mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
250 lines
8.9 KiB
Python
Executable File
250 lines
8.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Annotated, Any, Dict, List, Optional
|
|
|
|
import matplotlib
|
|
import uvicorn
|
|
from fastapi.exceptions import HTTPException
|
|
from pydantic import BaseModel
|
|
|
|
# Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
|
|
matplotlib.use("Agg")
|
|
|
|
import pandas as pd
|
|
from fastapi import FastAPI, Query
|
|
from fastapi.responses import FileResponse, RedirectResponse
|
|
|
|
from akkudoktoreos.config import (
|
|
SetupIncomplete,
|
|
get_start_enddate,
|
|
get_working_dir,
|
|
load_config,
|
|
)
|
|
from akkudoktoreos.optimization.genetic import (
|
|
OptimizationParameters,
|
|
OptimizeResponse,
|
|
optimization_problem,
|
|
)
|
|
from akkudoktoreos.prediction.load_container import Gesamtlast
|
|
from akkudoktoreos.prediction.load_corrector import LoadPredictionAdjuster
|
|
from akkudoktoreos.prediction.load_forecast import LoadForecast
|
|
from akkudoktoreos.prediction.price_forecast import HourlyElectricityPriceForecast
|
|
from akkudoktoreos.prediction.pv_forecast import ForecastResponse, PVForecast
|
|
|
|
app = FastAPI(
|
|
title="Akkudoktor-EOS",
|
|
description="This project provides a comprehensive solution for simulating and optimizing an energy system based on renewable energy sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements), heat pumps, electric vehicles, and consideration of electricity price data, this system enables forecasting and optimization of energy flow and costs over a specified period.",
|
|
summary="Comprehensive solution for simulating and optimizing an energy system based on renewable energy sources",
|
|
version="0.0.1",
|
|
license_info={
|
|
"name": "Apache 2.0",
|
|
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
|
|
},
|
|
)
|
|
|
|
working_dir = get_working_dir()
|
|
# copy config to working directory. Make this a CLI option later
|
|
config = load_config(working_dir, True)
|
|
opt_class = optimization_problem(config, verbose=True)
|
|
server_dir = Path(__file__).parent.resolve()
|
|
|
|
|
|
class PdfResponse(FileResponse):
|
|
media_type = "application/pdf"
|
|
|
|
|
|
@app.get("/strompreis")
|
|
def fastapi_strompreis() -> list[float]:
|
|
# Get the current date and the end date based on prediction hours
|
|
date_now, date = get_start_enddate(config.eos.prediction_hours, startdate=datetime.now().date())
|
|
price_forecast = HourlyElectricityPriceForecast(
|
|
source=f"https://api.akkudoktor.net/prices?start={date_now}&end={date}",
|
|
config=config,
|
|
use_cache=False,
|
|
)
|
|
specific_date_prices = price_forecast.get_price_for_daterange(
|
|
date_now, date
|
|
) # Fetch prices for the specified date range
|
|
return specific_date_prices.tolist()
|
|
|
|
|
|
class GesamtlastRequest(BaseModel):
|
|
year_energy: float
|
|
measured_data: List[Dict[str, Any]]
|
|
hours: int
|
|
|
|
|
|
@app.post("/gesamtlast")
|
|
def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
|
|
"""Endpoint to handle total load calculation based on the latest measured data."""
|
|
# Request-Daten extrahieren
|
|
year_energy = request.year_energy
|
|
measured_data = request.measured_data
|
|
hours = request.hours
|
|
|
|
# Ab hier bleibt der Code unverändert ...
|
|
measured_data_df = pd.DataFrame(measured_data)
|
|
measured_data_df["time"] = pd.to_datetime(measured_data_df["time"])
|
|
|
|
# Zeitzonenmanagement
|
|
if measured_data_df["time"].dt.tz is None:
|
|
measured_data_df["time"] = measured_data_df["time"].dt.tz_localize("Europe/Berlin")
|
|
else:
|
|
measured_data_df["time"] = measured_data_df["time"].dt.tz_convert("Europe/Berlin")
|
|
|
|
# Zeitzone entfernen
|
|
measured_data_df["time"] = measured_data_df["time"].dt.tz_localize(None)
|
|
|
|
# Forecast erstellen
|
|
lf = LoadForecast(
|
|
filepath=server_dir / ".." / "data" / "load_profiles.npz", year_energy=year_energy
|
|
)
|
|
forecast_list = []
|
|
|
|
for single_date in pd.date_range(
|
|
measured_data_df["time"].min().date(), measured_data_df["time"].max().date()
|
|
):
|
|
date_str = single_date.strftime("%Y-%m-%d")
|
|
daily_forecast = lf.get_daily_stats(date_str)
|
|
mean_values = daily_forecast[0]
|
|
fc_hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
|
|
daily_forecast_df = pd.DataFrame({"time": fc_hours, "Last Pred": mean_values})
|
|
forecast_list.append(daily_forecast_df)
|
|
|
|
predicted_data = pd.concat(forecast_list, ignore_index=True)
|
|
|
|
adjuster = LoadPredictionAdjuster(measured_data_df, predicted_data, lf)
|
|
adjuster.calculate_weighted_mean()
|
|
adjuster.adjust_predictions()
|
|
future_predictions = adjuster.predict_next_hours(hours)
|
|
|
|
leistung_haushalt = future_predictions["Adjusted Pred"].to_numpy()
|
|
gesamtlast = Gesamtlast(prediction_hours=hours)
|
|
gesamtlast.hinzufuegen(
|
|
"Haushalt",
|
|
leistung_haushalt,
|
|
)
|
|
|
|
last = gesamtlast.gesamtlast_berechnen()
|
|
return last.tolist()
|
|
|
|
|
|
@app.get("/gesamtlast_simple")
|
|
def fastapi_gesamtlast_simple(year_energy: float) -> list[float]:
|
|
date_now, date = get_start_enddate(
|
|
config.eos.prediction_hours, startdate=datetime.now().date()
|
|
) # Get the current date and prediction end date
|
|
|
|
###############
|
|
# Load Forecast
|
|
###############
|
|
lf = LoadForecast(
|
|
filepath=server_dir / ".." / "data" / "load_profiles.npz", year_energy=year_energy
|
|
) # Instantiate LoadForecast with specified parameters
|
|
leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[
|
|
0
|
|
] # Get expected household load for the date range
|
|
|
|
gesamtlast = Gesamtlast(
|
|
prediction_hours=config.eos.prediction_hours
|
|
) # Create Gesamtlast instance
|
|
gesamtlast.hinzufuegen(
|
|
"Haushalt", leistung_haushalt
|
|
) # Add household load to total load calculation
|
|
|
|
# ###############
|
|
# # WP (Heat Pump)
|
|
# ##############
|
|
# leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
|
|
# gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
|
|
|
|
last = gesamtlast.gesamtlast_berechnen() # Calculate total load
|
|
return last.tolist() # Return total load as JSON
|
|
|
|
|
|
@app.get("/pvforecast")
|
|
def fastapi_pvprognose(url: str, ac_power_measurement: Optional[float] = None) -> ForecastResponse:
|
|
date_now, date = get_start_enddate(config.eos.prediction_hours, startdate=datetime.now().date())
|
|
|
|
###############
|
|
# PV Forecast
|
|
###############
|
|
PVforecast = PVForecast(
|
|
prediction_hours=config.eos.prediction_hours, url=url
|
|
) # Instantiate PVForecast with given parameters
|
|
if ac_power_measurement is not None:
|
|
PVforecast.update_ac_power_measurement(
|
|
date_time=datetime.now(),
|
|
ac_power_measurement=ac_power_measurement,
|
|
) # Update measurement
|
|
|
|
# Get PV forecast and temperature forecast for the specified date range
|
|
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now, date)
|
|
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now, date)
|
|
|
|
return ForecastResponse(temperature=temperature_forecast.tolist(), pvpower=pv_forecast.tolist())
|
|
|
|
|
|
@app.post("/optimize")
|
|
def fastapi_optimize(
|
|
parameters: OptimizationParameters,
|
|
start_hour: Annotated[
|
|
Optional[int], Query(description="Defaults to current hour of the day.")
|
|
] = None,
|
|
) -> OptimizeResponse:
|
|
if start_hour is None:
|
|
start_hour = datetime.now().hour
|
|
|
|
# Perform optimization simulation
|
|
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour)
|
|
# print(result)
|
|
return result
|
|
|
|
|
|
@app.get("/visualization_results.pdf", response_class=PdfResponse)
|
|
def get_pdf() -> PdfResponse:
|
|
# Endpoint to serve the generated PDF with visualization results
|
|
output_path = config.working_dir / config.directories.output
|
|
if not output_path.is_dir():
|
|
raise SetupIncomplete(f"Output path does not exist: {output_path}.")
|
|
file_path = output_path / "visualization_results.pdf"
|
|
if not file_path.is_file():
|
|
raise HTTPException(status_code=404, detail="No visualization result available.")
|
|
return PdfResponse(file_path)
|
|
|
|
|
|
@app.get("/site-map", include_in_schema=False)
|
|
def site_map() -> RedirectResponse:
|
|
return RedirectResponse(url="/docs")
|
|
|
|
|
|
@app.get("/", include_in_schema=False)
|
|
def root() -> RedirectResponse:
|
|
# Redirect the root URL to the site map
|
|
return RedirectResponse(url="/docs")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
config.run_setup()
|
|
except Exception as e:
|
|
print(f"Failed to initialize: {e}")
|
|
exit(1)
|
|
|
|
# Set host and port from environment variables or defaults
|
|
host = os.getenv("EOS_RUN_HOST", "0.0.0.0")
|
|
port = os.getenv("EOS_RUN_PORT", 8503)
|
|
try:
|
|
uvicorn.run(app, host=host, port=int(port)) # Run the FastAPI application
|
|
except Exception as e:
|
|
print(
|
|
f"Could not bind to host {host}:{port}. Error: {e}"
|
|
) # Error handling for binding issues
|
|
exit(1)
|
|
else:
|
|
# started from cli / dev server
|
|
config.run_setup()
|