mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-06-27 16:36:53 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
* Fix logging configuration issues that made logging stop operation. Switch to Loguru logging (from Python logging). Enable console and file logging with different log levels. Add logging documentation. * Fix logging configuration and EOS configuration out of sync. Added tracking support for nested value updates of Pydantic models. This used to update the logging configuration when the EOS configurationm for logging is changed. Should keep logging config and EOS config in sync as long as all changes to the EOS logging configuration are done by set_nested_value(), which is the case for the REST API. * Fix energy management task looping endlessly after the second update when trying to update the last_update datetime. * Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance. * Fix usage of model classes instead of model instances in nested value access when evaluation the value type that is associated to each key. * Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider. * Fix documentation qirks and add EOS Connect to integrations. * Support deprecated fields in configuration in documentation generation and EOSdash. * Enhance EOSdash demo to show BrightSky humidity data (that is often missing) * Update documentation reference to German EOS installation videos. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
441 lines
12 KiB
Python
Executable File
441 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import cProfile
|
|
import json
|
|
import pstats
|
|
import sys
|
|
import time
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
from akkudoktoreos.config.config import get_config
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.optimization.genetic import (
|
|
OptimizationParameters,
|
|
optimization_problem,
|
|
)
|
|
from akkudoktoreos.prediction.prediction import get_prediction
|
|
|
|
|
|
def prepare_optimization_real_parameters() -> OptimizationParameters:
|
|
"""Prepare and return optimization parameters with real world data.
|
|
|
|
Returns:
|
|
OptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# Make a config
|
|
settings = {
|
|
"general": {
|
|
"latitude": 52.52,
|
|
"longitude": 13.405,
|
|
},
|
|
"prediction": {
|
|
"hours": 48,
|
|
"historic_hours": 24,
|
|
},
|
|
# PV Forecast
|
|
"pvforecast": {
|
|
"provider": "PVForecastAkkudoktor",
|
|
"planes": [
|
|
{
|
|
"peakpower": 5.0,
|
|
"surface_azimuth": -10,
|
|
"surface_tilt": 7,
|
|
"userhorizon": [20, 27, 22, 20],
|
|
"inverter_paco": 10000,
|
|
},
|
|
{
|
|
"peakpower": 4.8,
|
|
"surface_azimuth": -90,
|
|
"surface_tilt": 7,
|
|
"userhorizon": [30, 30, 30, 50],
|
|
"inverter_paco": 10000,
|
|
},
|
|
{
|
|
"peakpower": 1.4,
|
|
"surface_azimuth": -40,
|
|
"surface_tilt": 60,
|
|
"userhorizon": [60, 30, 0, 30],
|
|
"inverter_paco": 2000,
|
|
},
|
|
{
|
|
"peakpower": 1.6,
|
|
"surface_azimuth": 5,
|
|
"surface_tilt": 45,
|
|
"userhorizon": [45, 25, 30, 60],
|
|
"inverter_paco": 1400,
|
|
},
|
|
],
|
|
},
|
|
# Weather Forecast
|
|
"weather": {
|
|
"provider": "ClearOutside",
|
|
},
|
|
# Electricity Price Forecast
|
|
"elecprice": {
|
|
"provider": "ElecPriceAkkudoktor",
|
|
},
|
|
# Load Forecast
|
|
"load": {
|
|
"provider": "LoadAkkudoktor",
|
|
"provider_settings": {
|
|
"loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh
|
|
},
|
|
},
|
|
# -- Simulations --
|
|
}
|
|
config_eos = get_config()
|
|
prediction_eos = get_prediction()
|
|
ems_eos = get_ems()
|
|
|
|
# Update/ set configuration
|
|
config_eos.merge_settings_from_dict(settings)
|
|
|
|
# Get current prediction data for optimization run
|
|
ems_eos.set_start_datetime()
|
|
print(
|
|
f"Real data prediction from {prediction_eos.start_datetime} to {prediction_eos.end_datetime}"
|
|
)
|
|
prediction_eos.update_data()
|
|
|
|
# PV Forecast (in W)
|
|
pv_forecast = prediction_eos.key_to_array(
|
|
key="pvforecast_ac_power",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"pv_forecast: {pv_forecast}")
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = prediction_eos.key_to_array(
|
|
key="weather_temp_air",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"temperature_forecast: {temperature_forecast}")
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = prediction_eos.key_to_array(
|
|
key="elecprice_marketprice_wh",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"strompreis_euro_pro_wh: {strompreis_euro_pro_wh}")
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = prediction_eos.key_to_array(
|
|
key="load_mean",
|
|
start_datetime=prediction_eos.start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"gesamtlast: {gesamtlast}")
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
print(f"start_solution: {start_solution}")
|
|
|
|
# Define parameters for the optimization problem
|
|
return OptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"device_id": "battery1",
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
|
|
"eauto": {
|
|
"device_id": "ev1",
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def prepare_optimization_parameters() -> OptimizationParameters:
|
|
"""Prepare and return optimization parameters with predefined data.
|
|
|
|
Returns:
|
|
OptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# PV Forecast (in W)
|
|
pv_forecast = np.zeros(48)
|
|
pv_forecast[12] = 5000
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = [
|
|
18.3,
|
|
17.8,
|
|
16.9,
|
|
16.2,
|
|
15.6,
|
|
15.1,
|
|
14.6,
|
|
14.2,
|
|
14.3,
|
|
14.8,
|
|
15.7,
|
|
16.7,
|
|
17.4,
|
|
18.0,
|
|
18.6,
|
|
19.2,
|
|
19.1,
|
|
18.7,
|
|
18.5,
|
|
17.7,
|
|
16.2,
|
|
14.6,
|
|
13.6,
|
|
13.0,
|
|
12.6,
|
|
12.2,
|
|
11.7,
|
|
11.6,
|
|
11.3,
|
|
11.0,
|
|
10.7,
|
|
10.2,
|
|
11.4,
|
|
14.4,
|
|
16.4,
|
|
18.3,
|
|
19.5,
|
|
20.7,
|
|
21.9,
|
|
22.7,
|
|
23.1,
|
|
23.1,
|
|
22.8,
|
|
21.8,
|
|
20.2,
|
|
19.1,
|
|
18.0,
|
|
17.4,
|
|
]
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = np.full(48, 0.001)
|
|
strompreis_euro_pro_wh[0:10] = 0.00001
|
|
strompreis_euro_pro_wh[11:15] = 0.00005
|
|
strompreis_euro_pro_wh[20] = 0.00001
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = [
|
|
676.71,
|
|
876.19,
|
|
527.13,
|
|
468.88,
|
|
531.38,
|
|
517.95,
|
|
483.15,
|
|
472.28,
|
|
1011.68,
|
|
995.00,
|
|
1053.07,
|
|
1063.91,
|
|
1320.56,
|
|
1132.03,
|
|
1163.67,
|
|
1176.82,
|
|
1216.22,
|
|
1103.78,
|
|
1129.12,
|
|
1178.71,
|
|
1050.98,
|
|
988.56,
|
|
912.38,
|
|
704.61,
|
|
516.37,
|
|
868.05,
|
|
694.34,
|
|
608.79,
|
|
556.31,
|
|
488.89,
|
|
506.91,
|
|
804.89,
|
|
1141.98,
|
|
1056.97,
|
|
992.46,
|
|
1155.99,
|
|
827.01,
|
|
1257.98,
|
|
1232.67,
|
|
871.26,
|
|
860.88,
|
|
1158.03,
|
|
1222.72,
|
|
1221.04,
|
|
949.99,
|
|
987.01,
|
|
733.99,
|
|
592.97,
|
|
]
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
|
|
# Define parameters for the optimization problem
|
|
return OptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"device_id": "battery1",
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
|
|
"eauto": {
|
|
"device_id": "ev1",
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def run_optimization(
|
|
real_world: bool, start_hour: int, verbose: bool, seed: int, parameters_file: str, ngen: int
|
|
) -> Any:
|
|
"""Run the optimization problem.
|
|
|
|
Args:
|
|
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
|
|
verbose (bool, optional): Whether to print verbose output. Defaults to False.
|
|
|
|
Returns:
|
|
dict: Optimization result as a dictionary
|
|
"""
|
|
# Prepare parameters
|
|
if parameters_file:
|
|
with open(parameters_file, "r") as f:
|
|
parameters = OptimizationParameters(**json.load(f))
|
|
elif real_world:
|
|
parameters = prepare_optimization_real_parameters()
|
|
else:
|
|
parameters = prepare_optimization_parameters()
|
|
|
|
if verbose:
|
|
print("\nOptimization Parameters:")
|
|
print(parameters.model_dump_json(indent=4))
|
|
|
|
# Initialize the optimization problem using the default configuration
|
|
config_eos = get_config()
|
|
config_eos.merge_settings_from_dict(
|
|
{"prediction": {"hours": 48}, "optimization": {"hours": 48}}
|
|
)
|
|
opt_class = optimization_problem(verbose=verbose, fixed_seed=seed)
|
|
|
|
# Perform the optimisation based on the provided parameters and start hour
|
|
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour, ngen=ngen)
|
|
|
|
return result.model_dump_json()
|
|
|
|
|
|
def main():
|
|
"""Main function to run the optimization script with optional profiling."""
|
|
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
|
|
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
|
|
parser.add_argument(
|
|
"--verbose", action="store_true", help="Enable verbose output during optimization"
|
|
)
|
|
parser.add_argument(
|
|
"--real-world", action="store_true", help="Use real world data for predictions"
|
|
)
|
|
parser.add_argument(
|
|
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
|
|
)
|
|
parser.add_argument(
|
|
"--parameters-file",
|
|
type=str,
|
|
default="",
|
|
help="Load optimization parameters from json file (default: unset)",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="Use fixed random seed (default: 42)")
|
|
parser.add_argument(
|
|
"--ngen",
|
|
type=int,
|
|
default=400,
|
|
help="Number of generations during optimization process (default: 400)",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.profile:
|
|
# Run with profiling
|
|
profiler = cProfile.Profile()
|
|
try:
|
|
result = profiler.runcall(
|
|
run_optimization,
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
# Print profiling statistics
|
|
stats = pstats.Stats(profiler)
|
|
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
|
|
# Print result
|
|
if args.verbose:
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
else:
|
|
# Run without profiling
|
|
try:
|
|
start_time = time.time()
|
|
result = run_optimization(
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
if args.verbose:
|
|
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|