EOS/tests/test_elecpriceakkudoktor.py
Bobby Noelte 830af85fca Fix2 config and predictions revamp. (#281)
measurement:

- Add new measurement class to hold real world measurements.
- Handles load meter readings, grid import and export meter readings.
- Aggregates load meter readings aka. measurements to total load.
- Can import measurements from files, pandas datetime series,
    pandas datetime dataframes, simple daetime arrays and
    programmatically.
- Maybe expanded to other measurement values.
- Should be used for load prediction adaptions by real world
    measurements.

core/coreabc:

- Add mixin class to access measurements

core/pydantic:

- Add pydantic models for pandas datetime series and dataframes.
- Add pydantic models for simple datetime array

core/dataabc:

- Provide DataImport mixin class for generic import handling.
    Imports from JSON string and files. Imports from pandas datetime dataframes
    and simple datetime arrays. Signature of import method changed to
    allow import datetimes to be given programmatically and by data content.
- Use pydantic models for datetime series, dataframes, arrays
- Validate generic imports by pydantic models
- Provide new attributes min_datetime and max_datetime for DataSequence.
- Add parameter dropna to drop NAN/ None values when creating lists, pandas series
    or numpy array from DataSequence.

config/config:

- Add common settings for the measurement module.

predictions/elecpriceakkudoktor:

- Use mean values of last 7 days to fill prediction values not provided by
    akkudoktor.net (only provides 24 values).

prediction/loadabc:

- Extend the generic prediction keys by 'load_total_adjusted' for load predictions
    that adjust the predicted total load by measured load values.

prediction/loadakkudoktor:

- Extend the Akkudoktor load prediction by load adjustment using measured load
    values.

prediction/load_aggregator:

- Module removed. Load aggregation is now handled by the measurement module.

prediction/load_corrector:

- Module removed. Load correction (aka. adjustment of load prediction by
    measured load energy) is handled by the LoadAkkudoktor prediction and
    the generic 'load_mean_adjusted' prediction key.

prediction/load_forecast:

- Module removed. Functionality now completely handled by the LoadAkkudoktor
    prediction.

utils/cacheutil:

- Use pydantic.
- Fix potential bug in ttl (time to live) duration handling.

utils/datetimeutil:

- Added missing handling of pendulum.DateTime and pendulum.Duration instances
    as input. Handled before as datetime.datetime and datetime.timedelta.

utils/visualize:

- Move main to generate_example_report() for better testing support.

server/server:

- Added new configuration option server_fastapi_startup_server_fasthtml
  to make startup of FastHTML server by FastAPI server conditional.

server/fastapi_server:

- Add APIs for measurements
- Improve APIs to provide or take pandas datetime series and
    datetime dataframes controlled by pydantic model.
- Improve APIs to provide or take simple datetime data arrays
    controlled by pydantic model.
- Move fastAPI server API to v1 for new APIs.
- Update pre v1 endpoints to use new prediction and measurement capabilities.
- Only start FastHTML server if 'server_fastapi_startup_server_fasthtml'
    config option is set.

tests:

- Adapt import tests to changed import method signature
- Adapt server test to use the v1 API
- Extend the dataabc test to test for array generation from data
    with several data interval scenarios.
- Extend the datetimeutil test to also test for correct handling
    of to_datetime() providing now().
- Adapt LoadAkkudoktor test for new adjustment calculation.
- Adapt visualization test to use example report function instead of visualize.py
    run as process.
- Removed test_load_aggregator. Functionality is now tested in test_measurement.
- Added tests for measurement module

docs:

- Remove sphinxcontrib-openapi as it prevents build of documentation.
    "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema
    for t in schema["anyOf"]: KeyError: 'anyOf'"

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00

230 lines
8.1 KiB
Python

import json
from pathlib import Path
from unittest.mock import Mock, patch
import numpy as np
import pytest
import requests
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.prediction.elecpriceakkudoktor import (
AkkudoktorElecPrice,
AkkudoktorElecPriceValue,
ElecPriceAkkudoktor,
)
from akkudoktoreos.utils.cacheutil import CacheFileStore
from akkudoktoreos.utils.datetimeutil import to_datetime
DIR_TESTDATA = Path(__file__).absolute().parent.joinpath("testdata")
FILE_TESTDATA_ELECPRICEAKKUDOKTOR_1_JSON = DIR_TESTDATA.joinpath(
"elecpriceforecast_akkudoktor_1.json"
)
ems_eos = get_ems()
@pytest.fixture
def elecprice_provider(monkeypatch):
"""Fixture to create a ElecPriceProvider instance."""
monkeypatch.setenv("elecprice_provider", "ElecPriceAkkudoktor")
return ElecPriceAkkudoktor()
@pytest.fixture
def sample_akkudoktor_1_json():
"""Fixture that returns sample forecast data report."""
with open(FILE_TESTDATA_ELECPRICEAKKUDOKTOR_1_JSON, "r") as f_res:
input_data = json.load(f_res)
return input_data
@pytest.fixture
def cache_store():
"""A pytest fixture that creates a new CacheFileStore instance for testing."""
return CacheFileStore()
# ------------------------------------------------
# General forecast
# ------------------------------------------------
def test_singleton_instance(elecprice_provider):
"""Test that ElecPriceForecast behaves as a singleton."""
another_instance = ElecPriceAkkudoktor()
assert elecprice_provider is another_instance
def test_invalid_provider(elecprice_provider, monkeypatch):
"""Test requesting an unsupported elecprice_provider."""
monkeypatch.setenv("elecprice_provider", "<invalid>")
elecprice_provider.config.update()
assert elecprice_provider.enabled() == False
# ------------------------------------------------
# Akkudoktor
# ------------------------------------------------
@patch("akkudoktoreos.prediction.elecpriceakkudoktor.logger.error")
def test_validate_data_invalid_format(mock_logger, elecprice_provider):
"""Test validation for invalid Akkudoktor data."""
invalid_data = '{"invalid": "data"}'
with pytest.raises(ValueError):
elecprice_provider._validate_data(invalid_data)
mock_logger.assert_called_once_with(mock_logger.call_args[0][0])
def test_calculate_weighted_mean(elecprice_provider):
"""Test calculation of weighted mean for electricity prices."""
elecprice_provider.elecprice_8days = np.random.rand(24, 8) * 100
price_mean = elecprice_provider._calculate_weighted_mean(day_of_week=2, hour=10)
assert isinstance(price_mean, float)
assert not np.isnan(price_mean)
expected = np.array(
[
[1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 1.0],
[0.25, 1.0, 0.5, 0.125, 0.0625, 0.03125, 0.015625, 1.0],
[0.125, 0.5, 1.0, 0.25, 0.0625, 0.03125, 0.015625, 1.0],
[0.0625, 0.125, 0.5, 1.0, 0.25, 0.03125, 0.015625, 1.0],
[0.0625, 0.125, 0.25, 0.5, 1.0, 0.03125, 0.015625, 1.0],
[0.015625, 0.03125, 0.0625, 0.125, 0.5, 1.0, 0.25, 1.0],
[0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1.0, 1.0],
]
)
np.testing.assert_array_equal(elecprice_provider.elecprice_8days_weights_day_of_week, expected)
@patch("requests.get")
def test_request_forecast(mock_get, elecprice_provider, sample_akkudoktor_1_json):
"""Test requesting forecast from Akkudoktor."""
# Mock response object
mock_response = Mock()
mock_response.status_code = 200
mock_response.content = json.dumps(sample_akkudoktor_1_json)
mock_get.return_value = mock_response
# Preset, as this is usually done by update()
elecprice_provider.config.update()
# Test function
akkudoktor_data = elecprice_provider._request_forecast()
assert isinstance(akkudoktor_data, AkkudoktorElecPrice)
assert akkudoktor_data.values[0] == AkkudoktorElecPriceValue(
start_timestamp=1733871600000,
end_timestamp=1733875200000,
start="2024-12-10T23:00:00.000Z",
end="2024-12-11T00:00:00.000Z",
marketprice=115.94,
unit="Eur/MWh",
marketpriceEurocentPerKWh=11.59,
)
@patch("requests.get")
def test_update_data(mock_get, elecprice_provider, sample_akkudoktor_1_json, cache_store):
"""Test fetching forecast from Akkudoktor."""
# Mock response object
mock_response = Mock()
mock_response.status_code = 200
mock_response.content = json.dumps(sample_akkudoktor_1_json)
mock_get.return_value = mock_response
cache_store.clear(clear_all=True)
# Call the method
ems_eos.set_start_datetime(to_datetime("2024-12-11 00:00:00", in_timezone="Europe/Berlin"))
elecprice_provider.update_data(force_enable=True, force_update=True)
# Assert: Verify the result is as expected
mock_get.assert_called_once()
assert len(elecprice_provider) == 49 # prediction hours + 1
# Assert we get prediction_hours prioce values by resampling
np_price_array = elecprice_provider.key_to_array(
key="elecprice_marketprice",
start_datetime=elecprice_provider.start_datetime,
end_datetime=elecprice_provider.end_datetime,
)
assert len(np_price_array) == elecprice_provider.total_hours
# with open(FILE_TESTDATA_ELECPRICEAKKUDOKTOR_2_JSON, "w") as f_out:
# f_out.write(elecprice_provider.to_json())
@patch("requests.get")
def test_update_data_with_incomplete_forecast(mock_get, elecprice_provider):
"""Test `_update_data` with incomplete or missing forecast data."""
incomplete_data: dict = {"meta": {}, "values": []}
mock_response = Mock()
mock_response.status_code = 200
mock_response.content = json.dumps(incomplete_data)
mock_get.return_value = mock_response
with pytest.raises(ValueError):
elecprice_provider._update_data(force_update=True)
@pytest.mark.parametrize(
"status_code, exception",
[(400, requests.exceptions.HTTPError), (500, requests.exceptions.HTTPError), (200, None)],
)
@patch("requests.get")
def test_request_forecast_status_codes(
mock_get, elecprice_provider, sample_akkudoktor_1_json, status_code, exception
):
"""Test handling of various API status codes."""
mock_response = Mock()
mock_response.status_code = status_code
mock_response.content = json.dumps(sample_akkudoktor_1_json)
mock_response.raise_for_status.side_effect = (
requests.exceptions.HTTPError if exception else None
)
mock_get.return_value = mock_response
if exception:
with pytest.raises(exception):
elecprice_provider._request_forecast()
else:
elecprice_provider._request_forecast()
@patch("akkudoktoreos.utils.cacheutil.CacheFileStore")
def test_cache_integration(mock_cache, elecprice_provider):
"""Test caching of 8-day electricity price data."""
mock_cache_instance = mock_cache.return_value
mock_cache_instance.get.return_value = None # Simulate no cache
elecprice_provider._update_data(force_update=True)
mock_cache_instance.create.assert_called_once()
mock_cache_instance.get.assert_called_once()
def test_key_to_array_resampling(elecprice_provider):
"""Test resampling of forecast data to NumPy array."""
elecprice_provider.update_data(force_update=True)
array = elecprice_provider.key_to_array(
key="elecprice_marketprice",
start_datetime=elecprice_provider.start_datetime,
end_datetime=elecprice_provider.end_datetime,
)
assert isinstance(array, np.ndarray)
assert len(array) == elecprice_provider.total_hours
# ------------------------------------------------
# Development Akkudoktor
# ------------------------------------------------
@pytest.mark.skip(reason="For development only")
def test_akkudoktor_development_forecast_data(elecprice_provider):
"""Fetch data from real Akkudoktor server."""
# Preset, as this is usually done by update_data()
elecprice_provider.start_datetime = to_datetime("2024-10-26 00:00:00")
akkudoktor_data = elecprice_provider._request_forecast()
with open(FILE_TESTDATA_ELECPRICEAKKUDOKTOR_1_JSON, "w") as f_out:
json.dump(akkudoktor_data, f_out, indent=4)