert(i, record)
sequence.sort_by_datetime()
sorted_dates = [record.date_time for record in sequence.records]
for i, expected_date in enumerate(
[
pendulum.datetime(2024, 10, 1),
pendulum.datetime(2024, 11, 1),
pendulum.datetime(2024, 12, 1),
]
):
assert compare_datetimes(sorted_dates[i], expected_date).equal
def test_sort_by_datetime_descending(self, sequence):
"""Test sorting records in descending order by date_time."""
records = [
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
]
for i, record in enumerate(records):
sequence.insert(i, record)
sequence.sort_by_datetime(reverse=True)
sorted_dates = [record.date_time for record in sequence.records]
for i, expected_date in enumerate(
[
pendulum.datetime(2024, 12, 1),
pendulum.datetime(2024, 11, 1),
pendulum.datetime(2024, 10, 1),
]
):
assert compare_datetimes(sorted_dates[i], expected_date).equal
def test_sort_by_datetime_with_none(self, sequence):
"""Test sorting records when some date_time values are None."""
records = [
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
]
for i, record in enumerate(records):
sequence.insert(i, record)
sequence.records[2].date_time = None
assert sequence.records[2].date_time is None
sequence.sort_by_datetime()
sorted_dates = [record.date_time for record in sequence.records]
for i, expected_date in enumerate(
[
None, # None values should come first
pendulum.datetime(2024, 10, 1),
pendulum.datetime(2024, 11, 1),
]
):
if expected_date is None:
assert sorted_dates[i] is None
else:
assert compare_datetimes(sorted_dates[i], expected_date).equal
def test_sort_by_datetime_error_on_uncomparable(self, sequence):
"""Test error is raised when date_time contains uncomparable values."""
records = [
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
]
for i, record in enumerate(records):
sequence.insert(i, record)
with pytest.raises(
ValidationError, match="Date string not_a_datetime does not match any known formats."
):
sequence.records[2].date_time = "not_a_datetime" # Invalid date_time
sequence.sort_by_datetime()
def test_key_to_series(self, sequence):
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
sequence.append(record)
series = sequence.key_to_series("data_value")
assert isinstance(series, pd.Series)
assert series[to_datetime(datetime(2023, 11, 6))] == 0.8
def test_key_from_series(self, sequence):
series = pd.Series(
data=[0.8, 0.9], index=pd.to_datetime([datetime(2023, 11, 5), datetime(2023, 11, 6)])
)
sequence.key_from_series("data_value", series)
assert len(sequence) == 2
assert sequence[0].data_value == 0.8
assert sequence[1].data_value == 0.9
def test_key_to_array(self, sequence):
interval = to_duration("1 day")
start_datetime = to_datetime("2023-11-6")
last_datetime = to_datetime("2023-11-8")
end_datetime = to_datetime("2023-11-9")
record = self.create_test_record(start_datetime, float(start_datetime.day))
sequence.insert_by_datetime(record)
record = self.create_test_record(last_datetime, float(last_datetime.day))
sequence.insert_by_datetime(record)
assert sequence[0].data_value == 6.0
assert sequence[1].data_value == 8.0
series = sequence.key_to_series(
key="data_value", start_datetime=start_datetime, end_datetime=end_datetime
)
assert len(series) == 2
assert series[to_datetime("2023-11-6")] == 6
assert series[to_datetime("2023-11-8")] == 8
array = sequence.key_to_array(
key="data_value",
start_datetime=start_datetime,
end_datetime=end_datetime,
interval=interval,
)
assert isinstance(array, np.ndarray)
assert len(array) == 3
assert array[0] == start_datetime.day
assert array[1] == 7
assert array[2] == last_datetime.day
def test_key_to_array_linear_interpolation(self, sequence):
"""Test key_to_array with linear interpolation for numeric data."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0) # Gap of 2 hours
sequence.insert_by_datetime(record1)
sequence.insert_by_datetime(record2)
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 3),
interval=interval,
fill_method="linear",
)
assert len(array) == 3
assert array[0] == 0.8
assert array[1] == 0.9 # Interpolated value
assert array[2] == 1.0
def test_key_to_array_ffill(self, sequence):
"""Test key_to_array with forward filling for missing values."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0)
sequence.insert_by_datetime(record1)
sequence.insert_by_datetime(record2)
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 3),
interval=interval,
fill_method="ffill",
)
assert len(array) == 3
assert array[0] == 0.8
assert array[1] == 0.8 # Forward-filled value
assert array[2] == 1.0
def test_key_to_array_bfill(self, sequence):
"""Test key_to_array with backward filling for missing values."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0)
sequence.insert_by_datetime(record1)
sequence.insert_by_datetime(record2)
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 3),
interval=interval,
fill_method="bfill",
)
assert len(array) == 3
assert array[0] == 0.8
assert array[1] == 1.0 # Backward-filled value
assert array[2] == 1.0
def test_key_to_array_with_truncation(self, sequence):
"""Test truncation behavior in key_to_array."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 5, 23), 0.8)
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 1), 1.0)
sequence.insert_by_datetime(record1)
sequence.insert_by_datetime(record2)
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 2),
interval=interval,
)
assert len(array) == 2
assert array[0] == 0.9 # Interpolated from previous day
assert array[1] == 1.0
def test_key_to_array_with_none(self, sequence):
"""Test handling of empty series in key_to_array."""
interval = to_duration("1 hour")
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 3),
interval=interval,
)
assert isinstance(array, np.ndarray)
assert np.all(array == None)
def test_key_to_array_with_one(self, sequence):
"""Test handling of one element series in key_to_array."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 5, 23), 0.8)
sequence.insert_by_datetime(record1)
array = sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 2),
interval=interval,
)
assert len(array) == 2
assert array[0] == 0.8 # Interpolated from previous day
assert array[1] == 0.8
def test_key_to_array_invalid_fill_method(self, sequence):
"""Test invalid fill_method raises an error."""
interval = to_duration("1 hour")
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
sequence.insert_by_datetime(record1)
with pytest.raises(ValueError, match="Unsupported fill method: invalid"):
sequence.key_to_array(
key="data_value",
start_datetime=pendulum.datetime(2023, 11, 6),
end_datetime=pendulum.datetime(2023, 11, 6, 1),
interval=interval,
fill_method="invalid",
)
def test_to_datetimeindex(self, sequence2):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence2.insert(0, record1)
sequence2.insert(1, record2)
dt_index = sequence2.to_datetimeindex()
assert isinstance(dt_index, pd.DatetimeIndex)
assert dt_index[0] == to_datetime(datetime(2023, 11, 5))
assert dt_index[1] == to_datetime(datetime(2023, 11, 6))
def test_delete_by_datetime_range(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
record3 = self.create_test_record(datetime(2023, 11, 7), 1.0)
sequence.append(record1)
sequence.append(record2)
sequence.append(record3)
assert len(sequence) == 3
sequence.delete_by_datetime(
start_datetime=datetime(2023, 11, 6), end_datetime=datetime(2023, 11, 7)
)
assert len(sequence) == 2
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 5))
assert sequence[1].date_time == to_datetime(datetime(2023, 11, 7))
def test_delete_by_datetime_start(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence.append(record1)
sequence.append(record2)
assert len(sequence) == 2
sequence.delete_by_datetime(start_datetime=datetime(2023, 11, 6))
assert len(sequence) == 1
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 5))
def test_delete_by_datetime_end(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence.append(record1)
sequence.append(record2)
assert len(sequence) == 2
sequence.delete_by_datetime(end_datetime=datetime(2023, 11, 6))
assert len(sequence) == 1
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 6))
def test_filter_by_datetime(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence.append(record1)
sequence.append(record2)
filtered_sequence = sequence.filter_by_datetime(start_datetime=datetime(2023, 11, 6))
assert len(filtered_sequence) == 1
assert filtered_sequence[0].date_time == to_datetime(datetime(2023, 11, 6))
def test_to_dict(self, sequence):
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
sequence.append(record)
data_dict = sequence.to_dict()
assert isinstance(data_dict, dict)
sequence_other = sequence.from_dict(data_dict)
assert sequence_other == sequence
def test_to_json(self, sequence):
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
sequence.append(record)
json_str = sequence.to_json()
assert isinstance(json_str, str)
assert "2023-11-06" in json_str
assert ":0.8" in json_str
def test_from_json(self, sequence, sequence2):
json_str = sequence2.to_json()
sequence = sequence.from_json(json_str)
assert len(sequence) == len(sequence2)
assert sequence[0].date_time == sequence2[0].date_time
assert sequence[0].data_value == sequence2[0].data_value
def test_key_to_dict(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence.append(record1)
sequence.append(record2)
data_dict = sequence.key_to_dict("data_value")
assert isinstance(data_dict, dict)
assert data_dict[to_datetime(datetime(2023, 11, 5), as_string=True)] == 0.8
assert data_dict[to_datetime(datetime(2023, 11, 6), as_string=True)] == 0.9
def test_key_to_lists(self, sequence):
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
sequence.append(record1)
sequence.append(record2)
dates, values = sequence.key_to_lists("data_value")
assert dates == [to_datetime(datetime(2023, 11, 5)), to_datetime(datetime(2023, 11, 6))]
assert values == [0.8, 0.9]
class TestDataProvider:
# Fixtures and helper functions
@pytest.fixture
def provider(self):
"""Fixture to provide an instance of TestDataProvider for testing."""
DerivedDataProvider.provider_enabled = True
DerivedDataProvider.provider_updated = False
return DerivedDataProvider()
@pytest.fixture
def sample_start_datetime(self):
"""Fixture for a sample start datetime."""
return to_datetime(datetime(2024, 11, 1, 12, 0))
def create_test_record(self, date, value):
"""Helper function to create a test DataRecord."""
return DerivedRecord(date_time=date, data_value=value)
# Tests
def test_singleton_behavior(self, provider):
"""Test that DataProvider enforces singleton behavior."""
instance1 = provider
instance2 = DerivedDataProvider()
assert (
instance1 is instance2
), "Singleton pattern is not enforced; instances are not the same."
def test_update_method_with_defaults(self, provider, sample_start_datetime, monkeypatch):
"""Test the `update` method with default parameters."""
ems_eos = get_ems()
ems_eos.set_start_datetime(sample_start_datetime)
provider.update_data()
assert provider.start_datetime == sample_start_datetime
def test_update_method_force_enable(self, provider, monkeypatch):
"""Test that `update` executes when `force_enable` is True, even if `enabled` is False."""
# Override enabled to return False for this test
DerivedDataProvider.provider_enabled = False
DerivedDataProvider.provider_updated = False
provider.update_data(force_enable=True)
assert provider.enabled() is False, "Provider should be disabled, but enabled() is True."
assert (
DerivedDataProvider.provider_updated is True
), "Provider should have been executed, but was not."
def test_delete_by_datetime(self, provider, sample_start_datetime):
"""Test `delete_by_datetime` method for removing records by datetime range."""
# Add records to the provider for deletion testing
provider.records = [
self.create_test_record(sample_start_datetime - to_duration("3 hours"), 1),
self.create_test_record(sample_start_datetime - to_duration("1 hour"), 2),
self.create_test_record(sample_start_datetime + to_duration("1 hour"), 3),
]
provider.delete_by_datetime(
start_datetime=sample_start_datetime - to_duration("2 hours"),
end_datetime=sample_start_datetime + to_duration("2 hours"),
)
assert (
len(provider.records) == 1
), "Only one record should remain after deletion by datetime."
assert provider.records[0].date_time == sample_start_datetime - to_duration(
"3 hours"
), "Unexpected record remains."
class TestDataImportProvider:
# Fixtures and helper functions
@pytest.fixture
def provider(self):
"""Fixture to provide an instance of DerivedDataImportProvider for testing."""
DerivedDataImportProvider.provider_enabled = True
DerivedDataImportProvider.provider_updated = False
return DerivedDataImportProvider()
@pytest.mark.parametrize(
"start_datetime, value_count, expected_mapping_count",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
],
)
def test_import_datetimes(self, provider, start_datetime, value_count, expected_mapping_count):
start_datetime = to_datetime(start_datetime, in_timezone="Europe/Berlin")
value_datetime_mapping = provider.import_datetimes(start_datetime, value_count)
assert len(value_datetime_mapping) == expected_mapping_count
@pytest.mark.parametrize(
"start_datetime, value_count, expected_mapping_count",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
],
)
def test_import_datetimes_utc(
self, set_other_timezone, provider, start_datetime, value_count, expected_mapping_count
):
original_tz = set_other_timezone("Etc/UTC")
start_datetime = to_datetime(start_datetime, in_timezone="Europe/Berlin")
assert start_datetime.timezone.name == "Europe/Berlin"
value_datetime_mapping = provider.import_datetimes(start_datetime, value_count)
assert len(value_datetime_mapping) == expected_mapping_count
class TestDataContainer:
# Fixture and helpers
@pytest.fixture
def container(self):
container = DerivedDataContainer()
return container
@pytest.fixture
def container_with_providers(self):
record1 = self.create_test_record(datetime(2023, 11, 5), 1)
record2 = self.create_test_record(datetime(2023, 11, 6), 2)
record3 = self.create_test_record(datetime(2023, 11, 7), 3)
provider = DerivedDataProvider()
provider.clear()
assert len(provider) == 0
provider.append(record1)
provider.append(record2)
provider.append(record3)
assert len(provider) == 3
container = DerivedDataContainer()
container.providers.clear()
assert len(container.providers) == 0
container.providers.append(provider)
assert len(container.providers) == 1
return container
def create_test_record(self, date, value):
"""Helper function to create a test DataRecord."""
return DerivedRecord(date_time=date, data_value=value)
def test_append_provider(self, container):
assert len(container.providers) == 0
container.providers.append(DerivedDataProvider())
assert len(container.providers) == 1
assert isinstance(container.providers[0], DerivedDataProvider)
@pytest.mark.skip(reason="type check not implemented")
def test_append_provider_invalid_type(self, container):
with pytest.raises(ValueError, match="must be an instance of DataProvider"):
container.providers.append("not_a_provider")
def test_getitem_existing_key(self, container_with_providers):
assert len(container_with_providers.providers) == 1
# check all keys are available (don't care for position)
for key in ["data_value", "date_time"]:
assert key in list(container_with_providers.keys())
series = container_with_providers["data_value"]
assert isinstance(series, pd.Series)
assert series.name == "data_value"
assert series.tolist() == [1.0, 2.0, 3.0]
def test_getitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="No data found for key 'non_existent_key'"):
container_with_providers["non_existent_key"]
def test_setitem_existing_key(self, container_with_providers):
new_series = container_with_providers["data_value"]
new_series[:] = [4, 5, 6]
container_with_providers["data_value"] = new_series
series = container_with_providers["data_value"]
assert series.name == "data_value"
assert series.tolist() == [4, 5, 6]
def test_setitem_invalid_value(self, container_with_providers):
with pytest.raises(ValueError, match="Value must be an instance of pd.Series"):
container_with_providers["test_key"] = "not_a_series"
def test_setitem_non_existing_key(self, container_with_providers):
new_series = pd.Series([4, 5, 6], name="non_existent_key")
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
container_with_providers["non_existent_key"] = new_series
def test_delitem_existing_key(self, container_with_providers):
del container_with_providers["data_value"]
series = container_with_providers["data_value"]
assert series.name == "data_value"
assert series.tolist() == []
def test_delitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
del container_with_providers["non_existent_key"]
def test_len(self, container_with_providers):
assert len(container_with_providers) == 3
def test_repr(self, container_with_providers):
representation = repr(container_with_providers)
assert representation.startswith("DerivedDataContainer(")
assert "DerivedDataProvider" in representation
def test_to_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container_other = DerivedDataContainer.from_json(json_str)
assert container_other == container_with_providers
def test_from_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container = DerivedDataContainer.from_json(json_str)
assert isinstance(container, DerivedDataContainer)
assert len(container.providers) == 1
assert container.providers[0] == container_with_providers.providers[0]
def test_provider_by_id(self, container_with_providers):
provider = container_with_providers.provider_by_id("DerivedDataProvider")
assert isinstance(provider, DerivedDataProvider)