EOS/tests/test_predictionabc.py
Bobby Noelte 830af85fca Fix2 config and predictions revamp. (#281)
measurement:

- Add new measurement class to hold real world measurements.
- Handles load meter readings, grid import and export meter readings.
- Aggregates load meter readings aka. measurements to total load.
- Can import measurements from files, pandas datetime series,
    pandas datetime dataframes, simple daetime arrays and
    programmatically.
- Maybe expanded to other measurement values.
- Should be used for load prediction adaptions by real world
    measurements.

core/coreabc:

- Add mixin class to access measurements

core/pydantic:

- Add pydantic models for pandas datetime series and dataframes.
- Add pydantic models for simple datetime array

core/dataabc:

- Provide DataImport mixin class for generic import handling.
    Imports from JSON string and files. Imports from pandas datetime dataframes
    and simple datetime arrays. Signature of import method changed to
    allow import datetimes to be given programmatically and by data content.
- Use pydantic models for datetime series, dataframes, arrays
- Validate generic imports by pydantic models
- Provide new attributes min_datetime and max_datetime for DataSequence.
- Add parameter dropna to drop NAN/ None values when creating lists, pandas series
    or numpy array from DataSequence.

config/config:

- Add common settings for the measurement module.

predictions/elecpriceakkudoktor:

- Use mean values of last 7 days to fill prediction values not provided by
    akkudoktor.net (only provides 24 values).

prediction/loadabc:

- Extend the generic prediction keys by 'load_total_adjusted' for load predictions
    that adjust the predicted total load by measured load values.

prediction/loadakkudoktor:

- Extend the Akkudoktor load prediction by load adjustment using measured load
    values.

prediction/load_aggregator:

- Module removed. Load aggregation is now handled by the measurement module.

prediction/load_corrector:

- Module removed. Load correction (aka. adjustment of load prediction by
    measured load energy) is handled by the LoadAkkudoktor prediction and
    the generic 'load_mean_adjusted' prediction key.

prediction/load_forecast:

- Module removed. Functionality now completely handled by the LoadAkkudoktor
    prediction.

utils/cacheutil:

- Use pydantic.
- Fix potential bug in ttl (time to live) duration handling.

utils/datetimeutil:

- Added missing handling of pendulum.DateTime and pendulum.Duration instances
    as input. Handled before as datetime.datetime and datetime.timedelta.

utils/visualize:

- Move main to generate_example_report() for better testing support.

server/server:

- Added new configuration option server_fastapi_startup_server_fasthtml
  to make startup of FastHTML server by FastAPI server conditional.

server/fastapi_server:

- Add APIs for measurements
- Improve APIs to provide or take pandas datetime series and
    datetime dataframes controlled by pydantic model.
- Improve APIs to provide or take simple datetime data arrays
    controlled by pydantic model.
- Move fastAPI server API to v1 for new APIs.
- Update pre v1 endpoints to use new prediction and measurement capabilities.
- Only start FastHTML server if 'server_fastapi_startup_server_fasthtml'
    config option is set.

tests:

- Adapt import tests to changed import method signature
- Adapt server test to use the v1 API
- Extend the dataabc test to test for array generation from data
    with several data interval scenarios.
- Extend the datetimeutil test to also test for correct handling
    of to_datetime() providing now().
- Adapt LoadAkkudoktor test for new adjustment calculation.
- Adapt visualization test to use example report function instead of visualize.py
    run as process.
- Removed test_load_aggregator. Functionality is now tested in test_measurement.
- Added tests for measurement module

docs:

- Remove sphinxcontrib-openapi as it prevents build of documentation.
    "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema
    for t in schema["anyOf"]: KeyError: 'anyOf'"

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00

438 lines
18 KiB
Python

import os
from datetime import datetime
from typing import Any, ClassVar, List, Optional, Union
import pandas as pd
import pendulum
import pytest
from pydantic import Field
from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.prediction.prediction import PredictionCommonSettings
from akkudoktoreos.prediction.predictionabc import (
PredictionBase,
PredictionContainer,
PredictionProvider,
PredictionRecord,
PredictionSequence,
)
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
# Derived classes for testing
# ---------------------------
class DerivedConfig(PredictionCommonSettings):
env_var: Optional[int] = Field(default=None, description="Test config by environment var")
instance_field: Optional[str] = Field(default=None, description="Test config by instance field")
class_constant: Optional[int] = Field(default=None, description="Test config by class constant")
class DerivedBase(PredictionBase):
instance_field: Optional[str] = Field(default=None, description="Field Value")
class_constant: ClassVar[int] = 30
class DerivedRecord(PredictionRecord):
prediction_value: Optional[float] = Field(default=None, description="Prediction Value")
class DerivedSequence(PredictionSequence):
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
class DerivedPredictionProvider(PredictionProvider):
"""A concrete subclass of PredictionProvider for testing purposes."""
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
provider_enabled: ClassVar[bool] = False
provider_updated: ClassVar[bool] = False
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
# Implement abstract methods for test purposes
def provider_id(self) -> str:
return "DerivedPredictionProvider"
def enabled(self) -> bool:
return self.provider_enabled
def _update_data(self, force_update: Optional[bool] = False) -> None:
# Simulate update logic
DerivedPredictionProvider.provider_updated = True
class DerivedPredictionContainer(PredictionContainer):
providers: List[Union[DerivedPredictionProvider, PredictionProvider]] = Field(
default_factory=list, description="List of prediction providers"
)
# Tests
# ----------
class TestPredictionBase:
@pytest.fixture
def base(self, reset_config, monkeypatch):
# Provide default values for configuration
monkeypatch.setenv("latitude", "50.0")
monkeypatch.setenv("longitude", "10.0")
derived = DerivedBase()
derived.config.update()
return derived
def test_config_value_from_env_variable(self, base, monkeypatch):
# From Prediction Config
monkeypatch.setenv("latitude", "2.5")
base.config.update()
assert base.config.latitude == 2.5
def test_config_value_from_field_default(self, base, monkeypatch):
assert base.config.model_fields["prediction_hours"].default == 48
assert base.config.prediction_hours == 48
monkeypatch.setenv("prediction_hours", "128")
base.config.update()
assert base.config.prediction_hours == 128
monkeypatch.delenv("prediction_hours")
base.config.update()
assert base.config.prediction_hours == 48
def test_get_config_value_key_error(self, base):
with pytest.raises(AttributeError):
base.config.non_existent_key
# TestPredictionRecord fully covered by TestDataRecord
# ----------------------------------------------------
# TestPredictionSequence fully covered by TestDataSequence
# --------------------------------------------------------
# TestPredictionStartEndKeepMixin fully covered by TestPredictionContainer
# --------------------------------------------------------
class TestPredictionProvider:
# Fixtures and helper functions
@pytest.fixture
def provider(self):
"""Fixture to provide an instance of TestPredictionProvider for testing."""
DerivedPredictionProvider.provider_enabled = True
DerivedPredictionProvider.provider_updated = False
return DerivedPredictionProvider()
@pytest.fixture
def sample_start_datetime(self):
"""Fixture for a sample start datetime."""
return to_datetime(datetime(2024, 11, 1, 12, 0))
def create_test_record(self, date, value):
"""Helper function to create a test PredictionRecord."""
return DerivedRecord(date_time=date, prediction_value=value)
# Tests
def test_singleton_behavior(self, provider):
"""Test that PredictionProvider enforces singleton behavior."""
instance1 = provider
instance2 = DerivedPredictionProvider()
assert (
instance1 is instance2
), "Singleton pattern is not enforced; instances are not the same."
def test_update_computed_fields(self, provider, sample_start_datetime):
"""Test that computed fields `end_datetime` and `keep_datetime` are correctly calculated."""
ems_eos = get_ems()
ems_eos.set_start_datetime(sample_start_datetime)
provider.config.prediction_hours = 24 # 24 hours into the future
provider.config.prediction_historic_hours = 48 # 48 hours into the past
expected_end_datetime = sample_start_datetime + to_duration(
provider.config.prediction_hours * 3600
)
expected_keep_datetime = sample_start_datetime - to_duration(
provider.config.prediction_historic_hours * 3600
)
assert (
provider.end_datetime == expected_end_datetime
), "End datetime is not calculated correctly."
assert (
provider.keep_datetime == expected_keep_datetime
), "Keep datetime is not calculated correctly."
def test_update_method_with_defaults(self, provider, sample_start_datetime, monkeypatch):
"""Test the `update` method with default parameters."""
# EOS config supersedes
config_eos = get_config()
ems_eos = get_ems()
# The following values are currently not set in EOS config, we can override
monkeypatch.setenv("prediction_historic_hours", "2")
assert os.getenv("prediction_historic_hours") == "2"
monkeypatch.setenv("latitude", "37.7749")
assert os.getenv("latitude") == "37.7749"
monkeypatch.setenv("longitude", "-122.4194")
assert os.getenv("longitude") == "-122.4194"
ems_eos.set_start_datetime(sample_start_datetime)
provider.update_data()
assert provider.config.prediction_hours == config_eos.prediction_hours
assert provider.config.prediction_historic_hours == 2
assert provider.config.latitude == 37.7749
assert provider.config.longitude == -122.4194
assert provider.start_datetime == sample_start_datetime
assert provider.end_datetime == sample_start_datetime + to_duration(
f"{provider.config.prediction_hours} hours"
)
assert provider.keep_datetime == sample_start_datetime - to_duration("2 hours")
def test_update_method_force_enable(self, provider, monkeypatch):
"""Test that `update` executes when `force_enable` is True, even if `enabled` is False."""
# Preset values that are needed by update
monkeypatch.setenv("latitude", "37.7749")
monkeypatch.setenv("longitude", "-122.4194")
# Override enabled to return False for this test
DerivedPredictionProvider.provider_enabled = False
DerivedPredictionProvider.provider_updated = False
provider.update_data(force_enable=True)
assert provider.enabled() is False, "Provider should be disabled, but enabled() is True."
assert (
DerivedPredictionProvider.provider_updated is True
), "Provider should have been executed, but was not."
def test_delete_by_datetime(self, provider, sample_start_datetime):
"""Test `delete_by_datetime` method for removing records by datetime range."""
# Add records to the provider for deletion testing
provider.records = [
self.create_test_record(sample_start_datetime - to_duration("3 hours"), 1),
self.create_test_record(sample_start_datetime - to_duration("1 hour"), 2),
self.create_test_record(sample_start_datetime + to_duration("1 hour"), 3),
]
provider.delete_by_datetime(
start_datetime=sample_start_datetime - to_duration("2 hours"),
end_datetime=sample_start_datetime + to_duration("2 hours"),
)
assert (
len(provider.records) == 1
), "Only one record should remain after deletion by datetime."
assert provider.records[0].date_time == sample_start_datetime - to_duration(
"3 hours"
), "Unexpected record remains."
class TestPredictionContainer:
# Fixture and helpers
@pytest.fixture
def container(self):
container = DerivedPredictionContainer()
return container
@pytest.fixture
def container_with_providers(self):
record1 = self.create_test_record(datetime(2023, 11, 5), 1)
record2 = self.create_test_record(datetime(2023, 11, 6), 2)
record3 = self.create_test_record(datetime(2023, 11, 7), 3)
provider = DerivedPredictionProvider()
provider.clear()
assert len(provider) == 0
provider.append(record1)
provider.append(record2)
provider.append(record3)
assert len(provider) == 3
container = DerivedPredictionContainer()
container.providers.clear()
assert len(container.providers) == 0
container.providers.append(provider)
assert len(container.providers) == 1
return container
def create_test_record(self, date, value):
"""Helper function to create a test PredictionRecord."""
return DerivedRecord(date_time=date, prediction_value=value)
# Tests
@pytest.mark.parametrize(
"start, hours, end",
[
("2024-11-10 00:00:00", 24, "2024-11-11 00:00:00"), # No DST in Germany
("2024-08-10 00:00:00", 24, "2024-08-11 00:00:00"), # DST in Germany
("2024-03-31 00:00:00", 24, "2024-04-01 00:00:00"), # DST change (23 hours/ day)
("2024-10-27 00:00:00", 24, "2024-10-28 00:00:00"), # DST change (25 hours/ day)
("2024-11-10 00:00:00", 48, "2024-11-12 00:00:00"), # No DST in Germany
("2024-08-10 00:00:00", 48, "2024-08-12 00:00:00"), # DST in Germany
("2024-03-31 00:00:00", 48, "2024-04-02 00:00:00"), # DST change (47 hours/ day)
("2024-10-27 00:00:00", 48, "2024-10-29 00:00:00"), # DST change (49 hours/ day)
],
)
def test_end_datetime(self, container, start, hours, end):
"""Test end datetime calculation from start datetime."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction_hours": hours,
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(end, in_timezone="Europe/Berlin")
assert compare_datetimes(container.end_datetime, expected).equal
@pytest.mark.parametrize(
"start, historic_hours, expected_keep",
[
# Standard case
(
pendulum.datetime(2024, 8, 10, 0, 0, tz="Europe/Berlin"),
24,
pendulum.datetime(2024, 8, 9, 0, 0, tz="Europe/Berlin"),
),
# With DST, but should not affect historical data
(
pendulum.datetime(2024, 4, 1, 0, 0, tz="Europe/Berlin"),
24,
pendulum.datetime(2024, 3, 30, 23, 0, tz="Europe/Berlin"),
),
],
)
def test_keep_datetime(self, container, start, historic_hours, expected_keep):
"""Test the `keep_datetime` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction_historic_hours": historic_hours,
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(expected_keep, in_timezone="Europe/Berlin")
assert compare_datetimes(container.keep_datetime, expected).equal
@pytest.mark.parametrize(
"start, prediction_hours, expected_hours",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
],
)
def test_total_hours(self, container, start, prediction_hours, expected_hours):
"""Test the `total_hours` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction_hours": prediction_hours,
}
container.config.merge_settings_from_dict(settings)
assert container.total_hours == expected_hours
@pytest.mark.parametrize(
"start, historic_hours, expected_hours",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-04-01 00:00:00", 24, 24), # DST change on 2024-03-31 in Germany (23 hours/ day)
("2024-10-28 00:00:00", 24, 24), # DST change on 2024-10-27 in Germany (25 hours/ day)
],
)
def test_keep_hours(self, container, start, historic_hours, expected_hours):
"""Test the `keep_hours` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction_historic_hours": historic_hours,
}
container.config.merge_settings_from_dict(settings)
assert container.keep_hours == expected_hours
def test_append_provider(self, container):
assert len(container.providers) == 0
container.providers.append(DerivedPredictionProvider())
assert len(container.providers) == 1
assert isinstance(container.providers[0], DerivedPredictionProvider)
@pytest.mark.skip(reason="type check not implemented")
def test_append_provider_invalid_type(self, container):
with pytest.raises(ValueError, match="must be an instance of PredictionProvider"):
container.providers.append("not_a_provider")
def test_getitem_existing_key(self, container_with_providers):
assert len(container_with_providers.providers) == 1
# check all keys are available (don't care for position)
for key in ["prediction_value", "date_time"]:
assert key in list(container_with_providers.keys())
series = container_with_providers["prediction_value"]
assert isinstance(series, pd.Series)
assert series.name == "prediction_value"
assert series.tolist() == [1.0, 2.0, 3.0]
def test_getitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="No data found for key 'non_existent_key'"):
container_with_providers["non_existent_key"]
def test_setitem_existing_key(self, container_with_providers):
new_series = container_with_providers["prediction_value"]
new_series[:] = [4, 5, 6]
container_with_providers["prediction_value"] = new_series
series = container_with_providers["prediction_value"]
assert series.name == "prediction_value"
assert series.tolist() == [4, 5, 6]
def test_setitem_invalid_value(self, container_with_providers):
with pytest.raises(ValueError, match="Value must be an instance of pd.Series"):
container_with_providers["test_key"] = "not_a_series"
def test_setitem_non_existing_key(self, container_with_providers):
new_series = pd.Series([4, 5, 6], name="non_existent_key")
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
container_with_providers["non_existent_key"] = new_series
def test_delitem_existing_key(self, container_with_providers):
del container_with_providers["prediction_value"]
series = container_with_providers["prediction_value"]
assert series.name == "prediction_value"
assert series.tolist() == []
def test_delitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
del container_with_providers["non_existent_key"]
def test_len(self, container_with_providers):
assert len(container_with_providers) == 3
def test_repr(self, container_with_providers):
representation = repr(container_with_providers)
assert representation.startswith("DerivedPredictionContainer(")
assert "DerivedPredictionProvider" in representation
def test_to_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container_other = DerivedPredictionContainer.from_json(json_str)
assert container_other == container_with_providers
def test_from_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container = DerivedPredictionContainer.from_json(json_str)
assert isinstance(container, DerivedPredictionContainer)
assert len(container.providers) == 1
assert container.providers[0] == container_with_providers.providers[0]
def test_provider_by_id(self, container_with_providers):
provider = container_with_providers.provider_by_id("DerivedPredictionProvider")
assert isinstance(provider, DerivedPredictionProvider)