mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-17 07:55:15 +00:00
measurement: - Add new measurement class to hold real world measurements. - Handles load meter readings, grid import and export meter readings. - Aggregates load meter readings aka. measurements to total load. - Can import measurements from files, pandas datetime series, pandas datetime dataframes, simple daetime arrays and programmatically. - Maybe expanded to other measurement values. - Should be used for load prediction adaptions by real world measurements. core/coreabc: - Add mixin class to access measurements core/pydantic: - Add pydantic models for pandas datetime series and dataframes. - Add pydantic models for simple datetime array core/dataabc: - Provide DataImport mixin class for generic import handling. Imports from JSON string and files. Imports from pandas datetime dataframes and simple datetime arrays. Signature of import method changed to allow import datetimes to be given programmatically and by data content. - Use pydantic models for datetime series, dataframes, arrays - Validate generic imports by pydantic models - Provide new attributes min_datetime and max_datetime for DataSequence. - Add parameter dropna to drop NAN/ None values when creating lists, pandas series or numpy array from DataSequence. config/config: - Add common settings for the measurement module. predictions/elecpriceakkudoktor: - Use mean values of last 7 days to fill prediction values not provided by akkudoktor.net (only provides 24 values). prediction/loadabc: - Extend the generic prediction keys by 'load_total_adjusted' for load predictions that adjust the predicted total load by measured load values. prediction/loadakkudoktor: - Extend the Akkudoktor load prediction by load adjustment using measured load values. prediction/load_aggregator: - Module removed. Load aggregation is now handled by the measurement module. prediction/load_corrector: - Module removed. Load correction (aka. adjustment of load prediction by measured load energy) is handled by the LoadAkkudoktor prediction and the generic 'load_mean_adjusted' prediction key. prediction/load_forecast: - Module removed. Functionality now completely handled by the LoadAkkudoktor prediction. utils/cacheutil: - Use pydantic. - Fix potential bug in ttl (time to live) duration handling. utils/datetimeutil: - Added missing handling of pendulum.DateTime and pendulum.Duration instances as input. Handled before as datetime.datetime and datetime.timedelta. utils/visualize: - Move main to generate_example_report() for better testing support. server/server: - Added new configuration option server_fastapi_startup_server_fasthtml to make startup of FastHTML server by FastAPI server conditional. server/fastapi_server: - Add APIs for measurements - Improve APIs to provide or take pandas datetime series and datetime dataframes controlled by pydantic model. - Improve APIs to provide or take simple datetime data arrays controlled by pydantic model. - Move fastAPI server API to v1 for new APIs. - Update pre v1 endpoints to use new prediction and measurement capabilities. - Only start FastHTML server if 'server_fastapi_startup_server_fasthtml' config option is set. tests: - Adapt import tests to changed import method signature - Adapt server test to use the v1 API - Extend the dataabc test to test for array generation from data with several data interval scenarios. - Extend the datetimeutil test to also test for correct handling of to_datetime() providing now(). - Adapt LoadAkkudoktor test for new adjustment calculation. - Adapt visualization test to use example report function instead of visualize.py run as process. - Removed test_load_aggregator. Functionality is now tested in test_measurement. - Added tests for measurement module docs: - Remove sphinxcontrib-openapi as it prevents build of documentation. "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema for t in schema["anyOf"]: KeyError: 'anyOf'" Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
787 lines
32 KiB
Python
787 lines
32 KiB
Python
from datetime import datetime, timezone
|
|
from typing import Any, ClassVar, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pendulum
|
|
import pytest
|
|
from pydantic import Field, ValidationError
|
|
|
|
from akkudoktoreos.config.configabc import SettingsBaseModel
|
|
from akkudoktoreos.core.dataabc import (
|
|
DataBase,
|
|
DataContainer,
|
|
DataImportProvider,
|
|
DataProvider,
|
|
DataRecord,
|
|
DataSequence,
|
|
)
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
|
|
|
|
# Derived classes for testing
|
|
# ---------------------------
|
|
|
|
|
|
class DerivedConfig(SettingsBaseModel):
|
|
env_var: Optional[int] = Field(default=None, description="Test config by environment var")
|
|
instance_field: Optional[str] = Field(default=None, description="Test config by instance field")
|
|
class_constant: Optional[int] = Field(default=None, description="Test config by class constant")
|
|
|
|
|
|
class DerivedBase(DataBase):
|
|
instance_field: Optional[str] = Field(default=None, description="Field Value")
|
|
class_constant: ClassVar[int] = 30
|
|
|
|
|
|
class DerivedRecord(DataRecord):
|
|
data_value: Optional[float] = Field(default=None, description="Data Value")
|
|
|
|
|
|
class DerivedSequence(DataSequence):
|
|
# overload
|
|
records: List[DerivedRecord] = Field(
|
|
default_factory=list, description="List of DerivedRecord records"
|
|
)
|
|
|
|
@classmethod
|
|
def record_class(cls) -> Any:
|
|
return DerivedRecord
|
|
|
|
|
|
class DerivedDataProvider(DataProvider):
|
|
"""A concrete subclass of DataProvider for testing purposes."""
|
|
|
|
# overload
|
|
records: List[DerivedRecord] = Field(
|
|
default_factory=list, description="List of DerivedRecord records"
|
|
)
|
|
provider_enabled: ClassVar[bool] = False
|
|
provider_updated: ClassVar[bool] = False
|
|
|
|
@classmethod
|
|
def record_class(cls) -> Any:
|
|
return DerivedRecord
|
|
|
|
# Implement abstract methods for test purposes
|
|
def provider_id(self) -> str:
|
|
return "DerivedDataProvider"
|
|
|
|
def enabled(self) -> bool:
|
|
return self.provider_enabled
|
|
|
|
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
|
# Simulate update logic
|
|
DerivedDataProvider.provider_updated = True
|
|
|
|
|
|
class DerivedDataImportProvider(DataImportProvider):
|
|
"""A concrete subclass of DataImportProvider for testing purposes."""
|
|
|
|
# overload
|
|
records: List[DerivedRecord] = Field(
|
|
default_factory=list, description="List of DerivedRecord records"
|
|
)
|
|
provider_enabled: ClassVar[bool] = False
|
|
provider_updated: ClassVar[bool] = False
|
|
|
|
@classmethod
|
|
def record_class(cls) -> Any:
|
|
return DerivedRecord
|
|
|
|
# Implement abstract methods for test purposes
|
|
def provider_id(self) -> str:
|
|
return "DerivedDataImportProvider"
|
|
|
|
def enabled(self) -> bool:
|
|
return self.provider_enabled
|
|
|
|
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
|
# Simulate update logic
|
|
DerivedDataImportProvider.provider_updated = True
|
|
|
|
|
|
class DerivedDataContainer(DataContainer):
|
|
providers: List[Union[DerivedDataProvider, DataProvider]] = Field(
|
|
default_factory=list, description="List of data providers"
|
|
)
|
|
|
|
|
|
# Tests
|
|
# ----------
|
|
|
|
|
|
class TestDataBase:
|
|
@pytest.fixture
|
|
def base(self, reset_config, monkeypatch):
|
|
# Provide default values for configuration
|
|
derived = DerivedBase()
|
|
derived.config.update()
|
|
return derived
|
|
|
|
def test_get_config_value_key_error(self, base):
|
|
with pytest.raises(AttributeError):
|
|
base.config.non_existent_key
|
|
|
|
|
|
class TestDataRecord:
|
|
def create_test_record(self, date, value):
|
|
"""Helper function to create a test DataRecord."""
|
|
return DerivedRecord(date_time=date, data_value=value)
|
|
|
|
def test_getitem(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
assert record["data_value"] == 10.0
|
|
|
|
def test_setitem(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
record["data_value"] = 20.0
|
|
assert record.data_value == 20.0
|
|
|
|
def test_delitem(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
record.data_value = 20.0
|
|
del record["data_value"]
|
|
assert record.data_value is None
|
|
|
|
def test_len(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
record.date_time = None
|
|
record.data_value = 20.0
|
|
assert len(record) == 2
|
|
|
|
def test_to_dict(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
record.data_value = 20.0
|
|
record_dict = record.to_dict()
|
|
assert "data_value" in record_dict
|
|
assert record_dict["data_value"] == 20.0
|
|
record2 = DerivedRecord.from_dict(record_dict)
|
|
assert record2 == record
|
|
|
|
def test_to_json(self):
|
|
record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 10.0)
|
|
record.data_value = 20.0
|
|
json_str = record.to_json()
|
|
assert "data_value" in json_str
|
|
assert "20.0" in json_str
|
|
record2 = DerivedRecord.from_json(json_str)
|
|
assert record2 == record
|
|
|
|
|
|
class TestDataSequence:
|
|
@pytest.fixture
|
|
def sequence(self):
|
|
sequence0 = DerivedSequence()
|
|
assert len(sequence0) == 0
|
|
return sequence0
|
|
|
|
@pytest.fixture
|
|
def sequence2(self):
|
|
sequence = DerivedSequence()
|
|
record1 = self.create_test_record(datetime(1970, 1, 1), 1970)
|
|
record2 = self.create_test_record(datetime(1971, 1, 1), 1971)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
assert len(sequence) == 2
|
|
return sequence
|
|
|
|
def create_test_record(self, date, value):
|
|
"""Helper function to create a test DataRecord."""
|
|
return DerivedRecord(date_time=date, data_value=value)
|
|
|
|
# Test cases
|
|
def test_getitem(self, sequence):
|
|
assert len(sequence) == 0
|
|
record = self.create_test_record("2024-01-01 00:00:00", 0)
|
|
sequence.insert_by_datetime(record)
|
|
assert isinstance(sequence[0], DerivedRecord)
|
|
|
|
def test_setitem(self, sequence2):
|
|
new_record = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 1)
|
|
sequence2[0] = new_record
|
|
assert sequence2[0].date_time == datetime(2024, 1, 3, tzinfo=timezone.utc)
|
|
|
|
def test_set_record_at_index(self, sequence2):
|
|
record1 = self.create_test_record(datetime(2024, 1, 3, tzinfo=timezone.utc), 1)
|
|
record2 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
sequence2[1] = record1
|
|
assert sequence2[1].date_time == datetime(2024, 1, 3, tzinfo=timezone.utc)
|
|
sequence2[0] = record2
|
|
assert len(sequence2) == 2
|
|
assert sequence2[0] == record2
|
|
|
|
def test_insert_duplicate_date_record(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 5), 0.9) # Duplicate date
|
|
sequence.insert_by_datetime(record1)
|
|
sequence.insert_by_datetime(record2)
|
|
assert len(sequence) == 1
|
|
assert sequence[0].data_value == 0.9 # Record should have merged with new value
|
|
|
|
def test_sort_by_datetime_ascending(self, sequence):
|
|
"""Test sorting records in ascending order by date_time."""
|
|
records = [
|
|
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
|
|
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
|
|
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
|
|
]
|
|
for i, record in enumerate(records):
|
|
sequence.insert(i, record)
|
|
sequence.sort_by_datetime()
|
|
sorted_dates = [record.date_time for record in sequence.records]
|
|
for i, expected_date in enumerate(
|
|
[
|
|
pendulum.datetime(2024, 10, 1),
|
|
pendulum.datetime(2024, 11, 1),
|
|
pendulum.datetime(2024, 12, 1),
|
|
]
|
|
):
|
|
assert compare_datetimes(sorted_dates[i], expected_date).equal
|
|
|
|
def test_sort_by_datetime_descending(self, sequence):
|
|
"""Test sorting records in descending order by date_time."""
|
|
records = [
|
|
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
|
|
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
|
|
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
|
|
]
|
|
for i, record in enumerate(records):
|
|
sequence.insert(i, record)
|
|
sequence.sort_by_datetime(reverse=True)
|
|
sorted_dates = [record.date_time for record in sequence.records]
|
|
for i, expected_date in enumerate(
|
|
[
|
|
pendulum.datetime(2024, 12, 1),
|
|
pendulum.datetime(2024, 11, 1),
|
|
pendulum.datetime(2024, 10, 1),
|
|
]
|
|
):
|
|
assert compare_datetimes(sorted_dates[i], expected_date).equal
|
|
|
|
def test_sort_by_datetime_with_none(self, sequence):
|
|
"""Test sorting records when some date_time values are None."""
|
|
records = [
|
|
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
|
|
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
|
|
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
|
|
]
|
|
for i, record in enumerate(records):
|
|
sequence.insert(i, record)
|
|
sequence.records[2].date_time = None
|
|
assert sequence.records[2].date_time is None
|
|
sequence.sort_by_datetime()
|
|
sorted_dates = [record.date_time for record in sequence.records]
|
|
for i, expected_date in enumerate(
|
|
[
|
|
None, # None values should come first
|
|
pendulum.datetime(2024, 10, 1),
|
|
pendulum.datetime(2024, 11, 1),
|
|
]
|
|
):
|
|
if expected_date is None:
|
|
assert sorted_dates[i] is None
|
|
else:
|
|
assert compare_datetimes(sorted_dates[i], expected_date).equal
|
|
|
|
def test_sort_by_datetime_error_on_uncomparable(self, sequence):
|
|
"""Test error is raised when date_time contains uncomparable values."""
|
|
records = [
|
|
self.create_test_record(pendulum.datetime(2024, 11, 1), 0.7),
|
|
self.create_test_record(pendulum.datetime(2024, 12, 1), 0.9),
|
|
self.create_test_record(pendulum.datetime(2024, 10, 1), 0.8),
|
|
]
|
|
for i, record in enumerate(records):
|
|
sequence.insert(i, record)
|
|
with pytest.raises(
|
|
ValidationError, match="Date string not_a_datetime does not match any known formats."
|
|
):
|
|
sequence.records[2].date_time = "not_a_datetime" # Invalid date_time
|
|
sequence.sort_by_datetime()
|
|
|
|
def test_key_to_series(self, sequence):
|
|
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
|
|
sequence.append(record)
|
|
series = sequence.key_to_series("data_value")
|
|
assert isinstance(series, pd.Series)
|
|
assert series[to_datetime(datetime(2023, 11, 6))] == 0.8
|
|
|
|
def test_key_from_series(self, sequence):
|
|
series = pd.Series(
|
|
data=[0.8, 0.9], index=pd.to_datetime([datetime(2023, 11, 5), datetime(2023, 11, 6)])
|
|
)
|
|
sequence.key_from_series("data_value", series)
|
|
assert len(sequence) == 2
|
|
assert sequence[0].data_value == 0.8
|
|
assert sequence[1].data_value == 0.9
|
|
|
|
def test_key_to_array(self, sequence):
|
|
interval = to_duration("1 day")
|
|
start_datetime = to_datetime("2023-11-6")
|
|
last_datetime = to_datetime("2023-11-8")
|
|
end_datetime = to_datetime("2023-11-9")
|
|
record = self.create_test_record(start_datetime, float(start_datetime.day))
|
|
sequence.insert_by_datetime(record)
|
|
record = self.create_test_record(last_datetime, float(last_datetime.day))
|
|
sequence.insert_by_datetime(record)
|
|
assert sequence[0].data_value == 6.0
|
|
assert sequence[1].data_value == 8.0
|
|
|
|
series = sequence.key_to_series(
|
|
key="data_value", start_datetime=start_datetime, end_datetime=end_datetime
|
|
)
|
|
assert len(series) == 2
|
|
assert series[to_datetime("2023-11-6")] == 6
|
|
assert series[to_datetime("2023-11-8")] == 8
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=start_datetime,
|
|
end_datetime=end_datetime,
|
|
interval=interval,
|
|
)
|
|
assert isinstance(array, np.ndarray)
|
|
assert len(array) == 3
|
|
assert array[0] == start_datetime.day
|
|
assert array[1] == 7
|
|
assert array[2] == last_datetime.day
|
|
|
|
def test_key_to_array_linear_interpolation(self, sequence):
|
|
"""Test key_to_array with linear interpolation for numeric data."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
|
|
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0) # Gap of 2 hours
|
|
sequence.insert_by_datetime(record1)
|
|
sequence.insert_by_datetime(record2)
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 3),
|
|
interval=interval,
|
|
fill_method="linear",
|
|
)
|
|
assert len(array) == 3
|
|
assert array[0] == 0.8
|
|
assert array[1] == 0.9 # Interpolated value
|
|
assert array[2] == 1.0
|
|
|
|
def test_key_to_array_ffill(self, sequence):
|
|
"""Test key_to_array with forward filling for missing values."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
|
|
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0)
|
|
sequence.insert_by_datetime(record1)
|
|
sequence.insert_by_datetime(record2)
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 3),
|
|
interval=interval,
|
|
fill_method="ffill",
|
|
)
|
|
assert len(array) == 3
|
|
assert array[0] == 0.8
|
|
assert array[1] == 0.8 # Forward-filled value
|
|
assert array[2] == 1.0
|
|
|
|
def test_key_to_array_bfill(self, sequence):
|
|
"""Test key_to_array with backward filling for missing values."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
|
|
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 2), 1.0)
|
|
sequence.insert_by_datetime(record1)
|
|
sequence.insert_by_datetime(record2)
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 3),
|
|
interval=interval,
|
|
fill_method="bfill",
|
|
)
|
|
assert len(array) == 3
|
|
assert array[0] == 0.8
|
|
assert array[1] == 1.0 # Backward-filled value
|
|
assert array[2] == 1.0
|
|
|
|
def test_key_to_array_with_truncation(self, sequence):
|
|
"""Test truncation behavior in key_to_array."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 5, 23), 0.8)
|
|
record2 = self.create_test_record(pendulum.datetime(2023, 11, 6, 1), 1.0)
|
|
sequence.insert_by_datetime(record1)
|
|
sequence.insert_by_datetime(record2)
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 2),
|
|
interval=interval,
|
|
)
|
|
assert len(array) == 2
|
|
assert array[0] == 0.9 # Interpolated from previous day
|
|
assert array[1] == 1.0
|
|
|
|
def test_key_to_array_with_none(self, sequence):
|
|
"""Test handling of empty series in key_to_array."""
|
|
interval = to_duration("1 hour")
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 3),
|
|
interval=interval,
|
|
)
|
|
assert isinstance(array, np.ndarray)
|
|
assert np.all(array == None)
|
|
|
|
def test_key_to_array_with_one(self, sequence):
|
|
"""Test handling of one element series in key_to_array."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 5, 23), 0.8)
|
|
sequence.insert_by_datetime(record1)
|
|
|
|
array = sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 2),
|
|
interval=interval,
|
|
)
|
|
assert len(array) == 2
|
|
assert array[0] == 0.8 # Interpolated from previous day
|
|
assert array[1] == 0.8
|
|
|
|
def test_key_to_array_invalid_fill_method(self, sequence):
|
|
"""Test invalid fill_method raises an error."""
|
|
interval = to_duration("1 hour")
|
|
record1 = self.create_test_record(pendulum.datetime(2023, 11, 6, 0), 0.8)
|
|
sequence.insert_by_datetime(record1)
|
|
|
|
with pytest.raises(ValueError, match="Unsupported fill method: invalid"):
|
|
sequence.key_to_array(
|
|
key="data_value",
|
|
start_datetime=pendulum.datetime(2023, 11, 6),
|
|
end_datetime=pendulum.datetime(2023, 11, 6, 1),
|
|
interval=interval,
|
|
fill_method="invalid",
|
|
)
|
|
|
|
def test_to_datetimeindex(self, sequence2):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence2.insert(0, record1)
|
|
sequence2.insert(1, record2)
|
|
dt_index = sequence2.to_datetimeindex()
|
|
assert isinstance(dt_index, pd.DatetimeIndex)
|
|
assert dt_index[0] == to_datetime(datetime(2023, 11, 5))
|
|
assert dt_index[1] == to_datetime(datetime(2023, 11, 6))
|
|
|
|
def test_delete_by_datetime_range(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
record3 = self.create_test_record(datetime(2023, 11, 7), 1.0)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
sequence.append(record3)
|
|
assert len(sequence) == 3
|
|
sequence.delete_by_datetime(
|
|
start_datetime=datetime(2023, 11, 6), end_datetime=datetime(2023, 11, 7)
|
|
)
|
|
assert len(sequence) == 2
|
|
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 5))
|
|
assert sequence[1].date_time == to_datetime(datetime(2023, 11, 7))
|
|
|
|
def test_delete_by_datetime_start(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
assert len(sequence) == 2
|
|
sequence.delete_by_datetime(start_datetime=datetime(2023, 11, 6))
|
|
assert len(sequence) == 1
|
|
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 5))
|
|
|
|
def test_delete_by_datetime_end(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
assert len(sequence) == 2
|
|
sequence.delete_by_datetime(end_datetime=datetime(2023, 11, 6))
|
|
assert len(sequence) == 1
|
|
assert sequence[0].date_time == to_datetime(datetime(2023, 11, 6))
|
|
|
|
def test_filter_by_datetime(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
filtered_sequence = sequence.filter_by_datetime(start_datetime=datetime(2023, 11, 6))
|
|
assert len(filtered_sequence) == 1
|
|
assert filtered_sequence[0].date_time == to_datetime(datetime(2023, 11, 6))
|
|
|
|
def test_to_dict(self, sequence):
|
|
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
|
|
sequence.append(record)
|
|
data_dict = sequence.to_dict()
|
|
assert isinstance(data_dict, dict)
|
|
sequence_other = sequence.from_dict(data_dict)
|
|
assert sequence_other == sequence
|
|
|
|
def test_to_json(self, sequence):
|
|
record = self.create_test_record(datetime(2023, 11, 6), 0.8)
|
|
sequence.append(record)
|
|
json_str = sequence.to_json()
|
|
assert isinstance(json_str, str)
|
|
assert "2023-11-06" in json_str
|
|
assert ":0.8" in json_str
|
|
|
|
def test_from_json(self, sequence, sequence2):
|
|
json_str = sequence2.to_json()
|
|
sequence = sequence.from_json(json_str)
|
|
assert len(sequence) == len(sequence2)
|
|
assert sequence[0].date_time == sequence2[0].date_time
|
|
assert sequence[0].data_value == sequence2[0].data_value
|
|
|
|
def test_key_to_dict(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
data_dict = sequence.key_to_dict("data_value")
|
|
assert isinstance(data_dict, dict)
|
|
assert data_dict[to_datetime(datetime(2023, 11, 5), as_string=True)] == 0.8
|
|
assert data_dict[to_datetime(datetime(2023, 11, 6), as_string=True)] == 0.9
|
|
|
|
def test_key_to_lists(self, sequence):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 0.8)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 0.9)
|
|
sequence.append(record1)
|
|
sequence.append(record2)
|
|
dates, values = sequence.key_to_lists("data_value")
|
|
assert dates == [to_datetime(datetime(2023, 11, 5)), to_datetime(datetime(2023, 11, 6))]
|
|
assert values == [0.8, 0.9]
|
|
|
|
|
|
class TestDataProvider:
|
|
# Fixtures and helper functions
|
|
@pytest.fixture
|
|
def provider(self):
|
|
"""Fixture to provide an instance of TestDataProvider for testing."""
|
|
DerivedDataProvider.provider_enabled = True
|
|
DerivedDataProvider.provider_updated = False
|
|
return DerivedDataProvider()
|
|
|
|
@pytest.fixture
|
|
def sample_start_datetime(self):
|
|
"""Fixture for a sample start datetime."""
|
|
return to_datetime(datetime(2024, 11, 1, 12, 0))
|
|
|
|
def create_test_record(self, date, value):
|
|
"""Helper function to create a test DataRecord."""
|
|
return DerivedRecord(date_time=date, data_value=value)
|
|
|
|
# Tests
|
|
|
|
def test_singleton_behavior(self, provider):
|
|
"""Test that DataProvider enforces singleton behavior."""
|
|
instance1 = provider
|
|
instance2 = DerivedDataProvider()
|
|
assert (
|
|
instance1 is instance2
|
|
), "Singleton pattern is not enforced; instances are not the same."
|
|
|
|
def test_update_method_with_defaults(self, provider, sample_start_datetime, monkeypatch):
|
|
"""Test the `update` method with default parameters."""
|
|
ems_eos = get_ems()
|
|
|
|
ems_eos.set_start_datetime(sample_start_datetime)
|
|
provider.update_data()
|
|
|
|
assert provider.start_datetime == sample_start_datetime
|
|
|
|
def test_update_method_force_enable(self, provider, monkeypatch):
|
|
"""Test that `update` executes when `force_enable` is True, even if `enabled` is False."""
|
|
# Override enabled to return False for this test
|
|
DerivedDataProvider.provider_enabled = False
|
|
DerivedDataProvider.provider_updated = False
|
|
provider.update_data(force_enable=True)
|
|
assert provider.enabled() is False, "Provider should be disabled, but enabled() is True."
|
|
assert (
|
|
DerivedDataProvider.provider_updated is True
|
|
), "Provider should have been executed, but was not."
|
|
|
|
def test_delete_by_datetime(self, provider, sample_start_datetime):
|
|
"""Test `delete_by_datetime` method for removing records by datetime range."""
|
|
# Add records to the provider for deletion testing
|
|
provider.records = [
|
|
self.create_test_record(sample_start_datetime - to_duration("3 hours"), 1),
|
|
self.create_test_record(sample_start_datetime - to_duration("1 hour"), 2),
|
|
self.create_test_record(sample_start_datetime + to_duration("1 hour"), 3),
|
|
]
|
|
|
|
provider.delete_by_datetime(
|
|
start_datetime=sample_start_datetime - to_duration("2 hours"),
|
|
end_datetime=sample_start_datetime + to_duration("2 hours"),
|
|
)
|
|
assert (
|
|
len(provider.records) == 1
|
|
), "Only one record should remain after deletion by datetime."
|
|
assert provider.records[0].date_time == sample_start_datetime - to_duration(
|
|
"3 hours"
|
|
), "Unexpected record remains."
|
|
|
|
|
|
class TestDataImportProvider:
|
|
# Fixtures and helper functions
|
|
@pytest.fixture
|
|
def provider(self):
|
|
"""Fixture to provide an instance of DerivedDataImportProvider for testing."""
|
|
DerivedDataImportProvider.provider_enabled = True
|
|
DerivedDataImportProvider.provider_updated = False
|
|
return DerivedDataImportProvider()
|
|
|
|
@pytest.mark.parametrize(
|
|
"start_datetime, value_count, expected_mapping_count",
|
|
[
|
|
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
|
|
("2024-08-10 00:00:00", 24, 24), # DST in Germany
|
|
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
|
|
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
|
|
],
|
|
)
|
|
def test_import_datetimes(self, provider, start_datetime, value_count, expected_mapping_count):
|
|
start_datetime = to_datetime(start_datetime, in_timezone="Europe/Berlin")
|
|
|
|
value_datetime_mapping = provider.import_datetimes(start_datetime, value_count)
|
|
|
|
assert len(value_datetime_mapping) == expected_mapping_count
|
|
|
|
@pytest.mark.parametrize(
|
|
"start_datetime, value_count, expected_mapping_count",
|
|
[
|
|
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
|
|
("2024-08-10 00:00:00", 24, 24), # DST in Germany
|
|
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
|
|
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
|
|
],
|
|
)
|
|
def test_import_datetimes_utc(
|
|
self, set_other_timezone, provider, start_datetime, value_count, expected_mapping_count
|
|
):
|
|
original_tz = set_other_timezone("Etc/UTC")
|
|
start_datetime = to_datetime(start_datetime, in_timezone="Europe/Berlin")
|
|
assert start_datetime.timezone.name == "Europe/Berlin"
|
|
|
|
value_datetime_mapping = provider.import_datetimes(start_datetime, value_count)
|
|
|
|
assert len(value_datetime_mapping) == expected_mapping_count
|
|
|
|
|
|
class TestDataContainer:
|
|
# Fixture and helpers
|
|
@pytest.fixture
|
|
def container(self):
|
|
container = DerivedDataContainer()
|
|
return container
|
|
|
|
@pytest.fixture
|
|
def container_with_providers(self):
|
|
record1 = self.create_test_record(datetime(2023, 11, 5), 1)
|
|
record2 = self.create_test_record(datetime(2023, 11, 6), 2)
|
|
record3 = self.create_test_record(datetime(2023, 11, 7), 3)
|
|
provider = DerivedDataProvider()
|
|
provider.clear()
|
|
assert len(provider) == 0
|
|
provider.append(record1)
|
|
provider.append(record2)
|
|
provider.append(record3)
|
|
assert len(provider) == 3
|
|
container = DerivedDataContainer()
|
|
container.providers.clear()
|
|
assert len(container.providers) == 0
|
|
container.providers.append(provider)
|
|
assert len(container.providers) == 1
|
|
return container
|
|
|
|
def create_test_record(self, date, value):
|
|
"""Helper function to create a test DataRecord."""
|
|
return DerivedRecord(date_time=date, data_value=value)
|
|
|
|
def test_append_provider(self, container):
|
|
assert len(container.providers) == 0
|
|
container.providers.append(DerivedDataProvider())
|
|
assert len(container.providers) == 1
|
|
assert isinstance(container.providers[0], DerivedDataProvider)
|
|
|
|
@pytest.mark.skip(reason="type check not implemented")
|
|
def test_append_provider_invalid_type(self, container):
|
|
with pytest.raises(ValueError, match="must be an instance of DataProvider"):
|
|
container.providers.append("not_a_provider")
|
|
|
|
def test_getitem_existing_key(self, container_with_providers):
|
|
assert len(container_with_providers.providers) == 1
|
|
# check all keys are available (don't care for position)
|
|
for key in ["data_value", "date_time"]:
|
|
assert key in list(container_with_providers.keys())
|
|
series = container_with_providers["data_value"]
|
|
assert isinstance(series, pd.Series)
|
|
assert series.name == "data_value"
|
|
assert series.tolist() == [1.0, 2.0, 3.0]
|
|
|
|
def test_getitem_non_existing_key(self, container_with_providers):
|
|
with pytest.raises(KeyError, match="No data found for key 'non_existent_key'"):
|
|
container_with_providers["non_existent_key"]
|
|
|
|
def test_setitem_existing_key(self, container_with_providers):
|
|
new_series = container_with_providers["data_value"]
|
|
new_series[:] = [4, 5, 6]
|
|
container_with_providers["data_value"] = new_series
|
|
series = container_with_providers["data_value"]
|
|
assert series.name == "data_value"
|
|
assert series.tolist() == [4, 5, 6]
|
|
|
|
def test_setitem_invalid_value(self, container_with_providers):
|
|
with pytest.raises(ValueError, match="Value must be an instance of pd.Series"):
|
|
container_with_providers["test_key"] = "not_a_series"
|
|
|
|
def test_setitem_non_existing_key(self, container_with_providers):
|
|
new_series = pd.Series([4, 5, 6], name="non_existent_key")
|
|
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
|
|
container_with_providers["non_existent_key"] = new_series
|
|
|
|
def test_delitem_existing_key(self, container_with_providers):
|
|
del container_with_providers["data_value"]
|
|
series = container_with_providers["data_value"]
|
|
assert series.name == "data_value"
|
|
assert series.tolist() == []
|
|
|
|
def test_delitem_non_existing_key(self, container_with_providers):
|
|
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
|
|
del container_with_providers["non_existent_key"]
|
|
|
|
def test_len(self, container_with_providers):
|
|
assert len(container_with_providers) == 3
|
|
|
|
def test_repr(self, container_with_providers):
|
|
representation = repr(container_with_providers)
|
|
assert representation.startswith("DerivedDataContainer(")
|
|
assert "DerivedDataProvider" in representation
|
|
|
|
def test_to_json(self, container_with_providers):
|
|
json_str = container_with_providers.to_json()
|
|
container_other = DerivedDataContainer.from_json(json_str)
|
|
assert container_other == container_with_providers
|
|
|
|
def test_from_json(self, container_with_providers):
|
|
json_str = container_with_providers.to_json()
|
|
container = DerivedDataContainer.from_json(json_str)
|
|
assert isinstance(container, DerivedDataContainer)
|
|
assert len(container.providers) == 1
|
|
assert container.providers[0] == container_with_providers.providers[0]
|
|
|
|
def test_provider_by_id(self, container_with_providers):
|
|
provider = container_with_providers.provider_by_id("DerivedDataProvider")
|
|
assert isinstance(provider, DerivedDataProvider)
|