EOS/tests/test_measurement.py
Bobby Noelte 830af85fca Fix2 config and predictions revamp. (#281)
measurement:

- Add new measurement class to hold real world measurements.
- Handles load meter readings, grid import and export meter readings.
- Aggregates load meter readings aka. measurements to total load.
- Can import measurements from files, pandas datetime series,
    pandas datetime dataframes, simple daetime arrays and
    programmatically.
- Maybe expanded to other measurement values.
- Should be used for load prediction adaptions by real world
    measurements.

core/coreabc:

- Add mixin class to access measurements

core/pydantic:

- Add pydantic models for pandas datetime series and dataframes.
- Add pydantic models for simple datetime array

core/dataabc:

- Provide DataImport mixin class for generic import handling.
    Imports from JSON string and files. Imports from pandas datetime dataframes
    and simple datetime arrays. Signature of import method changed to
    allow import datetimes to be given programmatically and by data content.
- Use pydantic models for datetime series, dataframes, arrays
- Validate generic imports by pydantic models
- Provide new attributes min_datetime and max_datetime for DataSequence.
- Add parameter dropna to drop NAN/ None values when creating lists, pandas series
    or numpy array from DataSequence.

config/config:

- Add common settings for the measurement module.

predictions/elecpriceakkudoktor:

- Use mean values of last 7 days to fill prediction values not provided by
    akkudoktor.net (only provides 24 values).

prediction/loadabc:

- Extend the generic prediction keys by 'load_total_adjusted' for load predictions
    that adjust the predicted total load by measured load values.

prediction/loadakkudoktor:

- Extend the Akkudoktor load prediction by load adjustment using measured load
    values.

prediction/load_aggregator:

- Module removed. Load aggregation is now handled by the measurement module.

prediction/load_corrector:

- Module removed. Load correction (aka. adjustment of load prediction by
    measured load energy) is handled by the LoadAkkudoktor prediction and
    the generic 'load_mean_adjusted' prediction key.

prediction/load_forecast:

- Module removed. Functionality now completely handled by the LoadAkkudoktor
    prediction.

utils/cacheutil:

- Use pydantic.
- Fix potential bug in ttl (time to live) duration handling.

utils/datetimeutil:

- Added missing handling of pendulum.DateTime and pendulum.Duration instances
    as input. Handled before as datetime.datetime and datetime.timedelta.

utils/visualize:

- Move main to generate_example_report() for better testing support.

server/server:

- Added new configuration option server_fastapi_startup_server_fasthtml
  to make startup of FastHTML server by FastAPI server conditional.

server/fastapi_server:

- Add APIs for measurements
- Improve APIs to provide or take pandas datetime series and
    datetime dataframes controlled by pydantic model.
- Improve APIs to provide or take simple datetime data arrays
    controlled by pydantic model.
- Move fastAPI server API to v1 for new APIs.
- Update pre v1 endpoints to use new prediction and measurement capabilities.
- Only start FastHTML server if 'server_fastapi_startup_server_fasthtml'
    config option is set.

tests:

- Adapt import tests to changed import method signature
- Adapt server test to use the v1 API
- Extend the dataabc test to test for array generation from data
    with several data interval scenarios.
- Extend the datetimeutil test to also test for correct handling
    of to_datetime() providing now().
- Adapt LoadAkkudoktor test for new adjustment calculation.
- Adapt visualization test to use example report function instead of visualize.py
    run as process.
- Removed test_load_aggregator. Functionality is now tested in test_measurement.
- Added tests for measurement module

docs:

- Remove sphinxcontrib-openapi as it prevents build of documentation.
    "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema
    for t in schema["anyOf"]: KeyError: 'anyOf'"

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00

219 lines
8.0 KiB
Python

import numpy as np
import pytest
from pendulum import datetime, duration
from akkudoktoreos.config.config import SettingsEOS
from akkudoktoreos.measurement.measurement import MeasurementDataRecord, get_measurement
@pytest.fixture
def measurement_eos():
"""Fixture to create a Measurement instance."""
measurement = get_measurement()
measurement.records = [
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=0),
measurement_load0_mr=100,
measurement_load1_mr=200,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=1),
measurement_load0_mr=150,
measurement_load1_mr=250,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=2),
measurement_load0_mr=200,
measurement_load1_mr=300,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=3),
measurement_load0_mr=250,
measurement_load1_mr=350,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=4),
measurement_load0_mr=300,
measurement_load1_mr=400,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=5),
measurement_load0_mr=350,
measurement_load1_mr=450,
),
]
return measurement
def test_interval_count(measurement_eos):
"""Test interval count calculation."""
start = datetime(2023, 1, 1, 0)
end = datetime(2023, 1, 1, 3)
interval = duration(hours=1)
assert measurement_eos._interval_count(start, end, interval) == 3
def test_interval_count_invalid_end_before_start(measurement_eos):
"""Test interval count raises ValueError when end_datetime is before start_datetime."""
start = datetime(2023, 1, 1, 3)
end = datetime(2023, 1, 1, 0)
interval = duration(hours=1)
with pytest.raises(ValueError, match="end_datetime must be after start_datetime"):
measurement_eos._interval_count(start, end, interval)
def test_interval_count_invalid_non_positive_interval(measurement_eos):
"""Test interval count raises ValueError when interval is non-positive."""
start = datetime(2023, 1, 1, 0)
end = datetime(2023, 1, 1, 3)
with pytest.raises(ValueError, match="interval must be positive"):
measurement_eos._interval_count(start, end, duration(hours=0))
def test_energy_from_meter_readings_valid_input(measurement_eos):
"""Test _energy_from_meter_readings with valid inputs and proper alignment of load data."""
key = "measurement_load0_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
load_array = measurement_eos._energy_from_meter_readings(
key, start_datetime, end_datetime, interval
)
expected_load_array = np.array([50, 50, 50, 50, 50]) # Differences between consecutive readings
np.testing.assert_array_equal(load_array, expected_load_array)
def test_energy_from_meter_readings_empty_array(measurement_eos):
"""Test _energy_from_meter_readings with no data (empty array)."""
key = "measurement_load0_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
# Use empyt records array
measurement_eos.records = []
load_array = measurement_eos._energy_from_meter_readings(
key, start_datetime, end_datetime, interval
)
# Expected: an array of zeros with one less than the number of intervals
expected_size = (
measurement_eos._interval_count(start_datetime, end_datetime + interval, interval) - 1
)
expected_load_array = np.zeros(expected_size)
np.testing.assert_array_equal(load_array, expected_load_array)
def test_energy_from_meter_readings_misaligned_array(measurement_eos):
"""Test _energy_from_meter_readings with misaligned array size."""
key = "measurement_load1_mr"
start_datetime = measurement_eos.min_datetime
end_datetime = measurement_eos.max_datetime
interval = duration(hours=1)
# Use misaligned array, latest interval set to 2 hours (instead of 1 hour)
measurement_eos.records[-1].date_time = datetime(2023, 1, 1, 6)
load_array = measurement_eos._energy_from_meter_readings(
key, start_datetime, end_datetime, interval
)
expected_load_array = np.array([50, 50, 50, 50, 25]) # Differences between consecutive readings
np.testing.assert_array_equal(load_array, expected_load_array)
def test_energy_from_meter_readings_partial_data(measurement_eos, caplog):
"""Test _energy_from_meter_readings with partial data (misaligned but empty array)."""
key = "measurement_load2_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
with caplog.at_level("DEBUG"):
load_array = measurement_eos._energy_from_meter_readings(
key, start_datetime, end_datetime, interval
)
expected_size = (
measurement_eos._interval_count(start_datetime, end_datetime + interval, interval) - 1
)
expected_load_array = np.zeros(expected_size)
np.testing.assert_array_equal(load_array, expected_load_array)
def test_energy_from_meter_readings_negative_interval(measurement_eos):
"""Test _energy_from_meter_readings with a negative interval."""
key = "measurement_load3_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=-1)
with pytest.raises(ValueError, match="interval must be positive"):
measurement_eos._energy_from_meter_readings(key, start_datetime, end_datetime, interval)
def test_load_total(measurement_eos):
"""Test total load calculation."""
start = datetime(2023, 1, 1, 0)
end = datetime(2023, 1, 1, 2)
interval = duration(hours=1)
result = measurement_eos.load_total(start_datetime=start, end_datetime=end, interval=interval)
# Expected total load per interval
expected = np.array([100, 100]) # Differences between consecutive meter readings
np.testing.assert_array_equal(result, expected)
def test_load_total_no_data(measurement_eos):
"""Test total load calculation with no data."""
measurement_eos.records = []
start = datetime(2023, 1, 1, 0)
end = datetime(2023, 1, 1, 3)
interval = duration(hours=1)
result = measurement_eos.load_total(start_datetime=start, end_datetime=end, interval=interval)
expected = np.zeros(3) # No data, so all intervals are zero
np.testing.assert_array_equal(result, expected)
def test_name_to_key(measurement_eos):
"""Test name_to_key functionality."""
settings = SettingsEOS(
measurement_load0_name="Household",
measurement_load1_name="Heat Pump",
)
measurement_eos.config.merge_settings(settings)
assert measurement_eos.name_to_key("Household", "measurement_load") == "measurement_load0_mr"
assert measurement_eos.name_to_key("Heat Pump", "measurement_load") == "measurement_load1_mr"
assert measurement_eos.name_to_key("Unknown", "measurement_load") is None
def test_name_to_key_invalid_topic(measurement_eos):
"""Test name_to_key with an invalid topic."""
settings = SettingsEOS(
measurement_load0_name="Household",
measurement_load1_name="Heat Pump",
)
measurement_eos.config.merge_settings(settings)
assert measurement_eos.name_to_key("Household", "invalid_topic") is None
def test_load_total_partial_intervals(measurement_eos):
"""Test total load calculation with partial intervals."""
start = datetime(2023, 1, 1, 0, 30) # Start in the middle of an interval
end = datetime(2023, 1, 1, 1, 30) # End in the middle of another interval
interval = duration(hours=1)
result = measurement_eos.load_total(start_datetime=start, end_datetime=end, interval=interval)
expected = np.array([100]) # Only one complete interval covered
np.testing.assert_array_equal(result, expected)