mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
216 lines
8.7 KiB
Python
216 lines
8.7 KiB
Python
import hashlib
|
||
import json
|
||
import zoneinfo
|
||
from datetime import datetime, timedelta, timezone
|
||
from pathlib import Path
|
||
from typing import Any, Optional, Sequence
|
||
|
||
import numpy as np
|
||
import requests
|
||
|
||
from akkudoktoreos.config import AppConfig, SetupIncomplete
|
||
|
||
|
||
def repeat_to_shape(array: np.ndarray, target_shape: Sequence[int]) -> np.ndarray:
|
||
# Check if the array fits the target shape
|
||
if len(target_shape) != array.ndim:
|
||
raise ValueError("Array and target shape must have the same number of dimensions")
|
||
|
||
# Number of repetitions per dimension
|
||
repeats = tuple(target_shape[i] // array.shape[i] for i in range(array.ndim))
|
||
|
||
# Use np.tile to expand the array
|
||
expanded_array = np.tile(array, repeats)
|
||
return expanded_array
|
||
|
||
|
||
class HourlyElectricityPriceForecast:
|
||
def __init__(
|
||
self,
|
||
source: str | Path,
|
||
config: AppConfig,
|
||
charges: float = 0.00021,
|
||
use_cache: bool = True,
|
||
): # 228
|
||
self.cache_dir = config.working_dir / config.directories.cache
|
||
self.use_cache = use_cache
|
||
if not self.cache_dir.is_dir():
|
||
raise SetupIncomplete(f"Output path does not exist: {self.cache_dir}.")
|
||
|
||
self.seven_day_mean = np.array([])
|
||
self.cache_time_file = self.cache_dir / "cache_timestamp.txt"
|
||
self.prices = self.load_data(source)
|
||
self.charges = charges
|
||
self.prediction_hours = config.eos.prediction_hours
|
||
self.seven_day_mean = self.get_average_price_last_7_days()
|
||
|
||
def load_data(self, source: str | Path) -> list[dict[str, Any]]:
|
||
cache_file = self.get_cache_file(source)
|
||
if isinstance(source, str):
|
||
if cache_file.is_file() and not self.is_cache_expired() and self.use_cache:
|
||
print("Loading data from cache...")
|
||
with cache_file.open("r") as file:
|
||
json_data = json.load(file)
|
||
else:
|
||
print("Loading data from the URL...")
|
||
response = requests.get(source)
|
||
if response.status_code == 200:
|
||
json_data = response.json()
|
||
with cache_file.open("w") as file:
|
||
json.dump(json_data, file)
|
||
self.update_cache_timestamp()
|
||
else:
|
||
raise Exception(f"Error fetching data: {response.status_code}")
|
||
elif source.is_file():
|
||
with source.open("r") as file:
|
||
json_data = json.load(file)
|
||
else:
|
||
raise ValueError(f"Input is not a valid path: {source}")
|
||
return json_data["values"]
|
||
|
||
def get_cache_file(self, url: str | Path) -> Path:
|
||
if isinstance(url, Path):
|
||
url = str(url)
|
||
hash_object = hashlib.sha256(url.encode())
|
||
hex_dig = hash_object.hexdigest()
|
||
return self.cache_dir / f"cache_{hex_dig}.json"
|
||
|
||
def is_cache_expired(self) -> bool:
|
||
if not self.cache_time_file.is_file():
|
||
return True
|
||
with self.cache_time_file.open("r") as file:
|
||
timestamp_str = file.read()
|
||
last_cache_time = datetime.strptime(timestamp_str, "%Y-%m-%d %H:%M:%S")
|
||
return datetime.now() - last_cache_time > timedelta(hours=1)
|
||
|
||
def update_cache_timestamp(self) -> None:
|
||
with self.cache_time_file.open("w") as file:
|
||
file.write(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
||
|
||
def get_price_for_date(self, date_str: str) -> np.ndarray:
|
||
"""Returns all prices for the specified date, including the price from 00:00 of the previous day."""
|
||
# Convert date string to datetime object
|
||
date_obj = datetime.strptime(date_str, "%Y-%m-%d")
|
||
|
||
# Calculate the previous day
|
||
previous_day = date_obj - timedelta(days=1)
|
||
previous_day_str = previous_day.strftime("%Y-%m-%d")
|
||
|
||
# Extract the price from 00:00 of the previous day
|
||
previous_day_prices = [
|
||
entry["marketprice"] # + self.charges
|
||
for entry in self.prices
|
||
if previous_day_str in entry["end"]
|
||
]
|
||
last_price_of_previous_day = previous_day_prices[-1] if previous_day_prices else 0
|
||
|
||
# Extract all prices for the specified date
|
||
date_prices = [
|
||
entry["marketprice"] # + self.charges
|
||
for entry in self.prices
|
||
if date_str in entry["end"]
|
||
]
|
||
|
||
# Add the last price of the previous day at the start of the list
|
||
if len(date_prices) == 23:
|
||
date_prices.insert(0, last_price_of_previous_day)
|
||
|
||
return np.array(date_prices) / (1000.0 * 1000.0) + self.charges
|
||
|
||
def get_average_price_last_7_days(self, end_date_str: Optional[str] = None) -> np.ndarray:
|
||
"""Calculate the hourly average electricity price for the last 7 days.
|
||
|
||
Parameters:
|
||
end_date_str (Optional[str]): End date in the format "YYYY-MM-DD".
|
||
If not provided, today's date will be used.
|
||
|
||
Returns:
|
||
np.ndarray: A NumPy array of 24 elements, each representing the hourly
|
||
average price over the last 7 days.
|
||
|
||
Raises:
|
||
ValueError: If there is insufficient data to calculate the averages.
|
||
"""
|
||
# Determine the end date (use today's date if not provided)
|
||
if end_date_str is None:
|
||
end_date = datetime.now().date() - timedelta(days=1)
|
||
else:
|
||
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
||
|
||
if self.seven_day_mean.size > 0:
|
||
return np.array([self.seven_day_mean])
|
||
|
||
# Calculate the start date (7 days before the end date)
|
||
start_date = end_date - timedelta(days=7)
|
||
|
||
# Convert dates to strings
|
||
start_date_str = start_date.strftime("%Y-%m-%d")
|
||
end_date_str = end_date.strftime("%Y-%m-%d")
|
||
|
||
# Retrieve price data for the specified date range
|
||
price_data = self.get_price_for_daterange(start_date_str, end_date_str)
|
||
|
||
# Ensure there is enough data for 7 full days (7 days × 24 hours)
|
||
if price_data.size < 7 * 24:
|
||
raise ValueError(
|
||
"Not enough data to calculate the average for the last 7 days.", price_data
|
||
)
|
||
|
||
# Reshape the data into a 7x24 matrix (7 rows for days, 24 columns for hours)
|
||
price_matrix = price_data.reshape(-1, 24)
|
||
# Calculate the average price for each hour across the 7 days
|
||
average_prices = np.average(
|
||
price_matrix,
|
||
axis=0,
|
||
weights=np.array([1, 2, 4, 8, 16, 32, 64]) / np.sum(np.array([1, 2, 4, 8, 16, 32, 64])),
|
||
)
|
||
|
||
final_weights = np.linspace(1, 0, price_matrix.shape[1])
|
||
|
||
# Weight last known price linear falling
|
||
average_prices_with_final_weight = [
|
||
(average_prices[i] * (1 - final_weights[i]))
|
||
+ (price_matrix[-1, -1] * (final_weights[i]))
|
||
for i in range(price_matrix.shape[1])
|
||
]
|
||
|
||
return np.array(average_prices_with_final_weight)
|
||
|
||
def get_price_for_daterange(
|
||
self, start_date_str: str, end_date_str: str, repeat: bool = False
|
||
) -> np.ndarray:
|
||
"""Returns all prices between the start and end dates."""
|
||
start_date_utc = datetime.strptime(start_date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
||
end_date_utc = datetime.strptime(end_date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
||
start_date = start_date_utc.astimezone(zoneinfo.ZoneInfo("Europe/Berlin"))
|
||
end_date = end_date_utc.astimezone(zoneinfo.ZoneInfo("Europe/Berlin"))
|
||
|
||
price_list: list[float] = []
|
||
|
||
while start_date < end_date:
|
||
date_str = start_date.strftime("%Y-%m-%d")
|
||
daily_prices = self.get_price_for_date(date_str)
|
||
|
||
if daily_prices.size == 24:
|
||
price_list.extend(daily_prices)
|
||
start_date += timedelta(days=1)
|
||
# print(date_str, ":", daily_prices)
|
||
price_list_np = np.array(price_list)
|
||
|
||
# print(price_list_np.shape, " ", self.prediction_hours)
|
||
# If prediction hours are greater than 0 and repeat is True
|
||
# print(price_list_np)
|
||
if self.prediction_hours > 0 and repeat:
|
||
# Check if price_list_np is shorter than prediction_hours
|
||
if price_list_np.size < self.prediction_hours:
|
||
# Repeat the seven_day_mean array to cover the missing hours
|
||
repeat_count = (self.prediction_hours // self.seven_day_mean.size) + 1
|
||
additional_values = np.tile(self.seven_day_mean, repeat_count)[
|
||
: self.prediction_hours - price_list_np.size
|
||
]
|
||
|
||
# Concatenate existing values with the repeated values
|
||
price_list_np = np.concatenate((price_list_np, additional_values))
|
||
# print(price_list_np)
|
||
return price_list_np
|