mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
336 lines
15 KiB
Python
336 lines
15 KiB
Python
from flask import Flask, jsonify, request
|
|
import numpy as np
|
|
from modules.class_load import *
|
|
from modules.class_ems import *
|
|
from modules.class_pv_forecast import *
|
|
from modules.class_akku import *
|
|
|
|
from modules.class_heatpump import *
|
|
from modules.class_load_container import *
|
|
from modules.class_inverter import *
|
|
from modules.class_sommerzeit import *
|
|
from modules.visualize import *
|
|
from modules.class_haushaltsgeraet import *
|
|
import os
|
|
from flask import Flask, send_from_directory
|
|
from pprint import pprint
|
|
import matplotlib
|
|
matplotlib.use('Agg') # Setzt das Backend auf Agg
|
|
import matplotlib.pyplot as plt
|
|
import string
|
|
from datetime import datetime
|
|
from deap import base, creator, tools, algorithms
|
|
import numpy as np
|
|
import random
|
|
import os
|
|
|
|
|
|
def isfloat(num):
|
|
try:
|
|
float(num)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
class optimization_problem:
|
|
def __init__(self, prediction_hours=24, strafe = 10, optimization_hours= 24):
|
|
self.prediction_hours = prediction_hours#
|
|
self.strafe = strafe
|
|
self.opti_param = None
|
|
self.fixed_eauto_hours = prediction_hours-optimization_hours
|
|
|
|
|
|
|
|
def split_individual(self, individual):
|
|
"""
|
|
Teilt das gegebene Individuum in die verschiedenen Parameter auf:
|
|
- Entladeparameter (discharge_hours_bin)
|
|
- Ladeparameter (eautocharge_hours_float)
|
|
- Haushaltsgeräte (spuelstart_int, falls vorhanden)
|
|
"""
|
|
# Extrahiere die Entlade- und Ladeparameter direkt aus dem Individuum
|
|
discharge_hours_bin = individual[:self.prediction_hours] # Erste 24 Werte sind Bool (Entladen)
|
|
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2] # Nächste 24 Werte sind Float (Laden)
|
|
|
|
spuelstart_int = None
|
|
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0:
|
|
spuelstart_int = individual[-1] # Letzter Wert ist Startzeit für Haushaltsgerät
|
|
|
|
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
|
|
|
|
|
|
def setup_deap_environment(self,opti_param, start_hour):
|
|
self.opti_param = opti_param
|
|
|
|
|
|
if "FitnessMin" in creator.__dict__:
|
|
del creator.FitnessMin
|
|
if "Individual" in creator.__dict__:
|
|
del creator.Individual
|
|
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
|
|
# PARAMETER
|
|
self.toolbox = base.Toolbox()
|
|
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
|
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
|
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
|
|
|
###################
|
|
# Haushaltsgeraete
|
|
#print("Haushalt:",opti_param["haushaltsgeraete"])
|
|
if opti_param["haushaltsgeraete"]>0:
|
|
def create_individual():
|
|
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
|
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
|
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
|
return creator.Individual(attrs)
|
|
|
|
else:
|
|
def create_individual():
|
|
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
|
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
|
return creator.Individual(attrs)
|
|
|
|
|
|
self.toolbox.register("individual", create_individual)#tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
|
|
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
|
self.toolbox.register("mate", tools.cxTwoPoint)
|
|
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
|
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
|
|
|
def evaluate_inner(self,individual, ems,start_hour):
|
|
ems.reset()
|
|
|
|
#print("Spuel:",self.opti_param)
|
|
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
|
|
|
# Haushaltsgeraete
|
|
if self.opti_param["haushaltsgeraete"]>0:
|
|
ems.set_haushaltsgeraet_start(spuelstart_int,global_start_hour=start_hour)
|
|
|
|
|
|
|
|
|
|
ems.set_akku_discharge_hours(discharge_hours_bin)
|
|
|
|
# Setze die festen Werte für die letzten x Stunden
|
|
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
|
eautocharge_hours_float[i] = 0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
|
|
|
|
|
|
|
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
|
|
|
|
|
o = ems.simuliere(start_hour)
|
|
|
|
return o
|
|
|
|
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
|
def evaluate(self,individual,ems,parameter,start_hour,worst_case):
|
|
|
|
try:
|
|
o = self.evaluate_inner(individual,ems,start_hour)
|
|
except:
|
|
return (100000.0,)
|
|
|
|
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
|
if worst_case:
|
|
gesamtbilanz = gesamtbilanz * -1.0
|
|
|
|
|
|
# E-Auto nur die ersten self.fixed_eauto_hours
|
|
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2]
|
|
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
|
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
|
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
|
|
|
|
|
|
|
# Überprüfung, ob der Mindest-SoC erreicht wird
|
|
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
|
|
|
|
|
|
|
|
|
|
if (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) <= 0.0:
|
|
#print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
|
|
for i in range(0, self.prediction_hours):
|
|
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
|
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
|
|
|
|
|
eauto_roi = (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent())
|
|
individual.extra_data = (o["Gesamtbilanz_Euro"],o["Gesamt_Verluste"], eauto_roi )
|
|
|
|
|
|
restenergie_akku = ems.akku.aktueller_energieinhalt()
|
|
restwert_akku = restenergie_akku*parameter["preis_euro_pro_wh_akku"]
|
|
# print(restenergie_akku)
|
|
# print(parameter["preis_euro_pro_wh_akku"])
|
|
# print(restwert_akku)
|
|
# print()
|
|
strafe = 0.0
|
|
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
|
|
gesamtbilanz += strafe - restwert_akku
|
|
#gesamtbilanz += o["Gesamt_Verluste"]/10000.0
|
|
|
|
return (gesamtbilanz,)
|
|
|
|
|
|
|
|
|
|
|
|
# Genetischer Algorithmus
|
|
def optimize(self,start_solution=None):
|
|
population = self.toolbox.population(n=400)
|
|
hof = tools.HallOfFame(1)
|
|
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
stats.register("avg", np.mean)
|
|
stats.register("min", np.min)
|
|
stats.register("max", np.max)
|
|
|
|
print("Start:",start_solution)
|
|
|
|
if start_solution is not None and start_solution != -1:
|
|
population.insert(0, creator.Individual(start_solution))
|
|
|
|
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=500, stats=stats, halloffame=hof, verbose=True)
|
|
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
|
|
|
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
|
for ind in population:
|
|
if hasattr(ind, 'extra_data'):
|
|
extra_value1, extra_value2,extra_value3 = ind.extra_data
|
|
member["bilanz"].append(extra_value1)
|
|
member["verluste"].append(extra_value2)
|
|
member["nebenbedingung"].append(extra_value3)
|
|
|
|
|
|
return hof[0], member
|
|
|
|
|
|
def optimierung_ems(self,parameter=None, start_hour=None,worst_case=False, startdate=None):
|
|
|
|
|
|
############
|
|
# Parameter
|
|
############
|
|
if startdate == None:
|
|
date = (datetime.now().date() + timedelta(hours = self.prediction_hours)).strftime("%Y-%m-%d")
|
|
date_now = datetime.now().strftime("%Y-%m-%d")
|
|
else:
|
|
date = (startdate + timedelta(hours = self.prediction_hours)).strftime("%Y-%m-%d")
|
|
date_now = startdate.strftime("%Y-%m-%d")
|
|
#print("Start_date:",date_now)
|
|
|
|
akku_size = parameter['pv_akku_cap'] # Wh
|
|
|
|
einspeiseverguetung_euro_pro_wh = np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
|
|
|
akku = PVAkku(kapazitaet_wh=akku_size,hours=self.prediction_hours,start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
|
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
|
laden_moeglich = np.full(self.prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
|
|
|
|
|
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
|
eauto.set_charge_per_hour(laden_moeglich)
|
|
min_soc_eauto = parameter['eauto_min_soc']
|
|
start_params = parameter['start_solution']
|
|
|
|
###############
|
|
# spuelmaschine
|
|
##############
|
|
print(parameter)
|
|
if parameter["haushaltsgeraet_dauer"] >0:
|
|
spuelmaschine = Haushaltsgeraet(hours=self.prediction_hours, verbrauch_kwh=parameter["haushaltsgeraet_wh"], dauer_h=parameter["haushaltsgeraet_dauer"])
|
|
spuelmaschine.set_startzeitpunkt(start_hour) # Startet jetzt
|
|
else:
|
|
spuelmaschine = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
###############
|
|
# PV Forecast
|
|
###############
|
|
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
|
# PVforecast = PVForecast(prediction_hours = self.prediction_hours, url=pv_forecast_url)
|
|
# #print("PVPOWER",parameter['pvpowernow'])
|
|
# if isfloat(parameter['pvpowernow']):
|
|
# PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(parameter['pvpowernow']))
|
|
# #PVforecast.print_ac_power_and_measurement()
|
|
pv_forecast = parameter['pv_forecast'] #PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
|
temperature_forecast = parameter['temperature_forecast'] #PVforecast.get_temperature_for_date_range(date_now,date)
|
|
|
|
|
|
###############
|
|
# Strompreise
|
|
###############
|
|
specific_date_prices = parameter["strompreis_euro_pro_wh"]
|
|
print(specific_date_prices)
|
|
#print("https://api.akkudoktor.net/prices?start="+date_now+"&end="+date)
|
|
|
|
|
|
wr = Wechselrichter(10000, akku)
|
|
|
|
ems = EnergieManagementSystem(gesamtlast = parameter["gesamtlast"], pv_prognose_wh=pv_forecast, strompreis_euro_pro_wh=specific_date_prices, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, eauto=eauto, haushaltsgeraet=spuelmaschine,wechselrichter=wr)
|
|
o = ems.simuliere(start_hour)
|
|
|
|
###############
|
|
# Optimizer Init
|
|
##############
|
|
opti_param = {}
|
|
opti_param["haushaltsgeraete"] = 0
|
|
if spuelmaschine != None:
|
|
opti_param["haushaltsgeraete"] = 1
|
|
|
|
self.setup_deap_environment(opti_param, start_hour)
|
|
|
|
def evaluate_wrapper(individual):
|
|
return self.evaluate(individual, ems, parameter,start_hour,worst_case)
|
|
|
|
self.toolbox.register("evaluate", evaluate_wrapper)
|
|
start_solution, extra_data = self.optimize(start_params)
|
|
best_solution = start_solution
|
|
o = self.evaluate_inner(best_solution, ems,start_hour)
|
|
eauto = ems.eauto.to_dict()
|
|
spuelstart_int = None
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(best_solution)
|
|
|
|
|
|
print(parameter)
|
|
print(best_solution)
|
|
visualisiere_ergebnisse(parameter["gesamtlast"], pv_forecast, specific_date_prices, o,discharge_hours_bin,eautocharge_hours_float , temperature_forecast, start_hour, self.prediction_hours,einspeiseverguetung_euro_pro_wh,extra_data=extra_data)
|
|
os.system("cp visualisierungsergebnisse.pdf ~/")
|
|
|
|
# 'Eigenverbrauch_Wh_pro_Stunde': eigenverbrauch_wh_pro_stunde,
|
|
# 'Netzeinspeisung_Wh_pro_Stunde': netzeinspeisung_wh_pro_stunde,
|
|
# 'Netzbezug_Wh_pro_Stunde': netzbezug_wh_pro_stunde,
|
|
# 'Kosten_Euro_pro_Stunde': kosten_euro_pro_stunde,
|
|
# 'akku_soc_pro_stunde': akku_soc_pro_stunde,
|
|
# 'Einnahmen_Euro_pro_Stunde': einnahmen_euro_pro_stunde,
|
|
# 'Gesamtbilanz_Euro': gesamtkosten_euro,
|
|
# 'E-Auto_SoC_pro_Stunde':eauto_soc_pro_stunde,
|
|
# 'Gesamteinnahmen_Euro': sum(einnahmen_euro_pro_stunde),
|
|
# 'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde),
|
|
# "Verluste_Pro_Stunde":verluste_wh_pro_stunde,
|
|
# "Gesamt_Verluste":sum(verluste_wh_pro_stunde),
|
|
# "Haushaltsgeraet_wh_pro_stunde":haushaltsgeraet_wh_pro_stunde
|
|
|
|
#print(eauto)
|
|
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto,"start_solution":best_solution,"spuelstart":spuelstart_int,"simulation_data":o}
|
|
|
|
|
|
|
|
|